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Conversations in Time: Interactive
Visualization to Explore Structured
Temporal Data
by Earo Wang and Dianne Cook

Abstract Temporal data often has a hierarchical structure, defined by categorical variables describing
different levels, such as political regions or sales products. The nesting of categorical variables
produces a hierarchical structure. The tsibbletalk package is developed to allow a user to interactively
explore temporal data, relative to the nested or crossed structures. It can help to discover differences
between category levels, and uncover interesting periodic or aperiodic slices. The package implements
a shared tsibble object that allows for linked brushing between coordinated views, and a shiny
module that aids in wrapping timelines for seasonal patterns. The tools are demonstrated using two
data examples: domestic tourism in Australia and pedestrian traffic in Melbourne.

Introduction

Temporal data typically arrives as a set of many observational units measured over time. Some
variables may be categorical, containing a hierarchy in the collection process, that may be measure-
ments taken in different geographic regions, or types of products sold by one company. Exploring
these multiple features can be daunting. Ensemble graphics (Unwin and Valero-Mora, 2018) bundle
multiple views of a data set together into one composite figure. These provide an effective approach
for exploring and digesting many different aspects of temporal data. Adding interactivity to the
ensemble can greatly enhance the exploration process.

This paper describes new software, the tsibbletalk package, for exploring temporal data using
linked views and time wrapping. We first provide some background to the approach based on
setting up data structures and workflow, and give an overview of interactive systems in R. The
section following introduces the tsibbletalk package. We explain the mechanism for constructing
interactivity, to link between multiple hierarchical data objects and hence plots, and describe the set
up for interactively slicing and dicing time to wrap a series on itself to investigate periodicities.

Background: tidy temporal data and workflow

The tsibble package (Wang et al., 2020) introduced a unified temporal data structure, referred to as a
tsibble, to represent time series and longitudinal data in a tidy format (Wickham, 2014). A tsibble
extends the data.frame and tibble classes with the temporal contextual metadata: index and key.
The index declares a data column that holds time-related indices. The key identifies a collection
of related series or panels observed over the index-defined period, which can comprise multiple
columns. An example of a tsibble can be found in the monthly Australian retail trade turnover data
(aus_retail), available in the tsibbledata package (O’Hara-Wild et al., 2020c), shown below. The
Month column holds year-months as the index. State and Industry are the identifiers for these 152
series, which form the key. Note that the column Series ID could be an alternative option for setting
up the key, but State and Industry are more readable and informative. The index and key are “sticky”
columns to a tsibble, forming critical pieces for fluent downstream temporal data analysis.

#> # A tsibble: 64,532 x 5 [1M]
#> # Key: State, Industry [152]
#> State Industry `Series ID` Month Turnover
#> <chr> <chr> <chr> <mth> <dbl>
#> 1 Australian Capital ~ Cafes, restaurants and cat~ A3349849A 1982 Apr 4.4
#> 2 Australian Capital ~ Cafes, restaurants and cat~ A3349849A 1982 May 3.4
#> 3 Australian Capital ~ Cafes, restaurants and cat~ A3349849A 1982 Jun 3.6
#> 4 Australian Capital ~ Cafes, restaurants and cat~ A3349849A 1982 Jul 4
#> 5 Australian Capital ~ Cafes, restaurants and cat~ A3349849A 1982 Aug 3.6
#> # ... with 64,527 more rows

In the spirit of tidy data from the tidyverse (Wickham et al., 2019), the tidyverts suite features
tsibble as the foundational data structure, and helps to build a fluid and fluent pipeline for time
series analysis. Besides tsibble, the feasts (O’Hara-Wild et al., 2020b) and fable (O’Hara-Wild et al.,
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Figure 1: Plots for the aus_retail data, with the series of strongest seasonal strength highlighted. (a)
An overlaid time series plot. (b) A scatter plot drawn from their time series features, where each dot
represents a time series from (a).

2020a) packages fill the role of statistical analysis and forecasting in the tidyverts ecosystem. During
all the steps of a time series analysis, the series of interest, denoted by the key variable, typically
persist, through the trend modeling and also forecasting. We would typically want to examine the
series across all of the keys.

Figure 1 illustrates examining temporal data with many keys. The data has 152 series correspond-
ing to different industries in retail data. The multiple series are displayed using an overlaid time
series plot, along with a scatterplot of two variables (trend versus seasonal strength) from feature
space, where each series is represented by a dot. The feature space is computed using the features()
function from feasts, which summarises the original data for each series using various statistical
features. This function along with other tidyverts functions is tsibble-aware, and outputs a table in a
reduced form where each row corresponds to a series, which can be graphically displayed as in Figure
1b.

Figure 1 has also been highlighted to focus on the one series with the strongest seasonality. To
create this highlighting, one needs to first filter the interesting series from the features table, and join
back to the original tsibble in order to examine its trend in relation to others. This procedure can
soon grow cumbersome if many series are to be explored. It illustrates a need to query interesting
series on the fly. Although these two plots are static, we can consider them as linked views because the
common key variables link between the two data tables producing the two plots. This motivates the
work in this package, described in this paper, to enable interactivity of tsibble and tsibble-derived
objects for rapid exploratory data analysis.

Overview of interactivity

There is a long history of interactive data visualization research and corresponding systems. Within R,
the systems can be roughly divided into systems utilizing web technology and those that do not.

R shiny (Chang et al., 2020) and htmlwidgets (Vaidyanathan et al., 2019) provide infrastructure
connecting R with HTML elements and JavaScript that support the interactivity. The htmlwidgets
package makes it possible to embed JavaScript libraries into R so that users are able to write only R
code to generate web-based plots. Many JavaScript charting libraries have been ported to R as HTML
widgets, including plotly (Sievert, 2020), rbokeh (Hafen and Continuum Analytics, Inc., 2020), and
leaflet (Cheng et al., 2019) for maps. Interactions between different widgets can be achieved with
shiny or crosstalk (Cheng, 2020). The crosstalk extends htmlwidgets with shared R6 instances to
support linked brushing and filtering across widgets, without relying on shiny.

Systems without the web technology include grDevices, loon (Waddell and Oldford, 2020), based
on Tcl/Tk, and cranvas (Xie et al., 2014) based on Qt. They offer a wide array of pre-defined interactions,
such as selecting and zooming, to manipulate plots via mouse action, keyboard strokes, and menus.
The cranvastime package (Cheng et al., 2016) is an add-on to cranvas, which provides specialized
interactions for temporal data, such as wrapping and mirroring.
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The techniques implemented in the work described in this paper utilize web technology, including
crosstalk, plotly, and R shiny.

Using a shared temporal data object for interactivity

The tsibbletalk package introduces a shared tsibble instance built on a tsibble. This allows for
seamless communication between different plots of temporal data. The as_shared_tsibble() function
turns a tsibble into a shared instance, SharedTsibbleData, which is a subclass of SharedData from
crosstalk. This is an R6 object driving data transmission across multiple views, due to its mutable and
lightweight properties. The tsibbletalk package aims to streamline interactive exploration of temporal
data, with the focus of temporal elements and structured linking.

Linking between plots

As opposed to one-to-one linking, tsibbletalk defaults to categorical variable linking, where selecting
one or more observations in one category will broadcast to all other observations in this category. That
is, linking is by key variables: within the time series plot, click on any data point, and the whole line
will be highlighted in response. The as_shared_tsibble() uses tsibble’s key variables to achieve
these types of linking.

The approach can also accommodate temporal data of nesting and crossing structures. These
time series are referred to as hierarchical and grouped time series in the literature (Hyndman and
Athanasopoulos, 2017). The aus_retail above is an example of grouped time series. Each series in
the data corresponds to all possible combinations of the State and Industry variables, which means
they are intrinsically crossed with each other. When one key variable is nested within another, such as
regional areas within a state, this is considered to be a hierarchical structure.

The spec argument in as_shared_tsibble() provides a means to construct hybrid linking, that
incorporates hierarchical and categorical linking. A symbolic formula can be passed to the spec
argument, to define the crossing and/or nesting relationships among the key variables. Adopting
Wilkinson and Rogers (1973)’s notation for factorial models, the spec follows the / and * operator
conventions to declare nesting and crossing variables, respectively. The spec for the aus_retail data is
therefore specified as State * Industry or Industry * State, which is the default for the presence of
multiple key variables. If there is a hierarchy in the data, using / is required to indicate the parent-child
relation, for a strictly one directional parent/child.

To illustrate nesting and crossing we use the tourism_monthly dataset (Tourism Research Australia,
2020) packaged in tsibbletalk. It contains monthly domestic overnight trips across Australia. The
key is comprised of three identifying variables: State, Region, and Purpose (of the trip), in particular
State nesting of Region, crossed together with Purpose. This specification can be translated as follows:

library(tsibble)
library(tsibbletalk)
tourism_shared <- tourism_monthly %>%
as_shared_tsibble(spec = (State / Region) * Purpose)

There is a three-level hierarchy: the root node is implicitly Australia, geographically disaggregated
to states, and lower-level tourism regions. A new handy function plotly_key_tree() has been
implemented to help explore the hierarchy. It interprets hierarchies in the shared tsibble’s spec as a
tree view, built with plotly. The following code line produces the linked tree diagram (left panel of
Figure 2). The visual for the tree hierarchy detangles a group of related series and provides a bird’s
eye view of the data organization.

p_l <- plotly_key_tree(tourism_shared, height = 1100, width = 800)

The tree plot provides the graphics skeleton, upon which the rest of the data plots can be attached.
In this example, small multiples of line plots are placed at the top right of Figure 2 to explore the
temporal trend across regions by the trip purpose. The shared tsibble data can be directly piped into
ggplot2 code to create this.

library(ggplot2)
p_tr <- tourism_shared %>%
ggplot(aes(x = Month, y = Trips)) +
geom_line(aes(group = Region), alpha = .5, size = .4) +
facet_wrap(~ Purpose, scales = "free_y") +
scale_x_yearmonth(date_breaks = "5 years", date_labels = "%Y")
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Figure 2: Snapshot of exploring an ensemble of linked plots of the Australian tourism data, built on a
tourism_shared object. It also illustrates persistent linked brushing to compare two groups.
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These line plots are heavily overplotted. To tease apart structure in the multiple time series,
the features() function computes interesting characteristics, including the measures of trend and
seasonality. These are displayed in the scatterplot at the bottom right, where one dot represents one
series.

library(feasts)
tourism_feat <- tourism_shared %>%
features(Trips, feat_stl)

p_br <- tourism_feat %>%
ggplot(aes(x = trend_strength, y = seasonal_strength_year)) +
geom_point(aes(group = Region), alpha = .8, size = 2)

There is one final step, to compose the three plots into an ensemble of coordinated views for
exploration, shown in Figure 2. (This is the interactive realization of Figure 1).

library(plotly)
subplot(p_l,
subplot(
ggplotly(p_tr, tooltip = "Region", width = 1100),
ggplotly(p_br, tooltip = "Region", width = 1100),
nrows = 2),

widths = c(.4, .6)) %>%
highlight(dynamic = TRUE)

Since all plots are created from one shared tsibble data source, they are self-linking views. Nodes,
lines, and points are hoverable and clickable. Given the spec, clicking either one element in any plot
highlights all points that match the Region category, that is, categorical linking. Figure 2 is a static
view of an interactive exploration. The steps in getting to this point were:

1. A branch of the tree corresponding to Western Australia was first selected. (The names of the
regions are a little odd, which is a quirk of the data set, but all four areas, Australia’s South
West, . . . ., correspond to tourist destinations in Western Australia. Hovering over the node on
the branch brings up the state name.) This generated the response in the line plots and the
scatterplot that colored corresponding time series and points as blue.

2. To enable persistent selection, in oder to compare regions or states, “Shift” and click on the tree
was done, after switching the color to red. This generated the response that points and time
series corresponding to Sydney were highlighted in red.

3. Hovering over the points brings up the label for Sydney.

Domestic tourism sees Sydney as one of the most popular destinations in the realm of business
and friends visiting over the years. Despite the relatively weaker performance in Western Australia,
Australia’s North West region sees a strongest upward trend in business, bypassing Sydney in some
years.

In summary, shared tsibble data nicely bridges between the crosstalk and tidyverts ecosystems for
temporal data using the common “key”. The as_shared_tsibble() provides a symbolic user interface
for the effortless construction of a hybrid of hierarchical and categorical linking between plots. The
plotly_key_tree() function, in turn, decodes the hierarchical specification to plot a tree for data
overview and navigation, when accompanied by more detailed plots.

Slicing and dicing time

An important aspect of temporal data is the time context. Time has a cyclical structure, that may
correspond to seasonal patterns to be discovered. The index component of the (shared) tsibble data
forms the basis for exploring seasonality. To investigate for periodic or aperiodic patterns, series
should be wrapped on themselves, where the index is broken into temporal components like quarter
or day. We shall explore this with pedestrian traffic in Melbourne, Australia.

The city of Melbourne has sensors installed at various locations, to record hourly counts of
pedestrians, in order to capture the daily rhythms of the downtown (City of Melbourne, 2020). Figure
3 shows the first five months of 2020 foot traffic at four different locations, for three different time
slices, daily, weekly and full five months. Plot 3a shows hourly counts from January to May on an
absolute timeline, facetted by locations. The stage 3 COVID-19 lockdown, on March 16, is marked by a
change of color. (The pre-lockdown period is colored with dark green and lockdown with orange.) We
can see a significant decline in foot traffic at all four locations. QV Market is less affected probably
because this is a major produce market, an essential service that continued to operate. Bourke St, a
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(a) Initial overview state

(b) 1-day state

(c) 7-day state, anchoring to Monday

Figure 3: Snapshots wrapping after slicing the pedestrian20 data at different intervals, (a) none, (b)
daily and (c) weekly. This type of interaction is made possible with Shiny elements.
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major shopping center, sees a gradual uptick in the last weeks of the period indicating that people
were getting back into the shops.

Figure 3b and 3c show the slicing and wrapping of the series into daily and weekly sections,
respectively. Multiple seasonalities pop out. There tends to be a daily pattern, especially visible at the
main train station, Southern Cross Station. There is also a weekday vs weekend pattern, also most
visible at Southern Cross Station. These seasonal patterns are still present during the lockdown, but
the magnitude is greatly reduced. Numbers are also down at the produce market and the shopping
center. Birrarung Marr is the most affected. This is the location of special events, and it is clear that
these have completely disappeared during the lockdown.

The wrapping procedure involves slicing the time index into seasonal periods of interest, and the
result is diced time. For example, hourly pedestrian data can be decomposed into 24-hour blocks,
which then overlays the counts for all respective days, as done in plot 3b. For exploration, this slice
position should be controlled interactively, so that many different slices can be examined rapidly. This
can be achieved using shiny, with the functions provided in the tsibbletalk.

This shiny module, decoupled to tsibbleWrapUI() and tsibbleWrapServer(), presents a clean
interface and forms a reusable component that could be embedded in any shiny application. In
general, a shiny module provides a vehicle for modularising shiny applications, relevant for both
users and developers. As with all shiny modules, the first argument in both functions in tsibbletalk
requires a user-supplied id string that must be unique. The UI function tsibbleWrapUI() simply
shows a slider that animates or controls the number of periods to be diced. The workhorse is the server
function tsibbleWrapServer(), encapsulating the algorithm that transforms data and sends messages
to update the plot accordingly. The plot argument expects a ggplot or plotly object, where one can
plot data using either lines or other graphical elements (such as boxplots). As the function name
suggests, a (shared) tsibble is needed to start the engine, so that the time index can be retrieved for
dissection. The period option semantically takes a desired number of seasonal periods to be shifted,
for example data shifted by “1 day”, “2 days”, or “1 week”, etc. In other words, the period defines the
grind level. For date-times (represented by POSIXt), the granularity ranges from fine “day” to a much
coarser “year”. The following code snippet generates Figure 3. The creation of the pedestrian20 data
is available in supplementary R files.

library(shiny)
p_line <- pedestrian20 %>%
ggplot(aes(x = Date_Time, y = Count, colour = Lockdown)) +
geom_line(size = .3) +
facet_wrap(~ Sensor, scales = "free_y") +
labs(x = "Date Time") +
scale_colour_brewer(palette = "Dark2") +
theme(legend.position = "none")

ui <- fluidPage(
tsibbleWrapUI("dice")

)
server <- function(input, output, session) {
tsibbleWrapServer("dice", ggplotly(p_line, height = 700), period = "1 day")

}
shinyApp(ui, server)

Figure 3a corresponds to the initial state, with the slider incremented by 1-day units. The “play”
button near the end of the slider can automatically animate the slicing and dicing process, walking
the viewer through all 24 hours of the 152 days. Alternatively, users can drag the slider to examine
selected slices.

In response to the slider input, the plot will be updated and loaded with newly transformed data.
At its core, keeping the application as performant as possible is the top priority. Without completely
redrawing the plot, the plotlyProxy() react method is invoked internally for talking to shiny. The
underlying tsibble data is being called back and processed in R. Only transformed data gets fed
back to the shiny server, for updating with resetting the x-axis ranges and breaks. The other plot
configurations, such as marks, y-axes, and layouts, are cached and used as is.

The new shiny module exploits the temporal aspect for a tsibble object, available through the
index attribute. It allows users to slide through relative periods to digest seasonal behaviors, with a
nimble user experience.
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Summary

At the heart of the tsibbletalk package is a blending of the best bits from tsibble, crosstalk, plotly,
and shiny.

The as_shared_tsibble() turns a tsibble object to a shared data class, with an option to express
any nesting and crossing structures from the key attribute. If nesting is found in the data, the
plotly_key_tree() creates an interactive hierarchical tree to help with the data overview. This sets
the stage for hierarchical and categorical linking between multiple views from one shared tsibble.

A new shiny module, tsibbleWrapUI() and tsibbleWrapServer(), provides a lens for looking at
temporal aspects of a tsibble, in particular seasonal or cyclical variations. The slicing and dicing
technique efficiently wrap time lines for user-defined plots. The plotlyProxy() react method makes it
possible to send wrapped data to the server and amend the plot straight way.
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