
Contributed research article 1

Elliptical Symmetry Tests in R
by Slađana Babić, Christophe Ley and Marko Palangetić

Abstract The assumption of elliptical symmetry has an important role in many theoretical
developments and applications, hence it is of primary importance to be able to test whether that
assumption actually holds true or not. Various tests have been proposed in the literature for this
problem. To the best of our knowledge, none of them has been implemented in R. This article
describes the R package ellipticalsymmetry which implements several well-known tests for elliptical
symmetry together with some recent tests. We demonstrate the testing procedures with a real data
example.

Introduction

Let X1, . . . , Xn denote a sample of n i.i.d. d-dimensional observations. A d-dimensional random
vector X is said to be elliptically symmetric about some location parameter θθθ ∈ Rd if its density f
is of the form

x 7→ f(x;θθθ, ΣΣΣ, f) = cd,f |ΣΣΣ|−1/2f
(
‖ΣΣΣ−1/2(x− θθθ)‖

)
, x ∈ R

d, (1)

where ΣΣΣ ∈ Sd (the class of symmetric positive definite real d× d matrices) is a scatter parameter,
f : R+

0 → R+ is an a.e. strictly positive function called radial density, and cd,f is a normalizing
constant depending on f and the dimension d. Many well-known and widely used multivariate
distributions are elliptical. The multivariate normal, multivariate Student t, multivariate power-
exponential, symmetric multivariate stable, symmetric multivariate Laplace, multivariate logistic,
multivariate Cauchy, and multivariate symmetric general hyperbolic distribution are all examples of
elliptical distributions. The family of elliptical distributions has several appealing properties. For
instance, it has a simple stochastic representation, clear parameter interpretation, it is closed under
affine transformations, and its marginal and conditional distributions are also elliptically symmetric:
see Paindaveine (2014) for details. Thanks to its mathematical tractability and nice properties,
it became a fundamental assumption in multivariate analysis and many applications. Numerous
statistical procedures therefore rest on the assumption of elliptical symmetry: one- and K-sample
location and shape problems (Um and Randles, 1998; Hallin and Paindaveine, 2002, 2006; Hallin
et al., 2006), serial dependence and time series (Hallin and Paindaveine, 2004), one- and K-sample
principal component problems (Hallin et al., 2010, 2014), multivariate tail estimation (Dominicy
et al., 2017), to cite but a few. Elliptical densities are also considered in portfolio theory (Owen
and Rabinovitch, 1983), capital asset pricing models (Hodgson et al., 2002), semiparametric density
estimation (Liebscher, 2005), graphical models (Vogel and Fried, 2011), and many other areas.
Given the omnipresence of the assumption of elliptical symmetry, it is essential to be able to test
whether that assumption actually holds true or not for the data at hand. Numerous tests have been
proposed in the literature, including Beran (1979), Baringhaus (1991), Koltchinskii and Sakhanenko
(2000), Manzotti et al. (2002), Schott (2002), Huffer and Park (2007), Cassart (2007) and Babić
et al. (2021). Tests for elliptical symmetry based on Monte Carlo simulations can be found in Diks
and Tong (1999) and Zhu and Neuhaus (2000); Li et al. (1997) recur to graphical methods and Zhu
and Neuhaus (2004) build conditional tests. We refer the reader to Serfling (2006) and Sakhanenko
(2008) for extensive reviews and performance comparisons. To the best of our knowledge, none
of these tests is available in the open software R. The focus of this paper is to close this gap by
implementing several well-known tests for elliptical symmetry together with some recent tests. The
test of Beran (1979) is neither distribution-free nor affine-invariant; moreover, there are no practical
guidelines to the choice of the basis functions involved in the test statistic. Therefore, we opt not to
include it in the package. Baringhaus (1991) proposes a Cramér-von Mises type test for spherical
symmetry based on the independence between norm and direction. Dyckerhoff et al. (2015) have
shown by simulations that this test can be used as a test for elliptical symmetry in dimension 2. This
test assumes the location parameter to be known and its asymptotic distribution is not simple to
use (plus no proven validity in dimensions higher than 2), hence we decided not to include it in the
package. Thus, the tests suggested by Koltchinskii and Sakhanenko (2000), Manzotti et al. (2002),
Schott (2002), Huffer and Park (2007), Cassart (2007) and Babić et al. (2021) are implemented in
the package ellipticalsymmetry.
This paper describes the tests for elliptical symmetry that have been implemented in the elliptical-
symmetry package, together with a detailed description of the functions that are available in the
package. The use of the implemented functions is illustrated using financial data.
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Testing for elliptical symmetry

In this section, we focus on tests for elliptical symmetry that have been implemented in our new
ellipticalsymmetry package. Besides formal definitions of test statistics and limiting distributions,
we also explain the details on computing.

Test by Koltchinskii and Sakhanenko

Koltchinskii and Sakhanenko (2000) develop a class of omnibus bootstrap tests for unspecified
location that are affine invariant and consistent against any fixed alternative. The estimators of
the unknown parameters are as follows: θ̂θθ = n−1∑n

i=1 Xi and Σ̂ΣΣ = n−1∑n
i=1(Xi − θ̂θθ)(Xi − θ̂θθ)′.

Define Yi = Σ̂ΣΣ−1/2(Xi − θ̂θθ) and let FB be a class of Borel functions from Rd to R. Their test
statistics are functionals (for example, sup-norms) of the stochastic process

n−1/2
n∑
i=1

(
f(Yi)−mf (||Yi||)

)
,

where f ∈ FB and mf (ρ) is the average value of f on the sphere with radius ρ > 0. Sev-
eral examples of classes FB and test statistics based on the sup-norm of the above process are
considered in Koltchinskii and Sakhanenko (2000). Here, we restrict our attention to FB :={
I0<||x||≤tψ

(
x
||x||

)
: ψ ∈ Gl, ||ψ||2 ≤ 1, t > 0

}
where IA stands for the indicator function of A, Gl

for the linear space of spherical harmonics of degree less than or equal to l in Rd, and || · ||2 is
the L2-norm on the unit sphere Sd−1 in Rd. With these quantities in hand, the test statistic becomes

Q
(n)
KS := n−1/2 max

1≤j≤n

dim(Gl)∑
s=1

(
j∑
k=1

ψs

( Y[k]

||Y[k]||

)
− δs1

)21/2

,

where Y[i] denotes the ith order statistic from the sample Y1, . . . , Yn ordered according to their
L2-norm, {ψs, s = 1, . . . , dim(Gl)} denotes an orthonormal basis of Gl, ψ1 = 1, and δij = 1 for
i = j and 0 otherwise. The test statistic is relatively simple to construct if we have formulas for
spherical harmonics. In dimension 2 spherical harmonics coincide with sines and cosines on the unit
circle. The detailed construction of the test statistic Q(n)

KS for dimensions 2 and 3 can be found in
Sakhanenko (2008). In order to be able to use Q(n)

KS in higher dimensions, we need corresponding
formulas for spherical harmonics. Using recursive formulas from Müller (1966) and equations given
in Manzotti and Quiroz (2001) we obtained spherical harmonics of degree one to four in arbitrary
dimension. The reader should bare in mind that larger degree leads to better power performance of
this test. A drawback of this test is that it requires bootstrap procedures to obtain critical values.
In our R package, this test can be run using a function called KoltchinskiiSakhanenko(). The
syntax for this function is very simple:

KoltchinskiiSakhanenko(X, R=1000, nJobs = -1),

where X is an input to this function consisting of a data set which must be a matrix and R stands
for the number of bootstrap replicates. The default number of replicates is set to 1000. The nJobs
argument represents the number of CPU cores to use for the calculation. This is a purely technical
option which is used to speed up the computation of bootstrap based tests. The default value -1
indicates that all cores except one are used.

The MPQ test

Manzotti et al. (2002) develop a test based on spherical harmonics. The estimators of the unknown
parameters are the sample mean denoted as θ̂θθ and the unbiased sample covariance matrix given by
Σ̂ΣΣ = 1

n−1
∑n
i=1(Xi − θ̂θθ)(Xi − θ̂θθ)′. Define again Yi = Σ̂ΣΣ−1/2(Xi − θ̂θθ). When the X′is are elliptically

symmetric, then Yi/||Yi|| should be uniformly distributed on the unit sphere, and Manzotti et al.
(2002) chose this property as the basis of their test. The uniformity of the standardized vectors
Yi/||Yi|| can be checked in different ways. Manzotti et al. (2002) opt to verify this uniformity using
spherical harmonics. For a fixed ε > 0, let ρn be the ε sample quantile of ||Y1||, . . . , ||Yn||. Then,
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the test statistic is

Q
(n)
MPQ = n

∑
h∈Sjl

(
1
n

n∑
i=1

h

(
Yi

||Yi||

)
I(||Yi|| > ρn)

)2

for l ≥ j ≥ 3, where Sjl =
⋃
j≤i≤lHi and Hi is the set of spherical harmonics of degree i. In

the implementation of this test we used spherical harmonics of degree 3 and 4. The asymptotic
distribution of the test statistic Q(n)

MPQ is (1 − ε)χ, where χ is a variable with a chi-squared
distribution with νjl degrees of freedom, where νjl denotes the total number of functions in Sjl. Note
that Q(n)

MPQ is only a necessary condition statistic for the null hypothesis of elliptical symmetry and
therefore this test does not have asymptotic power against all alternatives. In the ellipticalsymmetry
package, this test is implemented as the MPQ() function with the following syntax

MPQ(X, epsilon = 0.05)

As before, X is a numeric matrix that represents the data while epsilon is an option that allows
the user to indicate the proportion of points Yi close to the origin which will not be used in the
calculation. By doing this, extra assumptions on the radial density in (1) are avoided. The default
value of epsilon is set to 0.05.

Schott’s test

Schott (2002) develops a Wald-type test for elliptical symmetry based on the analysis of covariance
matrices. The test compares the sample fourth moments with the expected theoretical ones under
ellipticity. Given that the test statistic involves consistent estimates of the covariance matrix of the
sample fourth moments, the existence of eight-order moments is required. Furthermore, the test has
very low power against several alternatives. The final test statistic is of a simple form, even though
it requires lengthy notations.
For an elliptical distribution with mean θθθ and covariance matrix ΣΣΣ, the fourth moment defined as
MMM4 = E{(X− θθθ)(X− θθθ)′ ⊗ (X− θθθ)(X− θθθ)′}, with ⊗ the Kronecker product, has the form

MMM4 = (1 + κ)((Id2 +Kdd)(ΣΣΣ⊗ΣΣΣ) + vec(ΣΣΣ)vec(ΣΣΣ)′) (2)

where Kdd is a commutation matrix (Magnus, 1988), Id is the d× d identity matrix, and κ is a
scalar which can be expressed using the characteristic function of the elliptical distribution. Here
the vec operator stacks all components of a d× d matrix MMM on top of each other to yield the d2

vector vec(MMM). Let Σ̂ΣΣ denote the usual unbiased sample covariance matrix and θ̂θθ the sample mean.
A simple estimator of MMM4 is given by M̂MM4 = 1

n

∑n
i=1(Xi − θ̂θθ)(Xi − θ̂θθ)′ ⊗ (Xi − θ̂θθ)(Xi − θ̂θθ)′ and its

standardized version is given by

M̂MM4∗ = (Σ̂ΣΣ−1/2′ ⊗ Σ̂ΣΣ−1/2′ )M̂MM4(Σ̂ΣΣ
−1/2 ⊗ Σ̂ΣΣ−1/2).

Then, an estimator of vec(MMM4) is constructed as GGG = vec(NNN4)vec(NNN4)
′vec(M̂MM4∗)/(3d(d + 2)),

and it is consistent if and only if MMM4 is of the form (2); here NNN4 represents the value of MMM4
under the multivariate standard normal distribution. Note that the asymptotic mean of vvv =
n1/2(vec(M̂MM4∗)−GGG) is 0 if and only if (2) holds and this expression is used to construct the test
statistic. Denote the estimate of the asymptotic covariance matrix of n1/2vvv as Φ̂ΦΦ. The Wald test
statistic is then formalized as T = vvv′Φ̂ΦΦ−vvv, where Φ̂ΦΦ− is a generalized inverse of Φ̂ΦΦ. For more technical
details we refer the reader to Section 2 in Schott (2002). In order to define Schott’s test statistic, we
further have to define the following quantities:

(1 + κ̂) =
1

nd(d+ 2)

n∑
i=1
{(Xi − θ̂θθ)′Σ̂ΣΣ−1(Xi − θ̂θθ)}2

(1 + η̂) =
1

nd(d+ 2)(d+ 4)

n∑
i=1
{(Xi − θ̂θθ)′Σ̂ΣΣ−1(Xi − θ̂θθ)}3

(1 + ω̂) =
1

nd(d+ 2)(d+ 4)(d+ 6)

n∑
i=1
{(Xi − θ̂θθ)′Σ̂ΣΣ−1(Xi − θ̂θθ)}4.

Moreover, let β̂1 = (1 + ω̂)−1/24, β̂2 = −3a{24(1 + ω̂)2 + 12(d+ 4)a(1 + ω̂)}−1, a = (1 + ω̂) +
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(1 + κ̂)3 − 2(1 + κ̂)(1 + η̂). Finally, the test statistic becomes

T = n
[
β̂1tr(M̂MM2

4∗) + β̂2vec(Id)′M̂MM2
4∗vec(Id)− {3β̂1 + (d+ 2)β̂2}d(d+ 2)(1 + κ̂)2] .

It has an asymptotic chi-squared distribution with degrees of freedom νd = d2 +
d(d− 1)(d2 + 7d− 6)

24 − 1.

The Schott test can be performed in our package by using the function Schott() with the very
simple syntax Schott(X), where X is a numeric matrix of data values.

Test by Huffer and Park

Huffer and Park (2007) propose a Pearson chi-square type test with multi-dimensional cells. Under
the null hypothesis of ellipticity the cells have asymptotically equal expected cell counts and after
determining the observed cell counts, the test statistic is easily computed. Let θ̂θθ be the sample mean
and Σ̂ΣΣ = n−1∑n

i=1(Xi − θ̂θθ)(Xi − θ̂θθ)′ the sample covariance matrix. Define Yi = R(Xi − θ̂θθ), where
the matrix R = R(Σ̂ΣΣ) is a function of Σ̂ΣΣ such that RΣ̂ΣΣR = Id. Typically R = Σ̂ΣΣ−1/2 as for the
previous tests. However, Huffer and Park suggest to use the Gram-Schmidt transformation because
that will lead to standardized data whose joint distribution does not depend on θθθ or ΣΣΣ. In order to
compute the test statistic, the space Rd should be divided into c spherical shells centered at the
origin such that each shell contains an equal number of the scaled residuals Yi. The next step is
to divide Rd into g sectors such that for any pair of sectors there is an orthogonal transformation
mapping one onto the other. Therefore, the c shells and g sectors divide Rd into gc cells which,
under elliptical symmetry, should contain n/(gc) of the vectors Yi. The test statistic then has the
simple form

HPn =
∑
π

(Uπ − np)2/(np),

where Uπ are cell counts for π = (i, j) with 1 ≤ i ≤ g and 1 ≤ j ≤ c and p = 1/(gc).
In the R package we are considering three particular ways to partition the space: using (i) the
2d orthants, (ii) permutation matrices and (iii) a cyclic group consisting of rotations by angles
which are multiples of 2π/g. The first two options can be used for any dimension, while the angles
are supported only for dimension 2. Huffer and Park’s test can be run using a function called
HufferPark(). The syntax, including all options, for the function HufferPark() is for instance

HufferPark(X, c, R = NA, sector = "orthants", g = NA, nJobs = -1).

We will now provide a detailed description of its arguments. X is an input to this function consisting
of a data set. sector is an option that allows the user to specify the type of sectors used to divide
the space. Currently supported options are "orthants", "permutations" and "bivariateangles",
the last one being available only in dimension 2. The g argument indicates the number of sectors.
The user has to choose g only if sector = "bivariateangles" and it denotes the number of regions
used to divide the plane. In this case, regions consist of points whose angle in polar coordinates is
between 2(m− 1)π/g and 2mπ/g for m ∈ {1 . . . g}. If sector is set to "orthants", then g is fixed
and equal to 2d, while for sector = "permutations" g is d!. No matter what type of sectors is
chosen, the user has to specify the number of spherical shells that are used to divide the space, which
is c. The value of c should be such that the average cell counts n/(gc) are not too small. Several
settings with different sample size, and different values of g and c can be found in the simulation
studies presented in Sections 4 and 5 of Huffer and Park (2007). As before, nJobs represents the
number of CPU cores to use for the calculation. The default value -1 indicates that all cores except
one are used.
The asymptotic distribution is available only under sector = "orthants" when the underlying
distribution is close to normal. It is a linear combination of chi-squared random variables and it
depends on eigenvalues of congruent sectors used to divide the space Rd. Otherwise, bootstrap
procedures are required and the user can freely choose the number of bootstrap replicates, denoted
as R. Note that by default sector is set to "orthants" and R = NA.

Pseudo-Gaussian test

Cassart (2007) and Cassart et al. (2008) construct Pseudo-Gaussian tests for specified and unspecified
location that are most efficient against a multivariate form of Fechner-type asymmetry (defined in
Cassart (2007), Chapter 3). These tests are based on Le Cam’s asymptotic theory of statistical
experiments. We start by describing the specified-location Pseudo-Gaussian test. The unknown
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parameter ΣΣΣ is estimated by using Tyler (1987)’s estimator of scatter which we simply denote by Σ̂ΣΣ.
Let mk(θθθ, ΣΣΣ) := n−1∑n

i=1(‖ΣΣΣ
−1/2(Xi − θθθ)‖)k, Ui(θθθ, ΣΣΣ) := ΣΣΣ−1/2(Xi−θθθ)

‖ΣΣΣ−1/2(Xi−θθθ)‖
and

SU
i (θθθ, ΣΣΣ) := ((Ui1(θθθ, ΣΣΣ))2sign(Ui1(θθθ, ΣΣΣ)), . . . , (Uid(θθθ, ΣΣΣ))2sign(Uid(θθθ, ΣΣΣ)))′.

The test statistic then has the simple form

Q
(n)
pG,θθθ =

d(d+ 2)
3nm4(θθθ, Σ̂ΣΣ)

n∑
i,j=1

(‖Σ̂ΣΣ−1/2(Xi − θθθ)‖)2(‖Σ̂ΣΣ−1/2(Xj − θθθ)‖)2S′Ui (θθθ, Σ̂ΣΣ)SU
j (θθθ, Σ̂ΣΣ)

and follows asymptotically a chi-squared distribution χ2
d with d degrees of freedom. Finite moments

of order four are required.
In most cases the assumption of a specified center is however unrealistic. Cassart (2007) therefore
proposes also a test for the scenario when location is not specified. The estimator of the unknown θθθ
is the sample mean denoted by θ̂θθ. Let Yi = Σ̂ΣΣ−1/2(Xi − θ̂θθ). The test statistic takes on the guise

Q
(n)
pG := (∆∆∆G(θ̂θθ, Σ̂ΣΣ))′(ΓΓΓG(θ̂θθ, Σ̂ΣΣ))−1∆∆∆G(θ̂θθ, Σ̂ΣΣ),

where

∆∆∆G(θ̂θθ, Σ̂ΣΣ) = n−1/2
n∑
i=1
‖Yi‖

(
cd(d+ 1)m1(θ̂θθ, Σ̂ΣΣ)Ui(θ̂θθ, Σ̂ΣΣ)− ‖Yi‖SU

i (θ̂θθ, Σ̂ΣΣ)
)

and

ΓΓΓG(θ̂θθ, Σ̂ΣΣ) :=(
3

d(d+ 2)m4(θ̂θθ, Σ̂ΣΣ)− 2c2
d(d+ 1)m1(θ̂θθ, Σ̂ΣΣ)m3(θ̂θθ, Σ̂ΣΣ) + c2

d
(d+ 1)2

d
(m1(θ̂θθ, Σ̂ΣΣ))2m2(θ̂θθ, Σ̂ΣΣ)

)
Id

with cd = 4Γ(d/2)/((d2 − 1)
√
πΓ( d−1

2 )), Γ(·) being the Gamma function. The test rejects the null
hypothesis of elliptical symmetry at asymptotic level α whenever the test statistic Q(n)

pG exceeds
χ2
d;1−α, the upper α-quantile of a χ2

d distribution. We refer to Chapter 3 of Cassart (2007) for
formal details.
This test can be run in our package by calling the function pseudoGaussian() with the simple
syntax

pseudoGaussian(X, location = NA).

Besides X which is a numeric matrix of data values, now we have an extra argument location
which allows the user to specify the known location. The default is set to NA which means that the
unspecified location test will be performed unless the user specifies location.

SkewOptimal test

Recently, Babić et al. (2021) proposed a new test for elliptical symmetry both for specified and
unspecified location. These tests are based on Le Cam’s asymptotic theory of statistical experiments
and are optimal against generalized skew-elliptical alternatives (defined in Section 2 of said paper)
but they remain quite powerful under a much broader class of non-elliptical distributions.
The test statistic for the specified location scenario has a very simple form and an asymptotic
chi-squared distribution. The test rejects the null hypothesis whenever Q(n)

θθθ
= n(X̄−θθθ)′Σ̂ΣΣ−1(X̄−θθθ)

exceeds the α-upper quantile χ2
d;1−α. Here, Σ̂ΣΣ is Tyler (1987)’s estimator of scatter and X̄XX is the

sample mean.
When the location is not specified, Babić et al. (2021) propose tests that have a simple asymptotic
chi-squared distribution under the null hypothesis of ellipticity, are affine-invariant, computationally
fast, have a simple and intuitive form, only require finite moments of order 2, and offer much
flexibility in the choice of the radial density f at which optimality (in the maximin sense) is achieved.
Note that the Gaussian f is excluded, though, due to a singular information matrix; see Babić
et al. (2021). We implemented in our package the test statistic based on the radial density f of
the multivariate t distribution, multivariate power-exponential and multivariate logistic, though
in principle any non-Gaussian choice for f is possible. The test requires lengthy notations, but
its implementation is straightforward. For the sake of generality, we will derive the test statistic
for a general (but fixed) f , and later on provide the expressions of f for the three special cases
implemented in our package. Let ϕf (x) = −

f ′(x)
f (x)

and Yi = Σ̂ΣΣ−1/2(Xi − θ̂θθ) where θ̂θθ is the sample
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mean. In order to construct the test statistic, we first have to define the quantities

∆∆∆f (θ̂θθ, Σ̂ΣΣ) = 2n−1/2Π̇(0)
n∑
i=1

[
‖Yi‖ −

d

K̂d,f (θ̂θθ, Σ̂ΣΣ)
ϕf (‖Yi‖)

]
Yi

‖Yi‖

and

Γ̂ΓΓf (θ̂θθ, Σ̂ΣΣ) :=
4(Π̇(0))2

nd

n∑
i=1

[
‖Yi‖ −

d

K̂d,f (θ̂θθ, Σ̂ΣΣ)
ϕf (‖Yi‖)

]2

Id

where K̂d,f (θ̂θθ, Σ̂ΣΣ) := 1
n

∑n
i=1

[
ϕ′f (‖Yi‖) +

d− 1
‖Yi‖

ϕf (‖Yi‖)
]
and Π is the cdf of the standard normal

distribution (we use Π̇(·) for the derivative). Finally, the test statistic is of the form Q
(n)
f :=

(∆∆∆f (θ̂θθ, Σ̂ΣΣ))′(Γ̂ΓΓf (θ̂θθ, Σ̂ΣΣ))−1∆∆∆f (θ̂θθ, Σ̂ΣΣ) and it has a chi-squared distribution with d degrees of freedom.
The test is valid under the entire semiparametric hypothesis of elliptical symmetry with unspecified
center and uniformly optimal against any type of generalized skew-f alternative.
From this general expression, one can readily derive the test statistics for specific choices of f .
In our case, the radial density of the multivariate Student t distribution corresponds to f(x) =

(1+ 1
ν x

2)−(ν+d)
2
, where ν ∈ (0,∞) represents the degrees of freedom, while that of the multivariate

logistic distribution is given by f(x) = exp (−x2)

[1 + exp (−x2)]2
and of the multivariate power-exponential

by f(x) = exp
(
−1

2x
2β
)
, where β ∈ (0,∞) is a parameter related to kurtosis.

These tests can be run in R using a function called SkewOptimal() with the syntax

SkewOptimal(X, location = NA, f = "t", param = NA)

Depending on the type of the test some of the input arguments are not required. X and location
are the only input arguments for the specified location test, and have the same role as for the
Pseudo-Gaussian test. As before, the default value for location is set to NA which implies that the
unspecified location test will be performed unless the user specifies location. For the unspecified
location test, besides the data matrix X, the input arguments are f and param. The f argument
is a string that specifies the type of the radial density based on which the test is built. Currently
supported options are "t", "logistic" and "powerExp". Note that the default is set to "t". The
role of the param argument is as follows. If f = "t" then param denotes the degrees of freedom
of the multivariate t distribution. Given that the default radial density is "t", it follows that the
default value of param represents the degrees of freedom of the multivariate t distribution and it is
set to 4. Note also that the degrees of freedom have to be greater than 2. If f = "powerExp" then
param denotes the kurtosis parameter β, in which case the value of param has to be different from 1
because β = 1 corresponds to the multivariate normal distribution. The default value is set to 0.5.

Time complexity

We conclude the description of tests for elliptical symmetry by comparing their time complexity in
terms of the big O notation (Cormen et al., 2009). More concretely, we are comparing the number
of simple operations that are required to evaluate the test statistics and the p-values. Table 1
summarizes the time complexity of the implemented tests.
The test of Koltchinskii and Sakhanenko is computationally more demanding than the bootstrap
version of the test of Huffer and Park. Among unspecified location tests that do not require bootstrap
procedures, the most computationally expensive test is the MPQ test under the realistic assumption
that n > d. Regarding the specified location tests we can conclude that the Pseudo-Gaussian
test is more computationally demanding than the SkewOptimal test. Note that both the test of
Koltchinskii and Sakhanenko and the MPQ test are based on spherical harmonics up to degree 4. In
case we would use spherical harmonics of higher degrees, the tests would of course become even
more computationally demanding.
We have seen that several tests require bootstrap procedures and therefore are by default compu-
tationally demanding. Such tests require the calculation of the statistic on the resampled data R
times in order to get the p-value, where R is the number of bootstrap replicates. Consequently, the
time required to obtain the p-value in such cases is R times the time to calculate the test statistic.
For the tests that do not involve bootstrap procedures, the p-value is calculated using the inverse of
the cdf of the asymptotic distribution under the null hypothesis, which is considered as one simple
operation. The exception here is the test of Huffer and Park whose asymptotic distribution is more
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complicated and includes O(c) operations where c is an integer and represents an input parameter
for this test.

Table 1: Time complexity of the various tests for elliptical symmetry

statistics p-value

KoltchinskiiSakhanenko O(n log n + nd5) O(Rn log n + Rnd5)
MPQ O(n log n + nd5) O(1)
Schott O(nd2 + d6) O(1)
HufferPark O(nd2 + d3) O(c)
HufferPark (bootstrap) O(nd2 + d3) O(Rnd2 + Rd3)
PseudoGaussian (specified location) O(n2d + nd2 + d3) O(1)
PseudoGaussian O(nd2 + d3) O(1)
SkewOptimal (specified location) O(nd + d3) O(1)
SkewOptimal O(nd2 + d3) O(1)

Illustrations using financial data

Mean-Variance analysis was introduced by Markowitz (1952) as a model for portfolio selection. In
this model, the portfolio risk expressed through the historical volatility is minimized for a given
expected return, or the expected return is maximized given the risk. The model is widely used for
making portfolio decisions, primarily because it can be easily optimized using quadratic programming
techniques. However, the model has some shortcomings among which the very important one that
it does not consider the prior wealth of the investor that makes decisions. This prior wealth is
important since it influences the satisfaction that an investor has from gains. For example, the gain
of 50$ will not bring the same satisfaction to someone whose wealth is 1$ as to someone whose
wealth is 1000$. This satisfaction further affects the decision-making process in portfolio selection.
Because of that and other financial reasons, a more general concept of expected utility maximization
is used (see e.g. Schoemaker (2013)). However, the expected utility maximization is not an easy
optimization problem, and some additional assumptions must be made in order to solve it. Hence,
despite the expected utility maximization being more general, the mean-variance approach is still
used due to its computational simplicity. Chamberlain (1983) showed that the two approaches
coincide if the returns are elliptically distributed. In other words, under elliptical symmetry the
mean-variance optimization solves the expected utility maximization for any increasing concave
utility function. Therefore, we want to test if the assumption of elliptical symmetry holds or not
for financial return data. The data set that we analyze contains daily stock log returns of 3 major
equity market indexes from North America: S&P 500 (US), TSX (Canada) and IPC (Mexico). The
sample consists of 5369 observations, from January 2000 through July 2020. To remove temporal
dependencies by filtering, following the suggestion of Lombardi and Veredas (2009), GARCH(1,1)
time series models were fitted to each series of log-returns.
We test if the returns are elliptically symmetric in different time periods using a rolling window
analysis. The window has a size of one year and it is rolled every month, i.e. we start with the
window January 2000 - December 2000 and we test for elliptical symmetry. Then we shift the
starting point by one month, that is we consider February 2000 - January 2001 and we test again for
elliptical symmetry. We keep doing this until the last possible window. The following tests are used
for every window: the test by Koltchinskii and Sakhanenko with R = 100 bootstrap replicates, the
MPQ test, Schott’s test, the bootstrap test by Huffer and Park based on orthants with c = 3 and
with the number of bootstrap replicates R = 100, the Pseudo-Gaussian test and the SkewOptimal
test with the default values of the parameters. For every window we calculate the p-value. The
results are presented in Figure 1, where the horizontal line present on every plot indicates the 0.05
significance level.
Even though all these tests address the null hypothesis of elliptical symmetry, they have different
powers for different alternative distributions and some tests may fail to detect certain departures
from the null hypothesis. Certain tests are also by nature more conservative than others. We refer
the reader to Babić et al. (2021) for a comparative simulation study that includes the majority of the
tests available in this package. This diversity in behavior presents nice opportunities. For instance,
when all tests agree, we can be pretty sure about the nature of the analyzed data. One could also
combine the six tests into a multiple testing setting by using a Bonferroni correction, though this is
not what we are doing here.
The following general conclusions can be drawn from Figure 1.
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• In the past 20 years, the return data do not follow the elliptical distribution at least half
of time. In other words, there are many periods between 2000 and 2020 where the data
exhibit some form of skewness or other type of symmetry, invalidating thus the mean-variance
analysis.

• The broader periods where the hypothesis of elliptical symmetry cannot be rejected are 2000-
2004, 2005-2006, 2012-2013, 2015-2017 (for Schott’s test only 2015-2016). In these periods,
the tests may have only occasional rejections without a longer time period of rejections.

• In the period around the financial crisis in 2008, almost all tests reject the null hypothesis
of ellipticity. This clearly shows that, in the periods of crisis, the assumption of elliptical
symmetry is less likely to hold.

Figure 1: North America indexes (S&P, TSX and IPC)

(a) SkewOptimal (b) Pseudo-Gaussian

(c) KoltchinskiiSakhanenko (d) MPQ

(e) HufferPark (f) Schott

The plots show the p-values of the corresponding tests for all rolling windows that we considered
between 2000 and 2020. The years on the x-axis mark the rolling windows for which the starting point
is January of that year. The horizontal line present on every plot indicates the 0.05 significance level.

With the aim of guiding the reader through the functions that are available in the ellipticalsymmetry
package, we now focus on the window January 2008 - December 2008. We start with the test by
Koltchinskii and Sakhanenko.

> KoltchinskiiSakhanenko(data2008, R = 100)

Test for elliptical symmetry by Koltchinskii and Sakhanenko

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859



Contributed research article 9

data: data2008
statistic = 6.0884, p-value = 0.01
alternative hypothesis: the distribution is not elliptically symmetric

The KoltchinskiiSakhanenko() output is simple and clear. It reports the value of the test statistic
and p-value. For this particular data set the test statistic is equal to 6.0884 and the p-value is 0.02.
Note that here we specify the number of bootstrap replicates to be R = 100.
The MPQ test and Schott’s test can be performed by running very simple commands:

> MPQ(data2008)

Test for elliptical symmetry by Manzotti et al.

data: data2008
statistic = 25.738, p-value = 0.04047
alternative hypothesis: the distribution is not elliptically symmetric

> Schott(data2008)

Schott test for elliptical symmetry

data: data2008
statistic = 24.925, p-value = 0.03531
alternative hypothesis: the distribution is not elliptically symmetric

Given the number of the input arguments, the function for the test by Huffer and Park deserves
some further comments. The non-bootstrap version of the test can be performed by running the
command

> HufferPark(data2008, c = 3)

Test for elliptical symmetry by Huffer and Park

data: data2008
statistic = 24.168, p-value = 0.109
alternative hypothesis: the distribution is not elliptically symmetric

By specifying R the bootstrap will be applied:

> HufferPark(data2008, c= 3, R = 100)

The p-value for the bootstrap version of the test is equal to 0.15. Note that in both cases we used
the default value for sector, that is "orthants".

Test for elliptical symmetry by Huffer and Park

data: data2008
statistic = 24.168, p-value = 0.15
alternative hypothesis: the distribution is not elliptically symmetric

If we want to change the type of sectors used to divide the space, we can do it by running the
command

HufferPark(data2008, c=3, R = 100, sector = "permutations")

This version yields a p-value equal to 0.19.

Another very easy-to-use test is the Pseudo-Gaussian test:

> PseudoGaussian(data2008)

Pseudo-Gaussian test for elliptical symmetry

data: data2008
statistic = 9.4853, p-value = 0.02349
alternative hypothesis: the distribution is not elliptically symmetric
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Eventually, the following simple command will run the SkewOptimal test based on the radial density
of the multivariate t distribution with 4 degrees of freedom (note that the degrees of freedom could
be readily changed by specifying the param argument).

> SkewOptimal(data2008)

SkewOptimal test for elliptical symmetry

data: data2008
statistic = 12.208, p-value = 0.006702
alternative hypothesis: the distribution is not elliptically symmetric

The test based on the radial density of the multivariate logistic distribution can be performed by
simply adding f = "logistic":

> SkewOptimal(data2008, f = "logistic")

This version of the SkewOptimal test yields a p-value equal to 0.0003484. Finally, if we want to run
the test based on the radial density of the multivariate power-exponential distribution, we have to
set f to "powerExp". The kurtosis parameter equal to 0.5 will be used unless specified otherwise.

> SkewOptimal(data2008, f = "powerExp")

The resulting p-value equals 0.002052. The kurtosis parameter can be changed by assigning a
different value to param. For example,

SkewOptimal(data2008, f = "powerExp", param = 1.2)

We can conclude that the null hypothesis is rejected at the 5% level by all tests except by Huffer
and Park’s tests. Luckily the tests available in the package mostly agree. In general, in situations of
discordance between two (or more) tests, a practitioner may compare the essence of the tests as
described in this paper and check if, perhaps, one test is more suitable for the data at hand than
the other (e.g., if assumptions are not met). The freedom of choice among several tests for elliptical
symmetry is an additional feature of our new package.

Conclusion

In this paper, we have described several existing tests for elliptical symmetry and explained in
details their R implementation in our new package ellipticalsymmetry. The implemented functions
are simple to use, and we illustrate this via a real data analysis. The availability of several tests for
elliptical symmetry is clearly an appealing strength of our new package.
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