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Software Engineering and R Programming:
A Call for Research
by Melina Vidoni

Abstract Although R programming has been a part of research since its origins in the 1990s, few
studies address scientific software development from a Software Engineering (SE) perspective. The
past few years have seen unparalleled growth in the R community, and it is time to push the boundaries
of SE research and R programming forwards. This paper discusses relevant studies that close this
gap Additionally, it proposes a set of good practices derived from those findings aiming to act as a
call-to-arms for both the R and RSE (Research SE) community to explore specific, interdisciplinary
paths of research.

Introduction

R is a multi-paradigm statistical programming language, based on the S statistical language (Morandat
et al., 2012), developed in the 1990s by Ross Ihaka and Robert Gentleman at the University of Auckland,
New Zealand. It is maintained by the R Development Core Team (Thieme, 2018). Though CRAN
(Comprehensive Archive Network) was created for users to suggest improvements and report bugs,
nowadays, is the official venue to submit user-generated R packages (Ihaka, 2017). R has gained
popularity for work related to statistical analysis and mathematical modelling and has been one of
the fastest-growing programming languages (Muenchen, 2017). In July 2020, R ranked 8th in the
TIOBE index, which measures of popularity of programming languages; as a comparison, one year
before (July 2019), TIOBE ranked R in the 20th position (TIOBE, 2020). According to (Korkmaz et al.,
2018), “this has led to the development and distribution of over 10,000 packages, each with a specific purpose".
Furthermore, it has a vibrant end-user programming community, where the majority of contributors
and core members are “not software engineers by trade, but statisticians and scientists", with diverse
technical backgrounds and application areas (German et al., 2013).

R programming has become an essential part of computational science–the "application of computer
science and Software Engineering (SE) principles to solving scientific problems" (Hasselbring et al.,
2019). As a result, there are numerous papers discussing R packages explicitly developed to close a
particular gap or assist in the analysis of data of a myriad of disciplines. Regardless of the language
used, the development of software to assist in research ventures in a myriad of disciplines, has been
termed as ‘research SE’ (RSE) (Cohen et al., 2021). Overall, RSE has several differences with traditional
software development, such as the lifecycles used, the software goals and life-expectancy, and the
requirements elicitation. This type of software is often “constructed for a particular project, and rarely
maintained beyond this, leading to rapid decay, and frequent ’reinvention of the wheel" (Rosado de
Souza et al., 2019).

However, both RSE and SE for R programming remain under-explored, with little SE-specific
knowledge being tailored to these two areas. This poses several problems, given that in computational
science, research software is a central asset for research. Moreover, although most RSE-ers (the
academics writing software for research) come from the research community, a small number arrive
from a professional programming background (Cohen et al., 2021; Pinto et al., 2018). Previous research
showed R programmers do not consider themselves as developers (Pinto et al., 2018) and that few
of them are aware of the intricacies of the language (Morandat et al., 2012). This poses a problem
since the lack of formal programming training can lead to lower quality software (Hasselbring et al.,
2019), as well as less-robust software (Vidoni, 2021a). This is problematic since ensuring sustainable
development focused on code quality and maintenance is essential for the evolution of research in a
myriad of computational science disciplines, as faulty and low-quality software can potentially affect
research results (Cohen et al., 2018).

As a result, this paper aims to provide insights into three core areas:

• Related works that tackle both RSE and R programming, discussing their goals, motivations,
relevancy, and findings. This list was curated through an unstructured review and is, by no
means, complete or exhaustive.

• Organising the findings from those manuscripts into a list of good practices for developers. This
is posed as a baseline, aiming to be improved with time, application, and experience.

• A call-to-arms for RSE and R communities, to explore interdisciplinary paths of research,
covering not only empirical SE topics but also further developing the tools available to R
programmers.
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The rest of this paper is organised as follows. Section 2.2 presents the related works, introducing
them one by one. Section 2.3 outlines the proposed best practices, and Section 2.4 concludes this work
with a call-to-action for the community.

Related Works

This Section discusses relevant works organised in four sub-areas related to software development:
coding in R, testing packages, reviewing them, and developers’ experiences.

Area: Coding in R

Code quality is often related to technical debt. Technical Debt (TD) is a metaphor used to reflect the
implied cost of additional rework caused by choosing an easy solution in the present, instead of using
a better approach that would take longer (Samarthyam et al., 2017).

Claes et al. (2015) mined software repositories (MSR) to evaluate the maintainability of R packages
published in CRAN. They focused on function clones, which is the practice of duplicating functions
from other packages to reduce the number of dependencies; this is often done by copying the code
of an external function directly into the package under development or by re-exporting the function
under an alias. Code clones are harmful because they lead to redundancy due to code duplication and
are a code smell (i.e., a practice that reduces code quality, making maintenance more difficult).

The authors identified that cloning, in CRAN packages only, is often caused by several reasons.
These are: coexisting package versions (with some packages lines being cloned in the order of the
hundreds and thousands), forked packages, packages that are cloned more than others, utility packages
(i.e., those that bundle functions from other packages to simply importing), popular packages (with
functions cloned more often than in other packages), and popular functions (specific functions being
cloned by a large number of packages).

Moreover, they analysed the cloning trend for packages published in CRAN. They determined
that the ratio of packages impacted by cloning appears to be stable but, overall, it represents over
quarter-million code lines in CRAN. Quoting the authors, “those lines are included in packages representing
around 50% of all code lines in CRAN.” (Claes et al., 2015). Related to this, Korkmaz et al. (2019) found
that the more dependencies a package has, the less likely it is to have a higher impact. Likewise, other
studies have demonstrated that scantily updated packages that depend on others that are frequently
updated are prone to have more errors caused by incompatible dependencies (Plakidas et al., 2017);
thus, leading developers to clone functions rather than importing.

Code quality is also reflected by the comments developers write in their code. The notion of
Self-Admitted Technical Debt (SATD) indicates the case where programmers are aware that the current
implementation is not optimal and write comments alerting of the problems of the solution Potdar and
Shihab (2014). Vidoni (2021b) conducted a three-part mixed-methods study to understand SATD in R
programming, mining over 500 packages publicly available in GitHub and enquiring their developers
through an anonymous online survey. Overall, this study uncovered that:

• Slightly more than 1/10th of the comments are actually “commenting out” (i.e., nullifying)
functions and large portions of the code. This is a code smell named dead code, which represents
functions or pieces of unused code that are never called or reached. It clogs the files, effectively
reducing the readability Alves et al. (2016).

• About 3% of the source code comments are SATD, and 40% of those discuss code debt. Moreover,
about 5% of this sample discussed algorithm debt, defined as “sub-optimal implementations of
algorithm logic in deep learning frameworks. Algorithm debt can pull down the performance of a system”
Liu et al. (2020).

• In the survey, developers declared adding SATD as "self reminders" or to "schedule future
work", but also responded that they rarely address the SATD they encounter, even if it was
added by themselves. This trend is aligned with what happens in traditional object-oriented
(OO) software development.

This work extended previous findings obtained exclusively for OO, identifying specific debt
instances as developers perceive them. However, a limitation of the findings is that the dataset was
manually generated. For the moment, there is no tool or package providing support to detect SATD
comments in R programming automatically.
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Area: Testing R Packages

Vidoni (2021a) conducted a mixed-methods MSR (Mining Software Repositories) that combined mining
GitHub repositories with a developers survey to study testing technical debt (TTD) in R programming–
the test dimension of TD.

Overall, this study determined that R packages testing has poor quality, specifically caused by
the situations summarised in Table 1. A finding is with regards to the type of tests being carried
out. When designing test cases, good practices indicate that developers should test common cases (the
"traditional" or "more used" path of an algorithm or function) as well as edge cases (values that require
special handling, hence assessing boundary conditions of an algorithm or function) (Daka and Fraser,
2014). Nonetheless, this study found that almost 4/5 of the tests are common cases, and a vast majority
of alternative paths (e.g., accessible after a condition) are not being assessed.

Moreover, this study also determined that available tools for testing are limited regarding their
documentation and the examples provided (as indicated by survey respondents). This includes the
usability of the provided assertions (given that most developers use custom-defined cases) and the
lack of tools to automate the initialisation of data for testing, which often causes the test suits to fail
due to problems in the suite itself.

Smell Definition (Samarthyam et al., 2017) Reason (Vidoni, 2021a)

Inadequate
Unit Tests

The test suite is not ideal to ensure quality testing. Many relevant lines remain untested. Alternative
paths (i.e., those accessible after a condition) are
mostly untested. There is a large variability in the
coverage of packages from the same area (e.g., bio-
statistics). Developers focus on common cases only,
leading to incomplete testing.

Obscure Unit
Tests

When unit tests are obscure, it becomes difficult to
understand the unit test code and the production
code for which the tests are written.

Multiple asserts have unclear messages. Multiple
asserts are mixed in the same test function. Exces-
sive use of user-defined asserts instead of relying
on the available tools.

Improper As-
serts

Wrong or non-optimal usage of asserts leads to poor
testing and debugging.

Testing concentrated on common cases. Excessive
use of custom asserts. Developers still uncover bugs
in their code even when the tests are passing.

Inexperienced
Testers

Testers, and their domain knowledge, are the main
strength of exploratory testing. Therefore, low
tester fitness and non-uniform test accuracy over
the whole system accumulate residual defects.

Survey participants are reportedly highly-
experienced, yet their most common challenge was
lack of testing knowledge and poor documentation
of tools.

Limited Test
Execution

Executing or running only a subset of tests to reduce
the time required. It is a shortcut increasing the
possibility of residual defects.

A large number of mined packages (about 35%) only
used manual testing, with no automated suite (e.g.,
testthat). The survey responses confirmed this
proportion.

Improper Test
Design

Since the execution of all combination of test cases
is an effort-intensive process, testers often run only
known, less problematic tests (i.e., those less prone
to make the system fail). This increases the risk of
residual defects.

The study found a lack of support for automatically
testing plots. The mined packages used testthat
functions to generate a plot that was later (manu-
ally) inspected by a human to evaluate readability,
suitability, and other subjective values. Survey re-
sults confirmed developers struggle with plots as-
sessment.

Table 1: Problems found by Vidoni (2021a) regarding unit testing of R packages.

Křikava and Vitek (2018) conducted an MSR to inspect R packages’ source code, making available
a tool that automatically generates unit tests. In particular, they identified several challenges regarding
testing caused by the language itself, namely its extreme dynamism, coerciveness, and lack of types,
which difficult the efficacy of traditional test extraction techniques.

In particular, the authors worked with execution traces, “the sequence of operations performed by a
program for a given set of input values” (Křikava and Vitek, 2018), to provide genthat, a package to
optimise the unit testing of a target package (Krikava, 2018). genthat records the execution traces of a
target package, allowing the extraction of unit test functions; however, this is limited to the public
interface or the internal implementation of the target package. Overall, its process requires installation,
extraction, tracing, checking and minimisation.

Both genthat and the study performed by these authors are highly valuable to the community
since the minimisation phase of the package checks the unit tests and discards those failing, and records
to coverage, eliminating redundant test cases. Albeit this is not a solution to the lack of edge cases
detected in another study (Vidoni, 2021a), this genthat assists developers and can potentially reduce
the workload required to obtain a baseline test suite. However, this work’s main limitation is its
emphasis on the coverage measure, which is not an accurate reflection of the tests’ quality.
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Finally, Russell et al. (2019) focused on the maintainability quality of R packages caused by their
testing and performance. The authors conducted an MSR of 13500 CRAN packages, demonstrating that
"reproducible and replicable software tests are frequently not available". This is also aligned with
the findings of other authors mentioned in this Section. They concluded with recommendations to
improve the long-term maintenance of a package in terms of testing and optimisation, reviewed in
Section 2.3.

Area: Reviewing Packages

The increased relevance of software in data science, statistics and research increased the need for
reproducible, quality-coded software (Howison and Herbsleb, 2011). Several community-led organ-
isations were created to organize and review packages - among them, rOpenSci (Ram et al., 2019;
rOpenSci et al., 2021) and BioConductor (Gentleman et al., 2004). In particular, rOpenSci has established
a thorough peer-review process for R packages based on the intersection of academic peer-reviews
and software reviews.

As a result, Codabux et al. (2021) studied rOpenSci open peer-review process. They extracted
completed and accepted packages reviews, broke down individual comments, and performed a card
sorting approach to determine which types of TD were most commonly discussed.

One of their main contributions is a taxonomy of TD extending the current definitions to R
programming. It also groups debt types by perspective, representing ‘who is the most affected by a type
of debt". They also provided examples of rOpenSci’s peer-review comments referring to a specific
debt. This taxonomy is summarised in Table 2, also including recapped definitions.

Perspective TD Type Reason

User
Usability In the context of R, test debt encompasses anything related to usability, interfaces, visualisa-

tion and so on.
Documentation For R, this is anything related to roxygen2 (or alternatives such as the Latex or Markdown

generation), readme files, vignettes and even pkgdown websites.
Requirements Refers to trade-offs made concerning what requirements the development team needs to

implement or how to implement them.

Developer

Test In the context of R, test debt encompasses anything related to coverage, unit testing, and
test automation.

Defect Refers to known defects, usually identified by testing activities or by the user and reported
on bug tracking systems.

Design For R, this debt is related to any OO feature, including visibility, internal functions, the triple-
colon operator, placement of functions in files and folders, use of roxygen2 for imports,
returns of objects, and so on.

Code In the context of R, examples of code debt are anything related to renaming classes and
functions, < − vs. =, parameters and arguments in functions, FALSE/TRUE vs. F/T, print
vs warning/message.

CRAN
Build In the context of R, examples of build debt are anything related to Travis, Codecov.io,

GitHub Actions, CI, AppVeyor, CRAN, CMD checks, devtools::check.
Versioning Refers to problems in source code versioning, such as unnecessary code forks.

Architecture for example, violation of modularity, which can affect architectural requirements (e.g.,
performance, robustness).

Table 2: Taxonomy of TD types and perspectives for R packages, proposed by Codabux et al. (2021).

Additionally, they uncovered that almost one-third of the debt discussed is documentation debt–
related to how well packages are being documented. This was followed by code debt, providing a
different distribution than the one obtained by Vidoni (2021b). This difference is caused by rOpenSci
reviewers focusing on documentation (e.g., comments written by reviewers’ account for most of the
documentation debt), while developers’ comments concentrate their attention in code debt. The entire
classification process is detailed in the original study Codabux et al. (2021).

Area: Developers’ Experiences

Developers’ perspectives on their work are fundamental to understand how they develop software.
However, scientific software developers have a different point of view than ‘traditional’ programmers
(Howison and Herbsleb, 2011).

Pinto et al. (2018) used an online questionnaire to survey over 1500 R developers, with results
enriched with metadata extracted from GitHub profiles (provided by the respondents in their answers).
Overall, they found that scientific developers are primarily self-taught but still consider peer-learning
a second valuable source. Interestingly, the participants did not perceive themselves as programmers,
but rather as a member of any other discipline. This also aligns with findings provided by other works
(German et al., 2013; Morandat et al., 2012). Though the latter is understandable, such perception may
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pose a risk to the development of quality software as developers may be inclined to feel ‘justified’ not
to follow good coding practices Pinto et al. (2018).

Additionally, this study found that scientific developers work alone or in small teams (up to five
people). Interestingly enough, they found that people spend a significant amount of time focused
on coding and testing and performed an ad-hoc elicitation of requirements, mostly ‘deciding by
themselves’ on what to work next, rather than following any development lifecycle.

When enquiring about commonly-faced challenges, the participants of this study considered the
following: cross-platform compatibility, poor documentation (which is a central topic for reviewers
(Codabux et al., 2021)), interruptions while coding, lack of time (also mentioned by developers in
another study (Vidoni, 2021b)), scope bloat, lack of user feedback (also related to validation, instead of
verification testing), and lack of formal reward system (e.g., the work is not credited in the scientific
community (Howison and Herbsleb, 2011)).

Area Main Problem Recommended Practice

Lifecycles The lack of proper requirement elicitation and
development organisation was identified as a
critical problem for developers (Wiese et al.,
2020; Pinto et al., 2018), who often resort to
writing comments in the source to remind them-
selves of tasks they later do not address (Vidoni,
2021b).

There are extremely lightweight agile lifecy-
cles (e.g., Extreme Programming, Crystal Clear,
Kanban) that can be adapted for a single devel-
oper or small groups. Using these can provide
a project management framework that can also
organise a research project that depends on cre-
ating scientific software.

Teaching Most scientific developers do not perceive
themselves as programmers and are self-taught
(Pinto et al., 2018). This hinders their back-
ground knowledge and the tools they have
available to detect TD and other problems, po-
tentially leading to low-quality code (German
et al., 2013).

Since graduate school is considered fundamen-
tal for these developers (Pinto et al., 2018), pro-
viding a solid foundation of SE-oriented R pro-
gramming for candidates whose research relies
heavily on software can prove beneficial. The
topics to be taught should be carefully selected
to keep them practical and relevant yet still
valuable for the candidates.

Coding

Some problems discussed where functions
clones, incorrect imports, non-semantic or
meaningful names, improper visibilitiy or file
distribution of functions, among others.

Avoid duplicating (i.e., copy-pasting or re-
exporting) functions from other packages, and
instead use proper selective import, such as
roxygen2’s @importFrom or similar Latex docu-
mentation styles.
Avoid leaving unused functions or pieces of
code that are ‘commented out’ to be nullified.
Proper use of version control enables develop-
ers to remove the segments of code and revisit
them through previous commits.
Code comments are meant to be meaningful
and should not be used as a planning tool. Com-
ments indicating problems or errors should be
addressed (either when found, if the problem
is small or planning for a specific time to do it
if the problem is significant).
Names should be semantic and meaningful,
maintaining consistency in the whole project.
Though there is no pre-established convention
for R, previous works provide an overview
(Baath, 2012), as well as packages, such as the
tidyverse’s style guide.

Testing Current tests leave many relevant paths unex-
plored, often ignoring the testing of edge cases
and damaging the robustness of the code pack-
aged (Vidoni, 2021a; Russell et al., 2019)

All alternative paths should be tested (e.g.,
those limited by conditionals). Exceptional
cases should be tested; e.g., evaluating that a
function throws an exception or error when it
should, and evaluating other cases such as (but
not limited to), nulls, NAs, NaNs, warnings, large
numbers, empty strings, empty variables (e.g.,
character(0), among others.
Other specific testing cases, including perfor-
mance evaluation and profiling, discussed and
exemplified by Russell et al. (2019).

Table 3: Recommendations of best practices, according to the issues found in previous work and good
practices established in the SE community.
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This study (Pinto et al., 2018) was followed up to create a taxonomy of problems commonly
faced by scientific developers (Wiese et al., 2020). They worked with over 2100 qualitatively-reported
problems and grouped them into three axes; given the size of their taxonomy, only the larger groups
are summarised below:

• Technical Problems: represent almost two-thirds of the problems faced. They are related to
software design and construction, software testing and debugging, software maintenance and
evolution, software requirements and management, software build and release engineering,
software tooling’ and others (e.g., licensing, CRAN-related, user interfaces).

• Social-Related Problems: they represent a quarter of the problems faced by developers. The
main groups are: publicity, lack of support, lack of time, emotional and communication and
collaboration.

• Scientific-Related Problems: are the smaller category related to the science supporting or moti-
vating the development. The main groups are: scope, background, reproducibility and data
handling, with the latter being the most important.

These two works provide valuable insight into scientific software developers. Like other works
mentioned in this article, albeit there are similarities with traditional software development (both in
terms of programming paradigms and goals), the differences are notable enough to warrant further
specialised investigations.

Towards Best Practices

Based on well-known practices for traditional software development (Sommerville, 2015), this Section
outlines a proposal of best practices for R developers. These are meant to target the weaknesses found
by the previous studies discussed in Section 2.2. This list aims to provide a baseline, aiming that
(through future research works) they can be improved and further tailored to the needs of scientific
software development and the R community in itself.

The practices discussed span from overarching (e.g., related to processes) to specific activities.
They are summarised in Table 3.

Call to Action

Scientific software and R programming became ubiquitous to numerous disciplines, providing essen-
tial analysis tools that could not be completed otherwise. Albeit R developers are reportedly struggling
in several areas, academic literature centred on the development of scientific software is scarce. As a
result, this Section provides two calls to actions: one for R users and another for RSE academics.

Research Software Engineering Call: SE for data science and scientific software development is
crucial for advancing research outcomes. As a result, interdisciplinary works are increasingly needed
to approach specific areas. Some suggested topics to kickstart this research are as follows:

• Lifecycles and methodologies for project management. Current methodologies focus on the demands
of projects with clear stakeholders and in teams of traditional developers. As suggested in
Section 2.3, many agile methodologies are suitable for smaller teams or even uni-personal devel-
opments. Studying this and evaluating its application in practice can prove highly valuable.

• Specific debts in scientific software. Previous studies highlighted the existence of specific types
of debt that are not often present in traditional software development (e.g., algorithm and
reproducibility) (Liu et al., 2020) and are therefore not part of currently accepted taxonomies
(Alves et al., 2016; Potdar and Shihab, 2014). Thus, exploring these specific problems can help
detect uncovered problems, providing viable paths of actions and frameworks for programmers.

• Distinct testing approaches. R programming is an inherently different paradigm, and current
guidance for testing has been developed for the OO paradigm. As a result, more studies are
needed to tackle specific issues that may arise, such as how to test visualisations or scripts
(Vidoni, 2021a), and how to move beyond coverage by providing tests that are optimal yet
meaningful Křikava and Vitek (2018).

R Community Call: The following suggestions are centred on the abilities of the R community:

• Several packages remain under-developed, reportedly providing incomplete tools. This happens
not only in terms of functionalities provided but also on their documentation and examples. For
instance, developers disclosed that lack of specific examples was a major barrier when properly
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testing (Vidoni, 2021a). Extending the examples available in current packages can be achieved
through community calls, leveraging community groups’ reach, such as R-Ladies and RUGs (R
User Groups). Note that this suggestion is not related to package development guides but to a
community-sourced improvement of the documentation of existing packages.

• Additionally, incorporating courses in graduate school curricula that focus on “SE for Data
Science” would be beneficial for the students, as reported in other works (Pinto et al., 2018; Wiese
et al., 2020). However, this can only be achieved through interdisciplinary work that merges
specific areas of interest with RSE academics and educators alike. Once more, streamlined
versions of these workshops could be replicated in different community groups.

There is a wide range of possibilities and areas to work, all derived from diversifying R program-
ming and RSE. This paper highlighted meaningful work in this area and proposed a call-to-action to
further this area of research and work. However, these ideas need to be repeatedly evaluated and
refined to be valuable to R users.
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Packages Mentioned

The following packages were mentioned in this article:

• covr, for package coverage evaluation. Mentioned by Křikava and Vitek (2018) and Codabux
et al. (2021). Available at: https://cran.r-project.org/web/packages/covr/index.html.

• genthat, developed by Křikava and Vitek (2018), to optimise testing suits. Available at https:
//github.com/PRL-PRG/genthat.

• pkgdown for package documentation. Mentioned by Codabux et al. (2021) as part of documen-
tation debt. Available at: https://cran.r-project.org/web/packages/pkgdown/index.html.

• roxygen2, for package documentation. Recommended in Section 2.3, and mentioned as exam-
ples of design and documentation debt by Codabux et al. (2021). Available at https://cran.r-
project.org/web/packages/roxygen2/index.html.

• testthat, most used testing tool, according to findings by Vidoni (2021a). Mentioned when
discussing testing debt by Codabux et al. (2021). Available at https://cran.r-project.org/web/
packages/testthat/index.html.

• tidyverse, bundling a large number of packages and providing a style guile. Mentioned in
Section 2.3. Available at: https://cran.r-project.org/web/packages/tidyverse/index.html.
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