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Fay-Herriot Models for Small Area
Estimation
by Novia Permatasari and Azka Ubaidillah

Abstract The paper introduces an R Package of multivariate Fay-Herriot models for small area
estimation named msae. This package implements four types of Fay-Herriot models, including
univariate Fay-Herriot model (model 0), multivariate Fay-Herriot model (model 1), autoregressive
multivariate Fay-Herriot model (model 2), and heteroskedastic autoregressive multivariate Fay-Herriot
model (model 3). It also contains some datasets generated based on multivariate Fay-Herriot models.
We describe and implement functions through various practical examples. Multivariate Fay-Herriot
models produce a more efficient parameter estimation than direct estimation and univariate model.

Introduction

Survey sampling is a data collection method by observing several units of observation to obtain
information from the entire population. Compared to other data collection methods, survey sampling
has advantages in cost, time, and human resources. Survey sampling is designed for a certain size
of the domain, commonly a large area. However, data demand for small areas is increasing and has
become high issue (Ghosh and Rao, 1994). The inadequate sample size causes a large standard error of
parameter estimates. This problem is overcome by indirect estimation, namely Small Area Estimation
(SAE).

Rao and Molina (2015) said that SAE increases the effectiveness of sample size using the strength of
neighboring areas and information on other variables that are related to the variable of interest. There
are some estimation methods in SAE, namely Best Linear Unbiased Predictors (BLUP), Empirical Best
Linear Unbiased Predictors (EBLUP), Hierarchical Bayes (HB), and Empirical Bayes (EB). The most
common SAE estimator is the EBLUP (Krieg et al., 2015). EBLUP has advantages over EB and HB
methods. It is a development of the BLUP method that minimizes the MSE among other unbiased
linear estimators (Ghosh and Rao, 1994). Area level of EBLUP application for the continuous response
variable, called Fay-Herriot model, was firstly employed for estimating log per-capita income (PCI) in
small places in the US (Rao and Molina, 2015).

The Fay-Herriot model has extended into a multivariate Fay-Herriot model, which is a model
with several correlated response variables. Datta et al. (1991) firstly applied the multivariate model to
estimate the median income of four-person families in the US states. Benavent and Morales (2016)
developed multivariate Fay-Herriot models with the EBLUP method and introduced four estimation
models based on the estimated variance matrix structure. Ubaidillah et al. (2019) also implemented
the multivariate Fay-Herriot model and indicated that the multivariate Fay-Herriot model produces a
more efficient parameter estimation than the univariate model.

On the Comprehensive R Archive Network (CRAN), there are several packages implementing
small area estimation. Some of them are included in the Small Area Estimation subsection of The
CRAN Task View: Official Statistics & Survey Methodology (Templ, 2014), including sae (Molina and
Marhuenda, 2018), rsae (Schoch, 2014), nlme (Pinheiro et al., 2020), hbsae (Boonstra, 2012), JoSAE
(Breidenbach, 2018), and BayesSAE (Chengchun Shi Developer, 2018). Other popular SAE packages
not included in that subsection are mme (Lopez-Vizcaino et al., 2019) and saery (Lefler et al., 2014).

In this paper, we introduce our R package of multivariate Fay-Herriot models for small area
estimation, named msae. This package and its details are available on CRAN at http://CRAN.R-
project.org/package=msae. Functions in this package implement four Fay-Herriot Models, namely
Model 0, Model 1, Model 2, and Model 3, as proposed by Benavent and Morales (2016).

The paper is structured as follows. First, we explain multivariate Fay-Herriot models in Section
2.2. Then, we describe msae package and illustrate the use of this package for SAE estimation by
employing simulation studies and applying it to a real dataset in the next Sections 2.3 and 2.4. Finally,
we provide a conclusion in Section 2.8.
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Multivariate Fay-Herriot model

The multivariate Fay-Herriot model is an extension of the Fay-Herriot model, which utilizes some
correlated responses. Fay-Herriot is a combination of two model components. The first component is
called the sampling model, and the second component is called the linking model.

Suppose we want to estimate characteristics of R variables in D areas, µd = (µ1d, . . . , µRd)
T , with

d = 1, . . . , D. Let yd = (y1d, . . . , yRd)
T , be a direct estimator of µd. The first component, i.e., sampling

model is
yd = µd + ed, ed ∼ N(0, Ved ), d = 1, . . . , D

, where ed is sampling error with a covariance matrix, Ved , that is assumed to be known. In the
second component, we assume that µd is linearly related with pd area-specific auxiliary variables
Xd = (X1, . . . , Xpd )

T as follows:

µd = Xdβd + ud, ud ∼ N(0, Vud ), d = 1, . . . , D

, where ud is area random effects, and βd is a vector of regression coefficient corresponding with Xd.
This second component is called the linking model. The combination of the two components forms a
multivariate linear mixed model as follows:

yd = Xdβd + ud + ed, ed ∼ N(0, Ved ), d = 1, . . . , D

, where u and e are independent.

Benavent and Morales (2016) proposed Fay-Herriot models using four different variance matrices,
Model 0, Model 1, Model 2, and Model 3. Model 0 is a univariate Fay-Herriot Model, of which the
sampling error and the random effect of target variables are independent. Sampling error and random
effect variance matrix are written as follows:

Vud = diaga≤r≤R(σ
2
ur)

Ved = diaga≤r≤R(σ
2
edr)

,
where d = 1, . . . , D

.

Model 1, Model 2, and Model 3 are multivariate Fay-Herriot models, of which the variance
matrices are no longer diagonal matrices. Model 1 is a multivariate form of Model 0, where the
random effect variance of Model 1 is still a diagonal matrix. Model 2 is called the autoregressive
multivariate Fay-Herriot model (AR(1)), in which the random variance matrix is written as follows :

Vud = σ2
urΩd(ρ)

Ωd(ρ) =
1

1 − ρ2


1 ρ · · · ρR−1

ρ 1 ρR−2

...
. . .

...
ρR−1 ρR−2 · · · 1


Model 3 is called heteroskedastic autoregressive multivariate Fay-Herriot model (HAR(1)), which the
element of random error is written as follows:

udr = ρudr−1 + adr

ud0 ∼ N(0, σ2
u0) and adr ∼ N(0, σ2

r )

, where σ2
u0 = 1, adr, and ud0 are independent. The element of random variance matrix is written as

follow:

σdrii =
i

∑
k=1

ρ2kσ2
i−k

σdrij =
|i−j|

∑
k=0

ρ2k+|i−j|σ2
|i−j|−k

.
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BLUP and EBLUP

The best linear unbiased prediction (BLUP) of µ is

µ̂ = Xβ̂ + ZTV̂uZΩ−1(y − Xβ̂)

, where β̂ = (XTΩ−1X)−1XTΩ−1y is the best linear unbiased estimator (BLUE) of β with the covari-
ance matrix cov(β̂) = (XTΩ−1X)−1. BLUP estimator depends on the random effect variance that
is usually unknown. Using Restricted Maximum Likelihood (REML), we estimate and substitute
random effect variance estimator for obtaining the multivariate EBLUB estimator. The estimation
formula with EBLUP is written as follows:

µ̂ = Xβ̂ + ZTV̂uZΩ̂−1(y − Xβ̂)

Ω̂ = ZTV̂uZ + Ve

, where β̂ = (XTΩ̂−1X)−1XTΩ̂−1y is the best linear unbiased estimator (BLUE) of β with the covari-
ance matrix cov(β̂) = (XTΩ̂−1X)−1.

MSE

Benavent and Morales (2016) also proposed MSE estimation for the multivariate Fay-Herriot models
as follows:

mse(µ̂) = g1i(σ̂
2
u) + g2i(σ̂

2
u) + g3i(σ̂

2
u)

, where each component can be described as follows:

g1i(σ̂
2
u) = ΓVe

,
g2i(σ̂

2
u) = (1 − Γ)X(XTΩ−1X)−1XT(I − Γ)T

,
g3i(σ̂

3
u) ≈ ΣΣcov(σ̂2

uk, σ̂2
ul)Γ(k)ΩΓT

(k), k, l = 1, 2, . . . , q

, where Γ = ZTV̂uZ, Γ(k) =
δΓ
δσ2

u
, and cov(σ̂2

uk, σ̂2
ul) is the inverse of the Fisher information matrix in the

estimation of REML.

Overview of R package msae

The R Package msae implements multivariate Fay-Herriot models for small area estimation. Here are
some functions and the descriptions at a glance:

• eblupUFH: This function gives the EBLUP and MSE based on the univariate Fay-Herriot model
(Model 0).

• eblupMFH1: This function gives the EBLUP and MSE based on the multivariate Fay-Herriot
model (Model 1).

• eblupMFH2: This function gives the EBLUP and MSE based on the autoregressive multivariate
Fay-Herriot model (Model 2).

• eblupMFH3: This function gives the EBLUP and MSE based on the heteroskedastic autoregressive
multivariate Fay-Herriot model (Model 3).

Those functions return a list of five elements:

• eblup is a data frame of EBLUPs for each variable.

• MSE is a data frame of the estimated MSEs of the EBLUPs.

• randomEffect is a data frame of random effect estimators.

• Rmatrix is a block diagonal matrix composed of sampling variances.

• fit is a list containing the following objects:

– method shows the type of fitting method.

– convergence shows the convergence of the Fisher Scoring algorithm.

– estcoef shows estimated model coefficients and their significance.

– refvar shows the estimated random effect variance.
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– refvarTest (only for eblupMFH3) shows homogeneity of random effect variance test based
on Model 3.

– rho (only for eblupMFH2 and eblupMFH3) shows the estimated ρ of random effect variance
and their parameter test.

– informationFisher is a matrix of information Fisher.

This package also provides datasets generated for each multivariate model. The datasets are
generated based on Model 1, Model 2, and Model 3 following steps:

1. Generate sampling error e and auxiliary variables « X1, X2 ». Set the parameter as follows:

• For sampling error e in Model 1, we set ed ∼ N3(0, Ved), where Ved = (σdij)i,j=1,2,3 with
σe11 ∼ InvGamma(11, 1), σe22 ∼ InvGamma(11, 2), σe33 ∼ InvGamma(11, 3), and ρe =
0.5. We generate different MSE of direct estimates for each area.

• For sampling error e in Model 2 and Model 3, we set e ∼ N3(0, Ve), where Ve = (σij)i,j=1,2,3
with σe11 = 0.1, σe22 = 0.2, σe33 = 0.3, and ρe = 0.5. It is shown that all the areas have the
same MSE of direct estimates.

• For auxiliary variables « X1 X2 », we set X1 ∼ N(5, 0.1) and X2 ∼ N(10, 0.2)

2. Generate random effect u, where u ∼ N3(0, Vu). For each dataset, parameter for generating
random effect u are as follows:

• For Model 1, σu11 = 0.2, σu22 = 0.4, and σu33 = 1.2

• For Model 2, σu = 0.4, and ρu = 0.8

• For Model 3, σu11 = 0.2, σu22 = 0.4, σu33 = 1.2, and ρu = 0.8

3. Set β1 = 5 and β2 = 10 to calculate direct estimation « Y1, Y2, and Y3 », where Yi = Xβ + ui +
ei.

4. Auxiliary variables « X1 and X2 », direct estimates « Y1, Y2, and Y3 », and sampling variance-
covariance « v1, v2, v3, v12, v13, and v23 » are combined into a data frame called datasae1 for
Model 1, datasae2 for Model 2, and datasae3 for Model 3.

Example 1. The multivariate Fay-Herriot model (Model 1)

datasae1, which is generated based on Model 1, contains 50 observations on the following 11 variables:
3 dependent variables « Y1, Y2, and Y3 », 2 auxiliary variables « X1 and X2 », and 6 variance-covariance
of direct estimation « v1, v2, v3, v12, v13, and v23 ». The procedures for generating such datasets are
provided in the previous section. The following R commands are run to obtain EBLUPs of the
univariate Fay-Herriot model (Model 0) and the multivariate Fay-Herriot model (Model 1), plot the
EBLUPs of the univariate and multivarate model, and plot the MSEs of EBLUPs in the univariate and
multivarate model:

data('datasae1')

# model specifications
Fo <- list(f1=Y1~X1+X2,

f2=Y2~X1+X2,
f3=Y3~X1+X2)

vardir <- c("v1", "v2", "v3", "v12", "v13", "v23")

# EBLUP based on Model 0 and Model 1
u <- eblupUFH(Fo, vardir, data=datasae1) # Model 0
m1 <- eblupMFH1(Fo, vardir, data=datasae1) #Model 1

# Figure 1: EBLUPs under Model 0 and Model 1
par(mfrow=c(1,3))

plot(u$eblup$Y1, type = "o", col = "blue", pch = 15, xlab = "area", ylab = "Y1",
cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")

points(m1$eblup$Y1, type = "o", col = "red", pch = 18)
axis(1, at=1:50, labels = 1:50)
legend("topleft",legend=c("Model 0","Model 1"),ncol=2 , col=c("blue","red"),

pch=c(15,18), inset=c(0.617,-0.1), xpd=TRUE)
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plot(u$eblup$Y2, type = "o", col = "blue", pch = 15, xlab = "area", ylab = "Y2",
cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")

points(m1$eblup$Y2, type = "o", col = "red", pch = 18)
axis(1, at=1:50, labels = 1:50)
legend("topleft",legend=c("Model 0","Model 1"),ncol=2 , col=c("blue","red"),

pch=c(15,18), inset=c(0.617,-0.1), xpd=TRUE)
plot(u$eblup$Y3, type = "o", col = "blue", pch = 15, xlab = "area", ylab = "Y3",

cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")
points(m1$eblup$Y3, type = "o", col = "red", pch = 18)
axis(1, at=1:50, labels = 1:50)
legend("topleft",legend=c("Model 0","Model 1"),ncol=2 , col=c("blue","red"),

pch=c(15,18), inset=c(0.617,-0.1), xpd=TRUE)

# Figure 2: MSE of Model 0 and Model 1
par(mfrow=c(1,3))

plot(u$MSE$Y1, type = "o", col = "blue", pch = 15, xlab = "area", ylab = "MSE of Y1",
cex.axis = 1.5, cex.lab = 1.5, xaxt = "n", ylim=c(0.038,0.12))

points(m1$MSE$Y1, type = "o", col = "red", pch = 18)
axis(1, at=1:50, labels = 1:50)
legend("topleft",legend=c("Model 0","Model 1"),ncol=2 , col=c("blue","red"),

pch=c(15,18), inset=c(0.617,-0.1), xpd=TRUE)
plot(u$MSE$Y2, type = "o", col = "blue", pch = 15, xlab = "area", ylab = "MSE of Y2",

cex.axis = 1.5, cex.lab = 1.5, xaxt = "n", ylim=c(0.05,0.28))
points(m1$MSE$Y2, type = "o", col = "red", pch = 18)
axis(1, at=1:50, labels = 1:50)
legend("topleft",legend=c("Model 0","Model 1"),ncol=2 , col=c("blue","red"),

pch=c(15,18), inset=c(0.617,-0.1), xpd=TRUE)
plot(u$MSE$Y3, type = "o", col = "blue", pch = 15, xlab = "area", ylab = "MSE of Y3",

cex.axis = 1.5, cex.lab = 1.5, xaxt = "n", ylim=c(0.1,0.42))
points(m1$MSE$Y3, type = "o", col = "red", pch = 18)
axis(1, at=1:50, labels = 1:50)
legend("topleft",legend=c("Model 0","Model 1"),ncol=2 , col=c("blue","red"),

pch=c(15,18), inset=c(0.617,-0.1), xpd=TRUE)

Figure 1 illustrates the EBLUPs based on Model 0 (univariate model) and Model 1 (multivariate
model) for all variables of interest. Figure 2 shows the MSEs of Model 1 compared with the MSEs
of Model 0. It can be seen that the estimates of both methods show a similar pattern. Meanwhile,
EBLUPs based on Model 1 has a lower MSE than Model 0. From this example, we can conclude that
the multivariate Fay-Herriot model (Model 1) is more efficient than the univariate Fay-Herriot model
(Model 0).

Figure 1: EBLUPs under Model 0 and Model 1.

Example 2. The autoregressive multivariate Fay-Herriot model (Model 2)

datasae2, which was generated based on Model 2, contains 50 observations on the following 11
variables: 3 dependent variables « Y1, Y2 and Y3 », 2 auxiliary variables « X1 and X2 », and 6 variance-
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Figure 2: MSE of EBLUPs under Model 0 and Model 1.

covariance of direct estimation « v1, v2, v3, v12, v13, and v23 ». We compare the effectiveness of the
univariate model (Model 0) and autoregressive multivariate Fay-Herriot Model (Model 2) by their
MSE. We use eblupMFH2() to estimate parameters based on Model 2. Then, we plot the EBLUP and
MSE of these methods to compare them.

data('datasae2')

# model specifications
Fo <- list(f1=Y1~X1+X2,

f2=Y2~X1+X2,
f3=Y3~X1+X2)

vardir <- c("v1", "v2", "v3", "v12", "v13", "v23")

# EBLUP based on Model 0 and Model 2
u <- eblupUFH(Fo, vardir, data=datasae2) # Model 0
m2 <- eblupMFH2(Fo, vardir, data=datasae2) # Model 2

The EBLUPs based on Model 0 (univariate model) and Model 1 (autoregressive multivariate
model) are shown in Figure 3. As it can be seen, both methods show an almost similar result. However,
EBLUPs based on Model 2 has a lower MSE than the EBLUPs based on Model 0, as shown in Figure 4.
In this example, the autoregressive multivariate Fay-Herriot model (Model 2) seems to be more
efficient than the univariate Fay-Herriot model (Model 0).

Figure 3: EBLUPs under Model 0 and Model 2.

Example 3. Heteroskedastic autoregressive multivariate Fay-Herriot model
(Model 3)

datasae3, which was generated based on Model 3, is structured the same as datasae1 and datasae2.
We compare the effectiveness of the univariate model (Model 0) and heteroskedastic autoregressive
multivariate Fay-Herriot Model (Model 3) by their MSE. We use eblupMFH3() to estimate parameters
based on Model 3. Then, we plot the EBLUP and MSE of these methods to compare them.

data('datasae3')
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Figure 4: MSE of EBLUPs under Model 0 and Model 2.

# model specifications
Fo <- list(f1=Y1~X1+X2,

f2=Y2~X1+X2,
f3=Y3~X1+X2)

vardir <- c("v1", "v2", "v3", "v12", "v13", "v23")

# EBLUP based on Model 0 and Model 3
u <- eblupUFH(Fo, vardir, data=datasae3) # Model 0
m3 <- eblupMFH3(Fo, vardir, data=datasae3) # Model 3

Figure 5 shows EBLUPs based on Model 3 compared to Model 0. The MSEs of both methods are
shown in Figure 6. It can be seen that the multivariate EBLUPs will follow the pattern of univariate
EBLUPs with smaller MSE values. It can be concluded that the heteroskedastic autoregressive
multivariate Fay-Herriot model (Model 3) is more efficient than the univariate model (Model 0).

Figure 5: EBLUPs under Model 0 and Model 3.

Figure 6: MSE of EBLUPs under Model 0 and Model 3.
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Real data example: Poverty index

In this section, we use incomedata dataset, which is provided in library sae. The dataset contains
unit-level data on income and other related variables in Spain. We will demonstrate how to estimate
the EBLUP of Foster-Greer-Thorbecke (FGT) poverty index for each province using the multivariate
Fay-Herriot Models. The index consists of three indicators, i.e., poverty proportion (p0), poverty gap
(p1), and poverty severity (p2).

library(sae)
data("incomedata")

Firstly, we obtain area-level data by calculating poverty indicators for each unit and aggregating
it by province based on Benavent and Morales (2016). We use poverty line z=6557.143 (Molina and
Marhuenda, 2015). These following R commands are run to obtain p0, p1, and p2 as variables of
interest.

library(tidyverse)

pov.line <- rep(6557.143, dim(incomedata)[1]) # poverty line

# calculate unit indictators
incomedata$y <- (pov.line - incomedata$income)/pov.line
incomedata = incomedata %>% mutate(poverty = ifelse(incomedata$y > 0, TRUE, FALSE),

y0 = ifelse(incomedata$y > 0, incomedata$y^0, 0),
y1 = ifelse(incomedata$y > 0, incomedata$y^1, 0),
y2 = ifelse(incomedata$y > 0, incomedata$y^2, 0))

# estimated domain size
est.Nd <- aggregate(incomedata$weight, list(incomedata$prov), sum)[,2]

## estimate P0 P1 dan P2
prov.est = incomedata %>% group_by(prov) %>%
summarise(p0.prov = sum(weight*y0),

p1.prov = sum(weight*y1),
p2.prov = sum(weight*y2)) %>%

mutate(p0.prov = p0.prov / est.Nd,
p1.prov = p1.prov / est.Nd,
p2.prov = p2.prov / est.Nd)

incomedata <- incomedata %>% left_join(prov.est, by = c("prov" = "prov"))

We also need variance and covariance of variables of interest to estimate using the multivariate
Fay-Herriot model. The following R commands are run to obtain variance and covariance of direct
estimation based on Benavent and Morales (2016).

# estimate direct estimation variance-covariance
prov.variance = incomedata %>%
mutate(v11 = ifelse(incomedata$poverty,

(weight*(weight-1))*(y0-p0.prov)*(y0-p0.prov), 0),
v12 = ifelse(incomedata$poverty,

(weight*(weight-1))*(y0-p0.prov)*(y1-p1.prov), 0),
v13 = ifelse(incomedata$poverty,

(weight*(weight-1))*(y0-p0.prov)*(y2-p2.prov), 0),
v22 = ifelse(incomedata$poverty,

(weight*(weight-1))*(y1-p1.prov)*(y1-p1.prov), 0),
v23 = ifelse(incomedata$poverty,

(weight*(weight-1))*(y1-p1.prov)*(y2-p2.prov), 0),
v33 = ifelse(incomedata$poverty,

(weight*(weight-1))*(y2-p2.prov)*(y2-p2.prov), 0)) %>%
group_by(prov) %>%
summarise_at(c("v11","v12", "v13", 'v22',"v23","v33"), sum) %>%
mutate_at(c("v11","v12", "v13", 'v22',"v23","v33"),

function(x){x/est.Nd^2})

We use six explanatory variables selected by stepwise method, i.e., an indicator of age group 50-64
(age4), an indicator of age group >=65 (age5), an indicator of education level 1 (educ1), an indicator
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of education level 2 (educ2), an indicator of education level 3 (educ3), and an indicator of Spanish
nationality (nat1). The model specifications are written as follow:

formula <- list(f1=p0.prov~age4+age5+educ1+educ2+educ3+nat1,
f2=p1.prov~age4+age5+educ1+educ2+educ3+nat1,
f3=p2.prov~age4+age5+educ1+educ2+educ3+nat1)

vardir <- c("v11", "v22", "v33", "v12", "v13", "v23")

Next, we select the most suitable multivariate Fay-Herriot model using variance homogeneity test
and random effect ρ parameter test. In the variance homogeneity test, we test H0 : σ̂2

ui = σ̂2
uj ; i, j =

1, 2, 3 using model 3. We obtain a non-convergent model, the p-values are 0.98674 and 0.98996. It
shows that the difference between variance of random effects is statistically not significant. After that,
we test H0 : ρ = 0 using model 2. We get the t-statistics value of 19.26 with p-value of 0.00. It shows
that there is a correlation between random effects. These results indicate the model that fits the data is
Model 2.

The following codes are run to obtain the EBLUPs (under Model 2), to plot the direct estimates and
the EBLUPs, and to plot the MSEs of direct estimates and the MSEs of EBLUPs ordered by sample size:

# EBLUP based on Model 2
eblup.pov <- eblupMFH2(formula, vardir, data=prov.data)

# Dataframe of Result
result_eblup = data.frame(prov = prov.data$prov,

est.Nd = est.Nd,
p0 = prov.data$p0.prov, p0.eblup = eblup.pov$eblup$p0.prov,
p1 = prov.data$p1.prov, p1.eblup = eblup.pov$eblup$p1.prov,
p2 = prov.data$p2.prov, p2.eblup = eblup.pov$eblup$p2.prov,
v11 = prov.data$v11, p0.mse = eblup.pov$MSE$p0.prov,
v22 = prov.data$v22, p1.mse = eblup.pov$MSE$p1.prov,
v33 = prov.data$v33, p2.mse = eblup.pov$MSE$p2.prov)

result_eblup = result_eblup %>% arrange(est.Nd)
result_eblup$prov = as.factor(result_eblup$prov)
result_eblup$id = 1:nrow(result_eblup)

# Figure 7: Direct estimates estimates and EBLUPs (under Model 2) ordered by sample size.
par(mfrow=c(1,3))

plot(result_eblup$id, result_eblup$p0, type = "o", col = "blue", pch = 15, xlab = "area",
ylab = "p0", cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")

points(result_eblup$p0.eblup, type = "o", col = "red", pch = 18)
axis(1, at=result_eblup$id, labels = result_eblup$prov)
legend("topright",legend=c("Direct estimates","Model 2"),col=c("blue","red"), pch=c(15,18))
plot(result_eblup$id, result_eblup$p1, type = "o", col = "blue", pch = 15, xlab = "area",

ylab = "p1", cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")
points(result_eblup$p1.eblup, type = "o", col = "red", pch = 18)
axis(1, at=result_eblup$id, labels = result_eblup$prov)
legend("topright",legend=c("Direct estimates","Model 2"),col=c("blue","red"), pch=c(15,18))
plot(result_eblup$id, result_eblup$p2, type = "o", col = "blue", pch = 15, xlab = "area",

ylab = "p2", cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")
points(result_eblup$p2.eblup, type = "o", col = "red", pch = 18)
axis(1, at=result_eblup$id, labels = result_eblup$prov)
legend("topright",legend=c("Direct estimates","Model 2"),col=c("blue","red"), pch=c(15,18))

# Figure 8: MSE of Direct estimates and MSE of EBLUPs (under Model 2) ordered by sample size.
par(mfrow=c(1,3))

plot(result_eblup$id, result_eblup$v11, type = "o", col = "blue", pch = 15, xlab = "area",
ylab = "p0", cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")

points(result_eblup$p0.mse, type = "o", col = "red", pch = 18)
axis(1, at=result_eblup$id, labels = result_eblup$prov)
legend("topright",legend=c("Direct estimates","Model 2"),col=c("blue","red"), pch=c(15,18))
plot(result_eblup$id, result_eblup$v22, type = "o", col = "blue", pch = 15, xlab = "area",

ylab = "p1", cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")
points(result_eblup$p1.mse, type = "o", col = "red", pch = 18)
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axis(1, at=result_eblup$id, labels = result_eblup$prov)
legend("topright",legend=c("Direct estimates","Model 2"),col=c("blue","red"), pch=c(15,18))
plot(result_eblup$id, result_eblup$v33, type = "o", col = "blue", pch = 15, xlab = "area",

ylab = "p2", cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")
points(result_eblup$p2.mse, type = "o", col = "red", pch = 18)
axis(1, at=result_eblup$id, labels = result_eblup$prov)
legend("topright",legend=c("Direct estimates","Model 2"),col=c("blue","red"), pch=c(15,18))

Variable of Interest Statistic Direct Estimation Model 2

p0 Min 0.05244 0.04601
Quartil 1 0.17296 0.18947
Median 0.21850 0.21937
Mean 0.22659 0.22020
Quartil 3 0.27753 0.25468
Max 0.43588 0.35011
Standard Deviation 0.08173 0.056597

p1 Min 0.01891 0.02551
Quartil 1 0.05336 0.05969
Median 0.06810 0.06866
Mean 0.07567 0.07407
Quartil 3 0.09208 0.08866
Max 0.15973 0.14023
Standard Deviation 0.03227 0.02506

p2 Min 0.005449 0.008481
Quartil 1 0.025819 0.026867
Median 0.032344 0.033600
Mean 0.039042 0.038179
Quartil 3 0.051379 0.049755
Max 0.099308 0.087194
Standard Deviation 0.02083 0.017137

Table 1: Statistics of direct estimation and Model 2

We will compare EBLUPs based on Model 2 with the direct estimates. Both of the estimation results
can be seen in Table 1. On the median value, the result of estimated poverty indicators are relatively
similar, ranging from 0.218-0.219 for p0, 0.0681-0.0687 for p1, and 0.0323-0.0336 for p2. Model 2 has a
lower range and smaller standard deviation than the direct estimation. It means that, in general, the
multivariate Fay-Herriot model has lower variability of small area estimates than direct estimation.

Figure 7: Direct estimates and EBLUPs (under Model 2) of p0, p1, and p2 ordered by sample size.

The results of direct estimates and EBLUPs under Model 2 ordered by sample size are shown in
Figure 7. The patterns of small area estimates for both methods are almost the same for all areas. The
MSEs of the direct estimates and the EBLUP estimates ordered by sample size are shown in Figure 8.
These plots show that the multivariate Fay-Herriot model has lower MSE than the direct estimation.
Thus, we can conclude that the multivariate Fay-Herriot model is more efficient than direct estimation.
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Figure 8: MSE of direct estimates and MSE of EBLUPs (under Model 2) of p0, p1, and p2 ordered by
sample size.

Conclusion

This paper introduces the first R package of multivariate Fay-Herriot model for small area estimation
named msae. The package is available on Comprehensive R Archive Network (CRAN) at http:
//CRAN.R-project.org/package=msae. This package contains a number of functions for estimating
the EBLUP and MSE of EBLUP of each Fay-Herriot Model. This package accommodates the univariate
Fay-Herriot model (model 0), multivariate Fay-Herriot model (model 1), autoregressive multivariate
Fay-Herriot model (model 2), and heteroskedastic autoregressive multivariate Fay-Herriot model
(model 3). The functions are described and implemented using three examples of datasets provided
in msae package and a real dataset provided in sae package, incomedata. By these examples, we
show that the multivariate Fay-herriot models produce more efficient parameter estimates than direct
estimation and univariate model.
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