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spNetwork: A Package for Network

Kernel Density Estimation
by Jeremy Gelb

Abstract This paper introduces the new package spNetwork that provides functions to perform
Network Kernel Density Estimate analysis (NKDE). This method is an extension of the classical Kernel
Density Estimate (KDE), a non parametric approach to estimate the intensity of a spatial process.
More specifically, it adapts the KDE for cases when the study area is a network, constraining the
location of events (such as accidents on roads, leaks in pipes, fish in rivers, etc.). We present and
discuss in this paper the three main versions of NKDE: simple, discontinuous, and continuous that
are implemented in spNetwork. We illustrate how to apply the three methods and map their results
using a sample from a real dataset representing bike accidents in a central neighborhood of Montreal.
We also describe the optimization techniques used to reduce calculation time and investigate their
impacts when applying the three NKDE to a city-wide dataset.

Introduction

Data representing events in space are collected in many research fields. The analysis of these points
clouds is crucial in identifying hot spots, e.g., complaints about environmental noise, cases of dis-
eases, observation of animals or plant species, crimes, etc. The Kernel Density Estimate (KDE) is a
nonparametric method often used to estimate the intensity function of a spatial process from a sample
of events. More specifically, the KDE is part of the point pattern analysis (PPA) family of methods. It
allows for the analysis of first-order properties (variation of density) of a spatial process (Baddeley
et al., 2015). Recent works (Xie and Yan, 2008; Okabe et al., 2009; McSwiggan et al., 2017) have shown
that the KDE method is unadapted when events are constrained on a network (road crashes, leaks in
a network of pipes, crimes reported in streets, etc.). The classical KDE is based on the hypothesis of
an infinite, homogenous, two-dimensional space, which is a very rough approximation if the study
area is a network. Indeed, a network is a particular space between a simple line (1D) and a plan (2D).
In a network, the movement is constrained on multiple one-dimensional lines, event if it is possible
to change direction at intersections. Steenberghen et al. (2010) call it a 1.5D space. Moreover, the
reticular distance between objects on a network is always superior or equal to the Euclidean distance.
Thus, using the latter leads to underestimations of the real distance between the objects on a network.
The need to extend the KDE method is part of a more general trend started in the 1990’s aiming to
generalize the spatial analysis to network spaces (Okabe and Satoh, 2006; Xie and Yan, 2008). At
first, several adaptations were proposed but with a limited relevance because of strong limitations
(applied to very simple networks or a simple spatial aggregation of a classical KDE) (Flahaut et al.,
2003; Borruso, 2003; Porta et al., 2009). More recent works have developed methods overcoming these
first limitations, forming the set of the NKDE methods.

Currently, these methods are not easily accessible. Xie and Yan (2008) developed an ArcMap
(ESRI, 2017) plugin proposing only a biased density estimator; Hwang and Winslow (2012) developed
GeodaNet (GeodaCenter, university of Chicago), but it is no longer accessible on their website; Okabe
et al. (2006) proposed SANET, a toolbox for network analysis as an ArcMap plugin or a standalone
application. Even though SANET is a free software, it is not open-source, and the actual license limits
the use to research only. Moreover, a new user must send a request to the maintainer to obtain an
activation key. Finally, the R package spatstat (Baddeley and Turner, 2005), dedicated to PPA (Baddeley
et al., 2004), includes a function to perform NKDE analysis (density.1pp), but it returns only rasters
and requires an extremely long calculation time for large and medium-sized datasets. Thus, accessible
tools to perform NKDE analysis are missing. This encourages researchers and professionals to use
classical KDE in cases where NKDE is much more adapted and limits the reproducibility of research.

We propose the spNetwork package to fill this gap. It implements three estimators of the intensity
of a spatial process on a network, the possibility to use adaptive bandwidths, and several optimization
methods to ensure reasonable calculation time. R provides a perfect environment to implement
the NKDE method, considering its growing community, its capacity to read, write and manipulate
geographical data (rgdal, sp, rgeos, maptools, (Bivand et al., 2020; Pebesma and Bivand, 2020; Bivand
and Rundel, 2020; Bivand and Lewin-Koh, 2020)), the existence of libraries to manipulate networks
(igraph (Csardi and Nepusz, 2020)), and the facilitated interface to C++ with Repp (Eddelbuettel et al,,
2020a).

In the first section of this paper, we present the classical KDE and introduce the main concepts
of the method. In the second section, we introduce the three NKDE estimators and briefly compare
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their respective advantages and limits. The three NKDE are then applied to a small dataset about
road accidents involving a cyclist in a central neighborhood of Montreal. Finally, we investigate the
calculation time of the three NKDE with different settings considering that calculation time is an
important issue for the NKDE method.

Kernel density estimate

General description

For a spatial process p, represented by a set of events ¢, its intensity function A at location u (A(u))
can be estimated in a non parametric way by kernel estimation (Silverman, 1986). Typically, in a
two-dimensional space, a regular grid is defined on the study area, and the intensity is estimated at
the centers of each quadra (pixels). At each location, u, the events within a specified bandwidth, bw,
contributes to the local estimated intensity. The strength of this contribution depends on the distance
between the events and u, the event’s weight, and the kernel function. This function distributes the
mass of the events within a circular area around each event. The radius of this area is called the
bandwidth (or the standard deviation of the kernel). A larger bandwidth produces smoother results
and higher bias but reduces variance. The Kernel Density Estimate can thus be obtained as follows:

— Zwl (dist(u,e;)), (1)

bu

with 1, the number of events that satisfy dist(u, ¢;) < bw, w; the weight of the event ¢; and K the kernel
function. K must be a probability density function and verifies the two following conditions:

K(x) > 0if x < bw
K(x) =0if x > bw

/+°° K(x) = 1.

J—00

@)

Many kernel functions exist; Figure 1 shows the most commonly used (and implemented in
spNetwork).

library(ggplot2)
library(tidyr)
library(spNetwork)
library(RColorBrewer)
library(kableExtra)
library(dplyr)

x <- seq(-15.01, 15.01, by = 0.01)

kernels_func <- list(gaussian_kernel, epanechnikov_kernel, quartic_kernel,
triangle_kernel, tricube_kernel, triweight_kernel,
cosine_kernel, uniform_kernel)

cols <- lapply(kernels_func, function(f){f(x, 15)})

df <- data.frame(do.call(cbind, cols))

names (df) <- c("Gaussian"”, "Epanechnikov", "Quartic”, "Triangle”,
"Tricube”, "Triweight”, "Cosine”, "Uniform")

df$x <- x

pivot_cols <- names(df)[names(df)!="x"]
df2 <- pivot_longer(df,cols = pivot_cols)
names(df2) <- c("x","kernel”,"y")

ggplot(df2) +
geom_line(aes(x = x, y =y, color = kernel), size = 1)+
xlim(c(-15.01, 15.01))+
scale_color_brewer(palette = "Accent”)+
scale_y_continuous(name = "density")
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Figure 1: The different kernels implemented in spNetwork.

Many authors have stressed that the choice of the Kernel function has a smaller impact on final
results in comparison with the choice of the bandwidth (O’Sullivan and Wong, 2007; Xie and Yan,
2008; Turlach, 1993). The Gaussian kernel is a special case (non-compact kernel) because it does not
integrate to one on the domain [—bw; +bw] but on [—o0; +00], leading to a loss of mass for each event.

Diggle’s correction

Formula 1 describes the basic KDE value, which is unbiased only if the study area is infinite in every
direction and if the spatial process is sampled everywhere in this space. In practice, such situations
are rare, and the basic KDE is biased at the frontier of the study area. For example, let us imagine a
case where abandoned syringes locations are systematically reported in a specific district of a city. The
ones lying outside the district limits are not considered, leading to a situation where the border areas
systematically have a lower estimated intensity. To reduce this effect, Diggle’s correction (equation 3)
is generally used (Diggle, 1985).

1 & 1
D — . i .
A (u) = b2 w; E(Ei)K(dzst(u,el))

) )
e(u) = /W K(dist(u,v)).

This correction increases the weight of the events located close to the study area border because a
part of their mass is lost above the border. For an event ¢;, with the location u, e(u) is the fraction of its
mass in the study area (W). The correction factor is thus inversely proportional to the fraction of the
event’s mass in the study area. For example, an event having only half its mass in the study area will
end up with a doubled weight.

Adaptive bandwidth

In its basic form, the bandwidth of the KDE is fixed, i.e. the value of the bandwidth is the same
everywhere in the study area. This is an important limitation if the intensity of the spatial process has
a pronounced spatial variation. In that case, the risk is to obtain oversmoothed results in areas with
high intensity and undersmoothed results in areas with low intensity. To overcome this limitation, it is
possible to replace the fixed bandwidth with a vector of spatially varying bandwidths. The bandwidths
should be smaller in subregions with higher intensity and wider elsewhere. The Abramson method
(Abramson, 1982) is often used to define this vector of bandwidths. Its calculation requires two steps.
First, a pilot estimate (1) is calculated at the location of each event (u,;) by using a global bandwidth
hp. Second, the vector of bandwidths (h(u,;)) is calculated with equation 4:
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A trimming value can be defined to avoid obtaining large bandwidths in subregions with low
intensity. Let us recall here that the adaptive bandwidth is still based on the choice of an arbitrary
global bandwidth and is not a bandwidth selection method.

The three Network Kernel Density Estimate

We present the three NKDE methods implemented in the spNetwork package in this section .

The simple NKDE

A first NKDE method was proposed by Xie and Yan (2008) and constituted a geographical attempt to
extend the planar KDE to the network case. It received some attention in geography (Xie and Yan,
2013) but has been criticized for its statistical incorrectness (detailed later). We refer to this method as
the “simple NKDE”, and it can be summarized by three points:

¢ The intensity of the spatial process is only estimated on the network. Its edges are split into
lixels (one-dimensional pixels), and the centers of the lixels are used as locations for estimating
intensity.

¢ The distances between events and sampling points are calculated as the shortest path distances
on the network instead of Euclidean distances.

¢ The intensity function is slightly modified (equation 5).

1 n
=1 ) K(dist(u, e;) (5)
i=1

The method is appealing for three reasons. First, from a purely geographical point of view, the
extension of the planar KDE to network KDE is intuitive. The modification applied is in line with other
methods in PPA extended from planar to network cases like the K-function or the nearest neighbor
analysis (Okabe and Sugihara, 2012). Second, the method does not rely on an expensive algorithm
and thus achieves a short calculation time. Third, the adapted formula makes the interpretation
straightforward: it “estimates the density over a linear unit” rather than an area unit (Xie and Yan,
2008, pp. 398). Note that the modification of the equation can also be applied to the next methods.

To get a visual representation of the method, we consider the situation depicted in Figure 2. The
lines constitute the network, and a red dot is a single event.

Figure 2: A single event on a network.

We can evaluate the density of the spatial process with the simple NKDE and visualize the result
in 3D (Figure 3), using density as the height.

At intersections on the network, the mass of the event is multiplied in each direction. Consequently,
the simple NKDE is not a real kernel density function because it does not integrate to 1 on its domain.
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Figure 3: 3D visualization of the simple NKDE.

The practical consequence is the systematic overestimation of the density, which could be problematic
in subregions with many events. To overcome this limitation, Okabe et al. (2009) proposed two
unbiased estimators: the discontinuous NKDE and the continuous NKDE.

The discontinuous NKDE

Considering the problem inherent to the simple NKDE, the discontinuous NKDE proposes a simple
solution. The mass is divided at intersections according to the number of directions minus one. This is
easily represented by Figure 4.

Figure 4: Graphical depiction of the discontinuous NKDE.

With the same example as previous, we obtain Figure 5.

m

Figure 5: 3D visualization of the discontinuous NKDE.

This estimator is unbiased. However, its discontinuous nature can be counter-intuitive in real
application. For example, considering the analysis of crimes on a network, it would be counter-
intuitive that the “influence” of a crime suddenly drops from one street to another. The discontinuous
NKDE can be summarized with Equation 6.

K(dist(u,e;)) = m’ :
i1 L= \1ij —

with k the kernel function, n;; the number of edges connected at the intersection j on the path originating
at the event, ¢;, and ending at the location, u.
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The continuous NKDE

Finally, the continuous NKDE attempts to combine the best of the two worlds: it adjusts the values
of the NKDE at intersections to ensure that it integrates to 1 on its domain and applies a backward
correction to force the density values to be continuous. A simple case is represented in Figure 6.

k(dist(e; ql))

---------------------------------------- N, Kdist(e; 2)) — 5 - K(2- dist(e; 1) — dist(e; 2)
P a2

““bw

‘ R
q ; - k(dist(e; g3))

Figure 6: Graphical depiction of the continuous NKDE.

In this simple case, there are three different equations to calculate the kernel density (here, q1, q2,
g3). Considering the previous simple example, we obtain Figure 7.

Figure 7: 3D visualization of the continuous NKDE.

Because of its backward correction, the continuous NKDE is recursive in nature and can hardly be
presented as an equation. Okabe and Sugihara (2012) describe this method with a recursive function,
implemented in spNetwork. Indeed, for each node encountered, a correction factor must be applied to
all the previous edges traveled within the remaining bandwidth, and this correction must also be split
between all the nodes encountered in that direction. In comparison, for the two previous methods, the
algorithm only has to flow in one direction along the edges from the event. As a consequence, much
more iterations are required for the continuous NKDE. More specifically, Okabe et al. (2009) state that
the complexity of the discontinuous (and by extension, of the simple) NKDE algorithm is O(nn} ) with
np, the number of edges and n the number of events. For the continuous NKDE, the complexity of the
algorithm is a function of the ratio of the bandwidth and the length of the edges. For this algorithm,
Okabe et al. (2009) observed that the computation time has the following lower limit (equation 7):

Umax

[ [(bw—a)/(disq —dy), )

i=1

with d; the distance from an event to the ith-nearest node, and iy;4x the last node verifying d; < bw.
In other words, having many short edges in a network or using a larger bandwidth will increase the
calculation time exponentially for the continuous NKDE.

The pros and cons of the three methods are summarized in Table 1.

Method Pros Cons

Simple NKDE Continuous / Easy calculation Biased, not a true kernel
Discontinuous NKDE  Unbiased / Easy calculation Discontinuous
Continuous NKDE Unbiased / Continuous Time consuming

Table 1: Pros and cons of the three NKDE.
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The two KDE extensions presented in section 2 (adaptive bandwidth and edge correction) can be
directly transposed to these three NKDE methods.

Implementation in spNetwork

The spNetwork package contains two “high- level functions” and three “helper functions”. The “high
level functions” nkde and nkde.mc can be used to calculate the three NKDE presented in the previous
section. Both functions use exactly the same parameters, nkde.mc is a version of nkde allowing for
multiprocessing via the package future (Bengtsson, 2020a). The three main inputs are:

¢ lines, a “SpatialLinesDataFrame” (object defined in the sp package), representing the lines of
the network.

* events, a “SpatialPointsDataframe” (object defined in the sp package), representing the realiza-
tions of the spatial process.

* samples, a “SpatialPointsDataframe” providing the locations where the density must be esti-
mated.

These three inputs must only have simple and valid geometries and the same coordinates ref-
erence system. Otherwise, an error is raised by the function before starting any calculation. The
parameters method, kernel_name and bw, indicate respectively which NKDE (simple, discontinuous, or
continuous), and which kernel function (gaussian, quartic, triweight, etc.) to use, and the bandwidth
of the kernel. adaptive and diggle_correction allow the user to specify if an adaptive bandwidth
and Diggle’s correction must be calculated. Finally, the remaining parameters control the geometric
precision of the network and the optimization aspects.

The three “helper functions” are provided to facilitate the creation of the sampling points on the
network:

e The function lixelize_lines splits the lines of a “SpatialLinesDataFrame” according to a
selected distance to generate lixels.

¢ The function lines_center returns for each line of a “SpatialLinesDataFrame” its center points
(the point located at mid-distance between the start and the end of the linestring).

* The function lines_points_along returns points located along the lines of a “SpatialLines-
DataFrame”, evenly spaced according to a selected distance.

Considering the previous functions, the workflow of NKDE analysis with spNetwork follows five
steps:

1. Loading the network dataset and the event dataset as sp objects, typically with the function
readOGR from the package rgdal. Many standard formats can thus be used such as ESRI
Shapefile, Geopackage, Geo]son, SpatialLite, etc.

. Generating the sampling points on the network by using the helper functions.

. Calculating the density estimations with the nkde or nkde.mc functions.

4. Adding the densities as a new column to the sampling “SpatialPointsDataFrame” or lixels

“SpatialLinesDataFrame”.
5. Exporting the results, typically with writeOGR from rgdal to map the results with a dedicated
mapping software (like Qgis (OGIS Development Team, 2020)).

W N

Optimization

The main problem with NKDE methods is the calculation time. Building the network and calculating
the paths between its nodes can be a costly process (depending on the size of the network studied
and the number of events). The implementation in SpNetwork uses many techniques to reduce the
calculation time.

First, only the events are added as nodes in the network. The sampling points are snapped to
their nearest edge. Each edge in the network is a straight line. Thus, the final distance between a
sampling point and a node of the network is calculated with the Euclidean distance. Consequently,
the complexity of the network is not affected by the density of the sampling points.

Second, the calculus of the density is event-oriented. In other words, the kernel density is
sequentially calculated around each event. The density values of the samples are updated at each
iteration. The advantage of this approach is that the calculation time is less affected by the density of
the sampling points.
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Third, the events can be aggregated, and their weights added within a threshold distance. In many
applications, a small distance between events is not significant considering the accuracy of the location
method (geocoding, smartphone GPS, location at intersections, etc.). Aggregating events can simplify
networks and limit the number of iterations when calculating the NKDE.

Fourth, following the idiom “divide and conquer”, the user can specify the shape of a grid on
the study area to split the calculation. In that case, for each quadra of the grid, the sampling points
in the quadra are selected. The events and the lines of the network are selected if they intersect a
buffer around the quadra (the size of the buffer being the bandwidth of the kernel). Thus, the separate
calculations do not produce edge effects. All the spatial queries are optimized using the quadtree
spatial index proposed by the package SearchTrees (Becker, 2012). This approach limits the risk of
memory issues and increases calculation speed for big datasets.

Fifth, when the dataset is split, the calculation can be separated between several processes. Consid-
ering the fact that a lot of computers are now equipped with processors having more than four cores,
dividing the work between them is an easy way to reduce the overall calculation time. The packages
future and future.apply (Bengtsson, 2020b) are used in spNetwork to support multiprocessing. It
ensures good compatibility between OS and even has features to dispatch calculations on multiple
computers.

Finally, the main algorithms are implemented with Repp and ReppArmadillo (Eddelbuettel et al.,
2020b) to overcome the R (scripted language) limitations when loops and recursions are involved
(Ligges and Fox, 2008) and benefit from faster C++ compiled code.

Example with bike accidents in Montreal

In this section, we illustrate the use of the package with a built-in dataset. This dataset is an extract
from the Montreal Open Data website representing bike accidents that occurred on the Montreal road
network in 2017 (Figure 8).

e bike accident
—— road network

500 1000 m
I I I

Figure 8: Example dataset of bike accidents in Montreal.

To identify hot spots of bike accidents, we calculated the three NKDE (simple, discontinuous, and
continuous) with a quartic kernel (Figure 9). We selected a 200 meters bandwidth considering that the
mean length of a road segment in this network is 108 meters. This bandwidth ensures that, most often,
only events located closer than two street segments from a sampling point contribute to its density.

library(spNetwork)
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library(rgdal)

## Step 1: Loading the data
networkgpkg <- system.file("extdata"”, "networks.gpkg",
package = "spNetwork”, mustWork = TRUE)
eventsgpkg <- system.file("extdata”, "events.gpkg",
package = "spNetwork”, mustWork = TRUE)
mtl_network <- readOGR(networkgpkg,layer="mtl_network"”,verbose = FALSE)
bike_accidents <- readOGR(eventsgpkg,layer="bike_accidents"”, verbose = FALSE)

## Step 2: Generating the sampling points on the network
# splitting the lines as lixels
lixels <- lixelize_lines(mtl_network, 100, 50)

# extracting the center of lixels as sampling points
sample_pts <- lines_center(lixels)

## Step 3: Calculating the densities estimations

# densities for the simple NKDE

nkde_simple <- nkde(lines = mtl_network,
events = bike_accidents,
w = rep(1, nrow(bike_accidents)),
samples = sample_pts,
kernel_name = "quartic”,
bw = 200, method = "simple”,
div = "bw"”, digits = 2, tol = 0.01,
agg = 10, grid_shape = c(1, 1),
verbose = FALSE)

# densities for the discontinuous NKDE

nkde_discontinuous <- nkde(lines = mtl_network,
events = bike_accidents,
w = rep(1, nrow(bike_accidents)),
samples = sample_pts,
kernel_name = "quartic”,
bw = 200,method = "discontinuous”,
div = "bw", digits = 2, tol = 0.01,
agg = 10, grid_shape = c(1, 1),
verbose = FALSE)

# densities for the continuous NKDE

nkde_continuous <- nkde(lines = mtl_network,
events = bike_accidents,
w = rep(1, nrow(bike_accidents)),
samples = sample_pts,
kernel_name = "quartic”,
bw = 200, method = "continuous”,
div = "bw",digits = 2, tol = 0.01,
agg = 10, grid_shape = c(1, 1),
verbose = FALSE)

To obtain more readable results, one can multiply the obtained densities by the total number of
accidents (to make the spatial integral equal to the number of events) and multiply this value again by
1000 to get the estimated numbers of accidents per kilometer.

## Step 4: Adding the densities as new columns to the sampling
lixels$simple_density <- nkde_simple * nrow(bike_accidents) * 1000
lixels$continuous_density <- nkde_continuous * nrow(bike_accidents) * 1000
lixels$dicontinuous_density <- nkde_discontinuous * nrow(bike_accidents) * 1000
lixels$difference <- lixels$simple_density - lixels$continuous_density
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Figure 9: Estimated densities of the three NKDE for bike accidents in Montreal.

As one can observe in Figure 9, the three methods highlight the same major hot spots. We can
identify a primary area in the downtown with two distinct clusters (1 and 2). Then, more local hot
spots are also visible on the three maps (3, 4, 5, 6). All of them occur at intersections on streets with the
main bicycle paths.

Figure 10 shows the values obtained for each sampling point for the three NKDE, sorted with the
value of the discontinuous NKDE. We can observe that the simple NKDE tends to produce higher
values and thus seriously overestimate the density of accidents in hot spot regions.
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library(ggplot2)
library(tidyr)

df <- lixels@datalc("simple_density",
"continuous_density",
"dicontinuous_density")]

df <- df[order(df$dicontinuous_density), 1
df$oid <- 1:nrow(df)

pivot_cols <- names(df)[names(df) != "oid"]
df2 <- pivot_longer(df, cols = pivot_cols)
df2%$name <- case_when(

df2$name == "simple_density” ~ "Simple NKDE",
df2$name == "continuous_density” ~ "Continuous NKDE",
df2%$name == "dicontinuous_density” ~ "Discontinuous NKDE")

ggplot(df2) +
geom_point(aes(x = oid, y = value, color = name), size = 0.2)+
ylab("Estimated densities"”)+
scale_color_manual(values = c("Simple NKDE"="#F8766D",
"Continuous NKDE"="#0Q0BA38",
"Discontinuous NKDE"="#619CFF"))+
element_blank(), axis.text.x = element_blank(),
element_blank(), legend.title = element_blank())

theme(axis.title.x
axis.ticks.x

60 -

N
o

Simple NKDE
Continuous NKDE

Discontinuous NKDE

Estimated densities

N
o
i

Figure 10: Comparison of the estimated densities.

Adaptive bandwidth

An adaptive bandwidth based on the Abramson’s inverse-square-root rule (Abramson, 1982) can be
used to produce a new version of the three NKDE. We will only calculate here the results for the
continuous NKDE. Figure 11 shows the new results and the size of some calculated bandwidths with
circles (not all the bandwidths are shown; otherwise the map would not be readable). As we can see,
the adaptive kernel produces more smoothed results in low-intensity subregions and more detailed
results in high-density regions. We can see now that the primary hot spot (1) seems concentrated on a
smaller area.

library(rgeos)

# calculating the continuous kernel with an adaptive bandwidth
nkde_abw <- nkde(lines = mtl_network,

events = bike_accidents,

w = rep(1, nrow(bike_accidents)),
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samples = sample_pts,
kernel_name = "quartic”,

bw = 200,

adaptive = TRUE, trim_bw = 400,
method = "continuous”,

div = "bw",

digits = 2, tol = 0.01,

agg = 10, grid_shape = c(1, 1),
verbose = FALSE)

lixels$continuous_density_abw <- nkde_abw$k * nrow(bike_accidents) * 1000

# extracting the local bandwidth

local_bw <- nkde_abw$events

buff_bw <- gBuffer(local_bw,width = local_bw$bw, byid=TRUE)
sel_buff <- buff_bwl[c(1, 52, 20, 86, 14, 75, 126, 200, 177), 1]

# mapping the elements
tm_shape(lixels,unit = 'm') +
tm_lines(1.7, title.col = 'continuous NKDE density',
col = 'continuous_density_abw', n =7,
style = 'jenks', palette = pal)+
tm_shape(sel_buff)+
tm_borders("black”, lwd = 1)+
tm_layout(legend.outside = TRUE, inner.margins
outer.margins = 0, legend.title.size = 1,
legend.outside.position = "right”,
frame = FALSE)

1
[S)

continuous NKDE density

—0.00t0 0.95
0.95t0 2.77
2.77t0 5.58
5.58 t0 9.65
9.65 to 15.49
15.49t0 23.71

—23.71t0 41.49

Figure 11: Estimated densities of the continuous NKDE for bike accidents in Montreal with an adaptive
bandwidth.

Local Moran I

It has been proposed to combine the NKDE with the local Moran I autocorrelation index to identify
significant hot spots or cold spots of events’ intensity (Xie and Yan, 2013). Such an approach can
be easily applied with spNetwork, which provides functions to calculate spatial weight matrices
using network distances. We illustrate it here by creating a weight matrix w. wj; is the spatial weight
for observations i and j, calculated as the inverse of the network distance between them. Beyond
400 meters the weight is set to 0, and the matrix is row standardized. This example illustrates that
spNetwork is well integrated with the actual ecosystem of R packages dedicated to spatial analysis.
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library(spdep)

# calculating the spatial weight matrix

listw <- network_listw(origins = sample_pts,
lines = mtl_network,
maxdistance = 400, dist_func = "inverse'
matrice_type = "W",
grid_shape = c(1,1),digits
verbose = F, tol = 0.01)

# calculating the local Moran I values

:2’

locmoran<- localmoran(lixels$continuous_density,listw = listw)

# centering the NKDE values and calculating the spatially lagged
cent_density <- scale(lixels$continuous_density, scale = F)
lag_cent_density <- lag.listw(listw, cent_density)

# mapping the results
lixels$moran_quad <- case_when(

cent_density > @ & lag_cent_density > @ & locmoran[,5]<=0.05 ~

cent_density <
cent_density >
cent_density < @

locmoran[,5] > 0.05 ~ "not sign.”,
)

colors <- c("high-high” = "#E63946"
"high-low” = "#EC9A9A",

@ & lag_cent_density < @ & locmoran[,5]<=0.05 ~
@ & lag_cent_density < @ & locmoran[,5]<=0.05 ~
& lag_cent_density > @ & locmoran[,5]<=0.05 ~

I
’

variable

"high-high”,
"low-low",
"high-low",
"low-high",

"low-high" = "#A8DADC",
"low-low" = "#457B9D",
"not sign."” = "black")
not_sign <- subset(lixels, lixels$moran_quad == "not sign.")
sign <- subset(lixels, lixels$moran_quad != "not sign.")
tm_shape(not_sign,unit = 'm') +
tm_lines(1.2, title.col = 'Local Moran for the continuous NKDE',

col = 'black') +
tm_shape(sign,unit = 'm') +

tm_lines(2, title.col = 'Local Moran for the continuous NKDE',

col = 'moran_quad', palette
tm_layout (legend.outside = TRUE, inner.margins
outer.margins = @, legend.title.size

legend.outside.position
frame = FALSE)
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Figure 12: Local Moran I calculated on continuous

Calculation time

Local Moran for the continuous NKDE
— high-high

high-low

low-high
— low-low

NKDE.

In this final section, we investigate the calculation time of the three NKDE. For the first test, we used
a complete version of the dataset presented above (but not included in the package). The network

used covers the full Island of Montreal for a total of 47488 features (58

77 km). The 1722 events are

road accidents involving a cyclist between 2017 and 2018. We ran the calculation of the three NKDE
by using 1 to 8 cores and by splitting the study area with a grid ranging from 10 by 10 to 18 by 18. The
calculations were executed on a computer equipped with an Intel (R) Xeon (R) Bronze 3104 CPU (12
cores 1.70 GHz) and 32 GO of RAM, with the Windows 10 operating system and the R version 4.0.2.

Table 2 shows the calculation times.

Duration (min)

Simple Discontinuous Continuous
Cores 10x10 14x14 18x18 10x10 14x14 18x18 10x10 14x14 18x18
1 23:33 19:22 18:02  21:49 17:31 16:37  87:29  43:37  33:55
2 14:01 11:48 11:36 14:37  11:23 10:31 59:13  32:57 1941
3 10:28 0842  08:20 10:57  08:22  08:03  53:35 2754  17:15
4 09:44 0942 0743 0912 (09:00 0724  78:00  32:23 17:26
5 08:02 0745  07:13  08:.04 07:09 06:21 91:16  30:08 14:56
6 07:50  06:49  07:06  07:01 06:51 06:33  93:05  35:58 12:19
7 07:38  06:43  06:39  06:38  06:36  06:24  53:06  38:17  14:20
8 06:54  06:37  07:06  07:06  06:38  06:56  55:52  33:32 1847

Table 2: Durations of the first setting.

As one can see, the durations are very similar for the simple and

the discontinuous methods.

Because of the backward adjustment of the density, the continuous method is much more time-
consuming. Using multiprocessing is an efficient way to reduce calculation time. In our setting, the
biggest gain is achieved with three cores. Beyond three, the gains are more negligible. Dividing the
study area with a finer grid contributes to reducing calculation time to a smaller extent.

For the second test, we selected a single event in the middle of the complete study area. We then
constructed several study areas by selecting all events and all lines within subsequent radiuses from
500 m to 7000 m. For each iteration, only one core was used and a grid with a 5 x 5 shape. The results
are presented in Table 3. We can observe that the calculation time increases slowly for the simple and
the discontinuous NKDE, but the increase for the continuous NKDE is sharper. These results show
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that the proposed package can calculate the three NKDE with reasonable calculation time, even for
datasets covering a full city.

Duration (min)

Distance Number of events Number of lines Simple Discontinuous Continuous

1000 97 447 00:23 00:16 00:16
1500 198 948 00:41 00:27 00:28
2000 303 1648 00:58 00:40 00:43
2500 486 2581 01:25 00:59 01:03
3000 652 4010 02:01 01:30 04:47
3500 797 5630 02:39 02:03 13:20
4000 905 7032 03:13 02:21 14:06
4500 989 8497 03:44 02:53 16:17
500 22 138 00:13 00:10 00:10
5000 1097 10432 04:30 03:40 18:23
5500 1170 11913 05:23 04:27 22:18
6000 1230 13196 06:04 05:06 25:23
6500 1276 14674 06:44 05:46 32:49
7000 1332 16373 07:31 06:30 34:55

Table 3: Durations of the second setting.

Concluding remarks

The Network Kernel Density Estimate (NKDE) is an extension of the Kernel Density Estimate (KDE).
Numerous spatial phenomena are constrained on a network like road accidents, crimes reported on
streets, leaks in pipes, breaks in a wiring network, bird nests along a river, etc. Analyzing these datasets
with a classical KDE is unsatisfactory because densities are evaluated at places where the events cannot
occur (outside the network). The Euclidean distance underestimates the distance between objects on
the network, and a network is not a homogeneous space. Tang et al. (2013) argue that in practical
applications, the differences between the classical KDE and NKDE are small, the latter providing only
more accurate and detailed results. However, our brief comparison suggests that the simple NKDE (the
closest to the classical KDE) systematically overestimates densities compared to the continuous and
discontinuous NKDE. This is in line with results obtained when comparing the planar and network
K-functions (Yamada and Thill, 2004). The NKDE method remains quite inaccessible because of the
lack of open-source implementation. The spNetwork package introduced here proposes to fill this gap
by implementing it with R, taking advantage of its rich geospatial ecosystem (Spatial).

Three different NKDE are currently available in the package: the simple, the discontinuous, and the
continuous NKDE. The first one is an early attempt to generalize the classical KDE to network spaces.
It produces biased results and is not a true kernel, but it is intuitive from a purely geographical point
of view. The discontinuous and continuous NKDE are true kernels and provide unbiased density
estimates. We discussed in this paper their respective limitations and advantages. Two complementary
features are proposed by spNetwork: Diggle’s edge correction and adaptive bandwidths based on
Abramson’s rule. The spNetwork package uses several techniques to reduce computation time and
memory use for the NKDE: dividing the study area into smaller chunks, multiprocessing, compiled
C++ functions, and spatial indexes. However, for large datasets with large bandwidths the overall
process remains long. Consequently, no methods are currently proposed for automatic bandwidth
selection. In the future, we plan to add in the package other methods for PPA on networks like the
K-function, nearest neighbor analysis and reticular distance weight matrices.
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