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BayesSenMC: an R package for Bayesian
Sensitivity Analysis of Misclassification
by Jinhui Yang, Lifeng Lin and Haitao Chu

Abstract In case–control studies, the odds ratio is commonly used to summarize the association be-
tween a binary exposure and a dichotomous outcome. However, exposure misclassification frequently
appears in case–control studies due to inaccurate data reporting, which can produce bias in measures
of association. In this article, we implement a Bayesian sensitivity analysis of misclassification to
provide a full posterior inference on the corrected odds ratio under both non-differential and differen-
tial misclassification. We present an R (R Core Team, 2018) package BayesSenMC, which provides
user-friendly functions for its implementation. The usage is illustrated by a real data analysis on the
association between bipolar disorder and rheumatoid arthritis.

Introduction

Many epidemiological studies are concerned with assessing the risk of an outcome between exposed
and non-exposed subjects. For example, in a case–control study, researchers first identify subjects who
have the disease of interest (the case group) and subjects who do not (the control group), and then
ascertain the exposure status of the subjects in each group. The odds ratio is typically used to assess
the association between the exposure and disease in the case–control study; it describes the ratio of the
exposure odds in the case group to that in the control group.

However, misclassification of exposure, disease outcome, or covariates appears frequently in obser-
vational studies of epidemiological or medical research (Rothman et al., 2008; Brakenhoff et al., 2018).
In a case–control study, misclassification is often due to inaccurate reporting of the exposure status
(e.g., self-reported data). This can consequently lead to biased estimation of exposure probabilities
and odds ratio. To adjust for such biases, we can correct the odds ratio using the observed data from
the case–control study and the sensitivity and specificity of correctly classifying exposure status from
external data. Here, the sensitivity is the proportion of exposed subjects that are correctly classified
as exposed (i.e., true positive), and the specificity is the proportion of non-exposed subjects that are
correctly classified as non-exposed (i.e., true negative).

Quantitative assessment of misclassification bias is necessary to estimate uncertainty in study
results. There are many statistical methods for misclassification correction; nearly all of them use
prior information that maps observed measurements to true values (Greenland, 2005). These methods
include regression calibration and multiple imputation (Rosner et al., 1989; Spiegelman et al., 2001;
Cole et al., 2006), in which the mapping is based on a validation study. Also, sensitivity analysis
can be used to evaluate the effects of uncertainties in measurement on the observed results of the
study (Greenland, 1996; Lash and Flink, 2003; Chu et al., 2006), in which the mapping from observed
to true measurements may be based on prior information or expert opinion about the accuracy of
the measurement. However, when such information or opinion is lacking, researchers may over-
or under-adjust for misclassification with an inaccurate guess, which may, in turn, produce a poor
estimate (Gustafson et al., 2006).

Moreover, despite the ubiquity of measurement error, these methods remain rarely used due to
the complexity of statistical approaches, especially the complexity of prior specifications as well as
the lack of software packages (Lash and Flink, 2003). For example, in a random sample survey of 57
epidemiological studies (Jurek et al., 2006), only one study used quantitative corrections. Sensitivity
analysis is simple but limited insofar as it does not provide formal interval estimates that combine
uncertainty due to random error with misclassification. Several authors have addressed this deficiency
by using probabilistic (Monte Carlo) sensitivity analyses (Greenland, 2005). For example, Fox et al.
(2005) proposed a probabilistic sensitivity analysis of misclassified binary variables based on multiple
imputation; they provided SAS code and Excel macro for this approach. Such methods can be viewed
as means of summarizing the bias over sensitivity analyses using a prior distribution about the bias
parameters (Greenland, 2005). Many of them have been implemented in the R package episensr
(Haine, 2021). Specifically, episensr allows for specifications of prior distributions for sensitivity and
specificity, such as uniform and logit normal, as well as sequential bias modeling that can be applied
to more than one type of bias, such as for both misclassification and selection biases.

Other methods employ a Bayesian implementation of the probabilistic bias analysis or perform
an outright Bayesian analysis (Greenland, 2005; Chu et al., 2006; MacLehose and Gustafson, 2012;
Gustafson et al., 2006). The Bayesian analysis is substantially different from conventional probabilistic
sensitivity analysis and much more flexible for incorporating different types of priors. However, it is
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often computationally expensive and more difficult to conduct by general users without a statistical
background. Gustafson et al. (2006) accounted for the prior uncertainties of sensitivity and specificity
in the evaluation of the results of a case–control study. MacLehose and Gustafson (2012) compared a
Bayesian approach with probabilistic bias analysis based on a case–control study of congenital defects,
concluding that the two approaches are mostly similar if using similar prior data admissibility as well
as uniform priors on exposure probabilities.

This article focuses on an R package correcting for exposure misclassification in a case–control
study. Extending from the Bayesian approach introduced by Gustafson et al. (2006), we implement
the methods outlined in Chu et al. (2006), which account for the correlation between the sensitivity
and specificity in the model specification. The methods can be applied to both non-differential and
differential misclassification; that is, the degree of misclassification can be the same across the case
and control groups or distinctly different. Furthermore, we use the generalized linear mixed bivariate
effects model introduced by Chu et al. (2010) to jointly model the sensitivity and specificity that may
be informed by an external meta-analysis on the diagnostic accuracy of the exposure factor.

This article introduces the implementation of the methods for misclassification via our R package
BayesSenMC (Bayesian sensitivity analysis by Monte Carlo sampling). The package is mainly
implemented in Stan, an imperative probabilistic programming language, which uses Hamiltonian
Monte Carlo (HMC), a form of efficient Markov Chain Monte Carlo (MCMC) sampling.

An illustrative example

This section presents an illustrative case–control study on the association between bipolar disorder
and rheumatoid arthritis, originally investigated by Farhi et al. (2016); this example will also be used
to demonstrate the implementation of the methods for misclassification. The exposure is bipolar
disorder, and the disease outcome is rheumatoid arthritis, which is a chronic autoimmune disorder
that primarily affects joints and occurs in nearly 1% of the population in developed countries (McInnes
and Schett, 2017). Table 1 presents the data.

Bipolar Disorder

Rheumatoid arthritis Exposed Unexposed Total

Case 66 11,716 11,782
Control 243 57,730 57,973

Table 1: Counts of the case–control study of the association between bipolar disorder and rheumatoid
arthritis.

The unadjusted odds ratio is 1.34 with the 95% confidence interval (CI) (1.02, 1.76), indicating a
significant association between rheumatoid arthritis and bipolar disorder. Of note, Farhi et al. (2016)
acknowledged the limitation that “lack of validation of the diagnosis of bipolar disorder in the subjects
cannot be completely excluded.” For example, bipolar disorder can be classified as type I, type II, etc.;
it is especially difficult to diagnose bipolar disorder type II (Phillips and Kupfer, 2013).

Assuming certain fixed values or prior distributions of sensitivity and specificity, we can use the
method by Chu et al. (2006) to correct the odds ratio accounting for the exposure misclassification.
The sensitivity and specificity can be either some fixed values or random variables following some
prior distributions.

The prior distributions can be estimated from external evidence using a meta-analysis, e.g., using
the bivariate generalized linear mixed model approach proposed by Chu et al. (2010). The following
section presents the details of these methods. This article uses the meta-analysis performed by
Carvalho et al. (2015) to obtain the prior distributions of the sensitivity and specificity of classifying
the exposure status of bipolar disorder. The meta-analysis contains three subgroups of screening
detection instruments: bipolar spectrum diagnostic scale (8 studies with sensitivity between 0.52 and
0.90 and specificity between 0.51 and 0.97), hypomania checklist (17 studies with sensitivity between
0.69 and 1.00 and specificity between 0.36 and 0.98), and mood disorder questionnaire (30 studies with
sensitivity between 0.00 and 0.91 and specificity between 0.47 and 1.00). The dataset from the Clalit
Health Services (the largest Health Maintenance Organization in Israel) used in Farhi et al. (2016) does
not specify the exact screening detection instrument for identifying the bipolar disorder. Therefore, we
will use all three subgroups’ data (55 studies in total) in Carvalho et al. (2015) for our analysis on the
sensitivity and specificity. A subset of the meta-analysis data is shown in Table 2.

According to their definitions, the study-specific sensitivity and specificity can be estimated as
(the number of true positives) / (the number of true positives plus the number of false negatives) and
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Study True False True False
ID positive negative negative positive

1 81 9 444 427
2 12 3 44 19
3 74 26 97 3
4 52 16 23 4
5 228 113 18 4
...

...
...

...
...

55 63 6 32 13

Table 2: The meta-analysis on diagnosis accuracy of bipolar disorder performed by Carvalho et al.
(2015).

(the number of true negatives) / (the number of true negatives plus the number of false positives). For
example, study 1 gives the sensitivity 81/(81 + 9) = 0.90 and the specificity 444/(444 + 427) ≈ 0.51.
The generalized linear mixed-effects model will be used to synthesize all 55 studies to estimate the
overall sensitivity and specificity.

Methods

In this section, we introduce the specific models and methods to deal with misclassification.

Bayesian approach to correcting misclassification bias

Consider a case–control study, and we are interested in the odds ratio from this study. Table 3 presents
the notation of the observed data. The odds ratio is estimated as

ÔR =
ad
bc

.

When the odds ratio is larger or smaller than 1, the exposure happens more or less likely in the case
group, suggesting an association between the disease status and the exposure status. On the other
hand, the odds ratio close to 1 suggests that the disease and the exposure are less likely associated.

Group Exposed Unexposed Total

Case a b N1
Control c d N0

Table 3: Observed counts of a case–control study.

Assume that the observed exposure probability is Pk, the true exposure probability is πk, the
sensitivity is Sek, and the specificity is Spk for group k (k = 1 for the case group and 0 for the control
group) in the case–control study. Then, we can represent the observed exposure probability in terms
of the true exposure probability, the sensitivity, and the specificity:

Pk = P(observed E in group k)
= P(observed E | true E in group k)P(true E in group k)

+ P(observed E | true E in group k)P(true E in group k)
= Sekπk + (1 − Spk)(1 − πk),

(1)

where E denotes exposure and E denotes non-exposure. This yields

πk = (PK + Spk − 1)/(Sek + Spk − 1).

Consequently, the misclassification-corrected odds ratio can be calculated as

ORc =
π1/(1 − π1)

π0/(1 − π0)
=

(P1 + Sp1 − 1)(Se0 − P0)

(P0 + Sp0 − 1)(Se1 − P1)
. (2)
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Based on Equation (1), we can specify the following Bayesian hierarchical model to estimate the
corrected odds ratio of the case–control study, with a and c being the observed counts from Table 3:

Likelihood: a ∼ Bin(N1, P1) and c ∼ Bin(N0, P0);

Link: Pk = Sekπk + (1 − Spk)(1 − πk), k = 0, 1;

LORc = logit(π1)− logit(π0) and ORc = exp(LORc);

Prior: logit(π0) ∼ N(0, 102) and LORc ∼ N(0, 22);

Sek, Spk ∼ f (·).

(3)

Here, we assume weakly-informative priors for the true exposure probabilities π0 and π1, which
give a 95% CI of the true odds ratio between e−2×1.96 (≈ 0.02) and e2×1.96 (≈ 50.40), and a binomial
distribution for the number of observed exposure in case and control studies. Thus, the Bayesian
inference can be formulated as a posterior distribution of π0, π1, and the corrected odds ratio.

Additionally, the function f (·) denotes the joint prior for the sensitivity and specificity (for either
non-differential or different misclassification). In practice, the sensitivity and specificity are not
available from the case–control study, and they may be estimated as certain fixed values by subjective
experts’ opinions.

Alternatively, we may consider incorporating evidence-based prior information from existing
studies on the diagnostic accuracy of the exposure status (e.g., the data in Table 2). This allows us to
account for uncertainties in the sensitivity and specificity and potential correlation between them. The
next subsection presents methods to obtain the prior information for the sensitivity and specificity
from a meta-analysis.

Estimating prior distributions on the sensitivity and specificity from a meta-analysis

This section briefly discusses the generalized linear mixed-effects model (GLMM) to estimate priors on
the sensitivity and specificity. Suppose that a meta-analysis on the diagnostic accuracy of the exposure
status is available as external data to inform the priors of sensitivity and specificity that are needed
to correct the odds ratio in the case–control study. Denote the number of independent studies in the
meta-analysis by m, and let ni11, ni00, ni01, and ni10 be the number of true positives, true negatives,
false positives, and false negatives, respectively, in study i (i = 1, . . . , m). Consequently, there are
ni11 + ni10 truly exposed subjects and ni00 + ni01 truly unexposed subjects.

Assuming that ni11 and ni00 follow binomial distributions given the number of exposed and
unexposed subjects, respectively, the bivariate GLMM can be specified as (Chu et al., 2010; Ma et al.,
2016):

ni11 ∼ Bin(ni11 + ni10, Sei) and ni00 ∼ Bin(ni00 + ni01, Spi), i = 1, . . . , m;

g
(

Sei − SeL

SeU − SeL

)
= u + µi and g

(
Spi − SpL

SpU − SpL

)
= v + νi;[

µi
νi

]
∼ N

([
0
0

]
,
[

σ2
µ ρσµσν

ρσµσν σ2
ν

])
,

(4)

where u and v are the fixed effects implying the overall sensitivity and specificity in all m studies,
and µi and νi are the study-specific random effects. Also, σ2

µ and σ2
ν describe the heterogeneity of

the underlying sensitivity and specificity across studies, and ρ models the correlation between the
sensitivity and specificity. We denote the estimated fixed effects by û and v̂, the estimated variances as
σ̂2

µ and σ̂2
ν , and the estimated correlation coefficient as ρ̂.

The lower and upper bounds SeL, SeU , SpL, and SpU provide constraints on sensitivity and
specificity, which are chosen to exclude all improbable values. A smaller difference between SeL and
SeU (or between SpL and SpU) indicates higher confidence in the diagnostic accuracy of the exposure
status. When there is no confidence for the range, we can set SeL = SpL = 0 and SeU = SpU = 1.
Alternatively, setting SeL = SpL = 0.5 indicates that the diagnosis of exposure is better than chance.
For simplicity of implementation, we only allow the same lower and upper bounds for Se and for
Sp in our package BayesSenMC. In addition, g(·) is the link function (e.g., the logit, probit, and
complementary log-log). The logit link, logit(t) = log t

1−t , is commonly used in practice, and our
package BayesSenMC adopts this link.

Recall that the Bayesian hierarchical model for estimating the corrected odds ratio in the case–
control study in Equation (3) specifies a joint prior f (·) for the sensitivity and specificity. We consider
six specifications for this prior as follows:

(i) Crude (uncorrected) odds ratio: no misclassification. The specification of the prior is equivalent
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to setting Se0 = Se1 = Sp0 = Sp1 = 1. Consequently, P1 = π1 and P0 = π0.

(ii) Corrected OR: misclassification of the exposure status exists, and the sensitivity and specificity
for both cases and controls are assumed to be fixed values. These fixed values can be directly
plugged in the Bayesian model in Equation (3).

(iii) Logit-prior corrected OR: non-differential misclassification of the exposure status exists (Se0 =
Se1 = Se and Sp0 = Sp1 = Sp), and the uncertainties of the sensitivity and specificity are
considered independently by using normal priors on the logit scale. The evidence of the priors
comes from the diagnostic meta-analysis performed in the GLMM in Equation (4). Specifically,
we can assign

logit
(

Se − SeL

SeU − SeL

)
∼ N(û, σ̂2

µ) and logit
(

Sp − SpL

SpU − SpL

)
∼ N(v̂, σ̂2

ν )

as the priors in the Bayesian hierarchical model for the case–control study in Equation (3).

(iv) Fixed-correlation corrected OR: non-differential misclassification of the exposure status exists
(Se0 = Se1 = Se and Sp0 = Sp1 = Sp), and the sensitivity and specificity have a joint normal
prior on the logit scale to account for their correlation. In practice, the sensitivity is very likely
correlated with the specificity when dichotomizing a continuous measurement (Chu and Cole,
2006). Specifically, we use the following bivariate joint prior logit

(
Se−SeL

SeU−SeL

)
logit

(
Sp−SpL

SpU−SpL

) ∼ N
([

û
v̂

]
,
[

σ̂2
µ ρ̂σ̂µσ̂ν

ρ̂σ̂µσ̂ν σ̂2
ν

])
.

Compared with the previous prior specification with independent sensitivity and specificity,
the correlation coefficient ρ̂ is additionally considered here. It is also estimated from the GLMM
in Equation (4).

(v) Random-correlation corrected OR: in addition to the above bivariate joint prior for the non-
differential sensitivity and specificity, we can also consider modeling the uncertainties in
the estimated correlation coefficient. We consider applying Fisher’s z-transformation to the
correlation coefficient in the GLMM. Specifically, instead of directly estimating the correlation
coefficient ρ in Equation (4), we reparameterize ρ =

exp(2z)−1
exp(2z)+1 and obtain the point estimate of z

from the GLMM and its standard error, denoted by ẑ and sz, respectively. These estimates can
be subsequently used as the priors for the sensitivity and specificity in the case–control study: logit

(
Se−SeL

SeU−SeL

)
logit

(
Sp−SpL

SpU−SpL

) ∼ N
([

û
v̂

]
,
[

σ̂2
µ ρσ̂µσ̂ν

ρσ̂µσ̂ν σ̂2
ν

])
;

ρ =
exp(2z)− 1
exp(2z) + 1

;

z ∼ N(ẑ, s2
z).

(vi) Differential corrected OR: finally, we consider the differential misclassification of the exposure
status, i.e., Se0 ̸= Se1 and Sp0 ̸= Sp1. All above choices of priors can be similarly applied to the
four-variate set {Se0, Sp0, Se1, Sp1}. For simplicity, we consider a joint prior similar to that in
(iv). However, the prior applies to cases and controls separately, and it does not account for the
uncertainties in the correlation coefficient as in (v). That is, logit

(
Sek−SeL

SeU−SeL

)
logit

(
Spk−SpL

SpU−SpL

) ∼ N
([

û
v̂

]
,
[

σ̂2
µ ρ̂σ̂µσ̂ν

ρ̂σ̂µσ̂ν σ̂2
ν

])
, k = 0, 1.

Because of the complexity of the Bayesian model in Equation (3) with the above various choices of
priors for the sensitivity and specificity, we will use Markov chain Monte Carlo (MCMC) sampling to
produce the posterior distribution and thus estimate the misclassification-bias-corrected odds ratio in
the case–control study and its credible interval.

Implementation in R

The aforementioned methods can be implemented in the R package BayesSenMC. The function
nlmeNDiff fits a non-differential GLMM and returns a lme4 (Bates et al., 2021) object, for which
commands such as summary can be used to extract useful statistics from the model; see methods(class
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= "merMod") for more details. Users can also call the paramEst function to get a list of specific parameter
estimates of the fit that can be directly inputted into the model functions of BayesSenMC for Bayesian
inferences. In addition, the link function used in nlmeNDiff can be modified by specifying lower and
upper, which then changes the lower and upper bounds of Sek and Spk (k = 1 for cases and 0 for
controls).

The package BayesSenMC includes six model functions and one graphing function called plotOR.
The model functions return an S4 object of type stanfit, an instance of rstan (Stan Development
Team, 2020), which is an interface of Stan (Carpenter et al., 2017) in R. Users can call methods such
as print or extract to get detailed information about the posterior samples. The MCMC procedures
are implemented with a default of two chains, each with 1000 iterations of burn-in period and 2000
iterations to estimate the posterior parameters. They are fit using stan, and the default Monte Carlo
algorithm is the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo (Hoffman and Gelman,
2014; Betancourt, 2017). Any additional arguments to the model function call will be passed into
stan. The returned object can then be inputted into plotOR to visualize the posterior distribution
of the adjusted odds ratio, as well as the probability density lines of odds ratio in the cases of no
misclassification and constant Se/Sp as comparisons to the posterior distribution. It takes optional
argument passed into geom_histogram, and returns a ggplot2 (Wickham et al., 2021) object that can be
further customized.

The latest version of BayesSenMC is available from CRAN. The package can be directly installed
via the R prompt:

R> install.packages("BayesSenMC")
R> library("BayesSenMC")

Example in R

In this section, we use the data in Table 1 as well as Table 2 of meta-analysis data on the diagnosis accu-
racy of bipolar disorder to demonstrate the capabilities of BayesSenMC. The analyses are conducted
using R version 4.1.0 (2021-05-18).

We first fit the meta-analysis data using the GLMM procedure implemented in our package,
assuming non-differential misclassification. Given the range of Se and Sp of the bipolar disorder
meta-analysis data, we must only assume SeL = SpL = 0 and SeU = SpU = 1 for the GLMM to
compute real-value results. However, with more information about the type of diagnoses in Farhi et al.
(2016), one can find more informative constraints on Se and Sp to fit a more precise model.

R> data(bd_meta)
R> my.mod <- nlmeNDiff(bd_meta, lower = 0)
R> my.mod

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: binomial ( logit(0, 1) )
Formula: cbind(Y, N - Y) ~ ((0 + Se + Sp) | sid) + Se

Data: dat_final
AIC BIC logLik deviance df.resid

851.6825 865.1849 -420.8412 841.6825 105
Random effects:
Groups Name Std.Dev. Corr
sid Se 0.7116

Sp 0.8935 -0.38
Number of obs: 110, groups: sid, 55
Fixed Effects:
(Intercept) Se

1.12626 -0.05746

The indicator variable Se has a value of 1 for Se estimates and 0 for Sp estimates. The random
effects are grouped within each study, numbered after sid.

The fit reports the Akaike information criterion (AIC), which can be used to compare across
models. The logit means of Se and Sp are given by the fixed effects, 1.069 and 1.126, which translate to
a sensitivity of 0.744 and a specificity of 0.755. The values, larger than 0.5, suggest that overall, the
diagnostic accuracy for bipolar disorder given our meta-data is better than random, albeit nowhere
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near perfect. The standard deviations of logit Se and Sp are given by the random effects, as well as the
correlation. All of the mentioned parameter estimates can be returned in a list by calling paramEst.

We then plug the parameter estimates to get the posterior distributions for the corrected odds
ratio given different priors of Se and Sp. We run all 6 different models with the case–control study
observations in Farhi et al. (2016), shown in Table 1. The model specifications are shown in the previous
subsection.

R> params <- paramEst(my.mod)
R> m.1 <- crudeOR(a = 66, N1 = 11782, c = 243, N0 = 57973, chains = 3, iter = 10000)
R> m.2 <- correctedOR(a = 66, N1 = 11782, c = 243, N0 = 57973, prior_list = params,
+ chains = 3, iter = 10000)
R> m.3 <- logitOR(a = 66, N1 = 11782, c = 243, N0 = 57973, prior_list = params,
+ chains = 3, iter = 10000)
R> m.4 <- fixedCorrOR(a = 66, N1 = 11782, c = 243, N0 = 57973, prior_list = params,
+ chains = 3, iter = 10000)
R> m.5 <- randCorrOR(a = 66, N1 = 11782, c = 243, N0 = 57973, prior_list = params,
+ chains = 3, iter = 10000)
R> m.6 <- diffOR(a = 66, N1 = 11782, c = 243, N0 = 57973, mu = c(1.069, 1.069, 1.126, 1.126),
+ s.lg.se0 = 0.712, s.lg.se1 = 0.712, s.lg.sp0 = 0.893, s.lg.sp1 = 0.893,
+ corr.sesp0 = -0.377, corr.sesp1 = -0.377, corr.group = 0, chains = 3,
+ iter = 10000, traceplot = TRUE)

# get summary of model output
R> m.1

Figure 1: Traceplot of 3 Markov chains with 10,000 iterations for randomly correlated logit bivariate
model.

Each model above is implemented with 3 Markov chains, and each chain consists of 5000 burn-in
samples and 10,000 iterations to estimate the parameters (Figure 1). The posterior mean, median and
95% confidence limits of the adjusted odds ratio are as below: 1.35 (1.34, 1.01, 1.74), 5.63 (0.85, 0.02,
36.10), 8.61 (1.93, 0.03, 62.27), 9.33 (1.95, 0.03, 62.62), 9.05 (2.00, 0.03, 64.33), 5.23 (0.82, 0.02, 32.64). To
obtain and analyze the model output, one can simply call the model variable (e.g., m.1). The summary
displays the parameters for the model as well as the mean and confidence limits of the adjusted odds
ratio (i.e., ORadj). One can also specify traceplot = TRUE to display a plot of sampled corrected log
odds ratio values over iterations, such as in the above diffOR method call.

The above example demonstrates the significance of sensitivity and specificity in a case–control
study. We can examine that by the ratio of upper to lower 95% posterior interval: 1.74/1.01 = 1.72,
36.10/0.02 = 1805, 62.27/0.03 = 2075.67, 62.62/0.03 = 2087.33, 64.33/0.03 = 2144.33, and 32.64/0.02 =
1632. The greatest jump happens when we assume misclassification in the case–control study, and
it only differs slightly with more uncertainties in the model. The increase is especially significant in
Farhi et al. (2016) because the estimated mean Se and Sp are around only 0.75, as seen from the GLMM.
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In the future, we will consider adding other specifications of priors for sensitivity and specificity to
our package, such as beta priors.

R> library("ggplot2")
R> g1 <- plotOR(m.1, a = 66, N1 = 11782, c = 243, N0 = 57973, se = 0.744,
+ sp = 0.755, x.max = 3, y.max = 5, binwidth = 0.1) + ggtitle("(i)")
#...... please see supplementary R script for rest of code ......

Figure 2: Visualization of posterior distributions of odds ratio for all models. (i) crude (uncorrected)
odds ratio with no misclassification; (ii) corrected OR with constant misclassification (Se = 0.744 and
Sp = 0.755); (iii) corrected OR with logit bivariate normal misclassification; (iv) corrected OR that
extends from (iii) but with constant correlation between Se and Sp; (v) corrected OR that extends from
(iii) but with Fisher’s z-transformed correlation; (vi) corrected OR with differential misclassification.
The dotted and solid lines are the probability density lines of crude OR (i) and corrected OR with no
misclassification (ii), respectively, assuming log-normality on odds ratio.

We also implement a graphing function, plotOR, which takes the input of a model built with one
of the above methods, the observations of the same case–control study, and the estimated Se and
Sp from the GLMM. The method visualizes the posterior distribution of that model and plots the
probability density line of the adjusted odds ratio given no misclassification (crude OR) and constant
misclassification as specified by Se and Sp (corrected OR). This makes it easy for users to compare
the current posterior distribution (especially for models with more uncertainty) with more certain
models to visualize the effect of misclassification in a case–control study. In addition, the lines serve
as references when comparing across models. The plots and relevant codes are shown in Figure 2.
Users can also choose to extract the data from the rstan objects by calling functions such as extract,
as.data.frame, etc.

According to the plot, we observe a drastic change to the posterior distribution after taking non-
perfect Se and Sp into account. Then, we observe slightly more uniform distributions as there is more
uncertainty in the model. What is also worth noting is that in part (ii) of the plot, the posterior density
and MCMC sampling do not share the same shape, even though both assume non-perfect constant Se
and Sp. This may be a result of low Se and Sp values, which may affect the log-normality assumption
in the MCMC posterior samples.

We now show the effects of the number of iterations and chains on the computing speed of our
models. All models have been pre-compiled, which reduces the computing time significantly. For
example, randCorrOR, which is presumably one of the most complex and time-consuming models to
compute, takes about 1.32 seconds to run 3 chains with 5000 warm-up periods and 10,000 iterations
each. In comparison, it takes about 0.20 seconds to compute 2 chains with 1000 warm-up periods and
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2000 iterations each. In practice, a larger number of MCMC chains and iterations leads to more stable
and accurate results and thus is recommended. Furthermore, we find that models, such as provided
by randCorrOR, have smaller target posterior distribution regions in a Markov chain, thus rendering
it easy for the algorithm to miss the true distribution and result in “divergent transitions,” which
may return biased estimates. Increasing the value of adapt_delta parameter up to 1 in the control
argument of the methods can effectively make rstan take smaller steps to approach the target.

Conclusion

In this article, we introduce and implement the methods for making posterior inferences on the
corrected odds ratio by modeling the uncertainty on both differential and non-differential misclassifi-
cation through appropriate prior distributions. The specific implementation is publicly available using
the R package BayesSenMC. The process can be divided into two parts. First, one can use the GLMM
model with a binomial-logit link to estimate prior information on Se and Sp via a meta-analysis on the
misclassification of exposure status. Second, the estimates can be plugged into the modeling functions
to provide inferences for the odds ratio. The models can also be visualized side-by-side for better
comparisons. The validity of the analyses depends highly on the relevance of meta-analysis, in which
irrelevant studies may skew the prior estimates of Se and Sp significantly, and consequentially, the
corrected odds ratio. In addition, our models assume normal and independent priors on true exposure
probabilities, which may be limited in some cases (Chu et al., 2006).
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