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Package wsbackfit for Smooth
Backfitting Estimation of Generalized
Structured Models
by Javier Roca-Pardiñas, María Xosé Rodríguez-Álvarez and Stefan Sperlich

Abstract A package is introduced that provides the weighted smooth backfitting estimator for
a large family of popular semiparametric regression models. This family is known as generalized
structured models, comprising, for example, generalized varying coefficient model, generalized
additive models, mixtures, potentially including parametric parts. The kernel-based weighted
smooth backfitting belongs to the statistically most efficient procedures for this model class. Its
asymptotic properties are well-understood thanks to the large body of literature about this estimator.
The introduced weights allow for the inclusion of sampling weights, trimming, and efficient estimation
under heteroscedasticity. Further options facilitate easy handling of aggregated data, prediction,
and the presentation of estimation results. Cross-validation methods are provided which can be used
for model and bandwidth selection.1

Introduction and brief review

The classes of generalized structured models (GSM) of Mammen and Nielsen (2003), structured
additive regression models (Brezger et al., 2005), and semiparametric separable models (Rodríguez-
Poó et al., 2003) are all devoted to harmonizing the fundamental aspects of flexibility, dimensionality
and interpretability (c.f. also Stone, 1986) for multidimensional regression. In some cases, the
particular structure is derived from pure theory, sometimes from empirical knowledge, or it is chosen
data-adaptively. The epithet ‘structured’ underlines the explicit modeling of the structure of a
regression in order to distinguish it from fully automatic black-box regression or prediction. Mammen
and Nielsen (2003) define for response Y with covariate vectors (Z, X, T, U) the GSM class by

Λ(Y ) = G {Z, β, g(X)} + S {T, δ, s(U)} ϵ = G {Z, β, g(X)} + ε , (1)

with Λ, G, S parametric known functions, β, δ unknown finite-dimensional parameter, g(·), s(·)
unknown nonparametric functions, and ϵ, ε fulfilling E[ϵ|Z, X] = E[ε|Z, X] = 0. While Λ is a
transformation with potentially unknown parts which can be estimated along Linton et al. (2008),
G and S are link functions that also determine further structures. For instance, for a partial linear
varying coefficient model (Park et al., 2015) with Z = (Z1, · · · , Zd, Zκ), X = (X1, ·, Xd), where Z1
to Zd and X1 to Xd are scalars, and Zκ a vector of the length of β, function G defines

G {Z, β, g(X)} = G {η(Z, β, g(X))} = G

g0 +

d∑
j=1

gj(Xj)Zj + Zt
κβ

 , (2)

with index η and a known link function G. You may also allow that some, or all of the Xj ,
j = 1, . . . , d are identical; the same holds for the Zj , etc. Moreover, by setting Zj ≡ 1 ∀j with all
Xj being different, you obtain the generalized additive model (GAM). A detailed discussion on
identifiability is provided in Lee et al. (2012).

Since Hastie and Tibshirani (1990) introduced their backfitting algorithm, additive models have
become quite popular in statistics, particularly in biometrics, technometrics, and environmetrics.
Opsomer and Ruppert (1997) and Opsomer (2000) derived asymptotic theory for that classical
backfitting estimator with kernel smoothing. Mammen et al. (1999) developed asymptotic theory for
a modified version, the smooth backfitting (SB) estimator, under weaker assumptions on the data
like the allowance for strong correlation of the covariates. Mammen and Nielsen (2003) extended this
method to the general GSM class (1), and Roca-Pardiñas and Sperlich (2010) proposed a common
algorithm for it. Many extensions have been developed, procedures for bandwidth selection (e.g.,
Mammen and Park, 2005), quantile regression (Lee et al., 2010), and further asymptotic theory for
particular cases (see e.g., Yu et al., 2008, for GAM). Most recent contributions extend SB to additive
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inverse regression (Bissantz et al., 2016), proportional hazards (Hiabu et al., 2020), or regression
with error-in-variables (Han and Park, 2018). All SB procedures and their theory are kernel-based.

The main advantage of SB is, apart from its excellent numerical performance proven by Nielsen
and Sperlich (2005) and Roca-Pardiñas and Sperlich (2010), compared to the classical backfitting,
that there exists a comprehensive literature that studies its statistical behavior and underlying
assumptions. It provides the exact and complete asymptotic theory of SB, such that today this
estimator is well understood. The only drawback has been that so far, there hardly existed an
easily available software for this estimator, except the R-package sBF of Arcagni and Bagnato
(2014) for the basic additive model. But due to its complexity, practitioners typically abstain
from implementing it themselves. Therefore, the wsbackfit R-package has been developed which
provides the weighted SB for all models listed in the next section, including a data-driven bandwidth
selector. The package is freely available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=wsbackfit (R Core Team, 2016). Thus, this package closes
the gap between the huge body of existing and still increasing literature about SB on the one side,
and its potential use on the other, providing the necessary software. We hope it is soon extended by
procedures for the various, partly above cited, extensions.

It is to be mentioned that there certainly exist R packages for alternative methods to estimate
related models. Before briefly discussing some of the most advanced packages, let us mention the
reviews of Binder and Tutz (2008), which reviewed spline-based methods, and Fahrmeier et al. (2004)
which reviewed (spline-based) Bayesian methods.

Maybe the broadest set of models can be handled by the package BayesX (Umlauf et al., 2019).
It embraces several well-known regression models such as GAM, generalized additive mixed models
(GAMM), generalized geo-additive mixed models (GGAMM), dynamic models, varying coefficient
models (VCM), and geographically weighted regression. Besides exponential family regression,
BayesX also supports non-standard regression situations such as regression for categorical responses,
hazard regression for continuous survival times, and continuous-time multi-state models; see also
its support platform http://www.uni-goettingen.de/de/bayesx. It has been created by Brezger
et al. (2005) and Kneib et al. (2008).

The R package gam (Hastie, 2019) presents considerable enhancements of the S-PLUS version
going back to Hastie and Tibshirani (1990). It uses classical backfitting to combine different
smoothing or fitting methods, particularly local regression and smoothing splines. Another powerful
package is mgcv (Wood, 2017), which allows the fitting of generalized additive (mixed) models,
with smoothing parameter estimation done by (restricted) marginal likelihood or generalized cross-
validation, and uses iterated nested Laplace approximation for fully Bayesian inference. Another
powerful and well-functioning package is GAMLSS of Stasinopoulos and Rigby (2007). It is based on
penalized likelihood estimation combined with classical backfitting. While mgcv models the index
function, GAMLSS models the location, scale, and shape functions by additive linear mixed models.
It has been created to tackle many interesting distributions of Y . When speaking of likelihood
based approaches, one should also mention a method introduced by Tutz and Binder (2006). Their
R-package GAMBoost can be used to fit a GAM by likelihood based boosting, suited for a large
number of predictors.

Regarding kernel-based methods that consider related or specific cases of (1), there are, for
example, marginal integration (Linton and Nielsen, 1995) for additive interaction models (Sperlich
et al., 2002), and local polynomials for smooth varying coefficients (Li and Racine, 2010). The
latter is implemented in the np package (Hayfield and Racine, 2008), and turned out to be very
competitive when compared to the before-mentioned spline-based packages (Sperlich and Theler,
2015).

The models that can be estimated by wsbackfit

The aim is to estimate a GSM as introduced in (1). In the moment of estimation, one has to
be specific about Λ, G, and S. We concentrate on the popular cases, in particular on those that
maintain additivity or a similar separability structure. This way, the estimates provide an easy
interpretation, and overcome the curse of dimensionality, which else is inherited by more complex
models. To the best of our knowledge, all existing smooth backfitting methods follow the suggestion
of Mammen and Nielsen (2003) to estimate the mean and variance part subsequently, say, first
G{· · · }, then S{· · · }. Our implementation follows the suggestion of Roca-Pardiñas and Sperlich
(2010) to allow for a (re-)estimation of the mean part (G{· · · }) including weights obtained from
the estimation of the variance part (S{· · · }) to potentially increase the efficiency. Note, however,
that in nonparametrics, it is often not clear to what extent an efficiency gain can be achieved this
way; see for example the discussion in Xiao et al. (2003). All proposed methods we are aware of,
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are two- or three-step procedures similar to what we propose here. The estimation of the variance
part is performed in the second step by regressing the squared residuals on (T, U), using the same
procedure as for G{· · · }. Therefore it is sufficient to concentrate in the following on the mean
regression, which can equally well be applied to squared residuals for estimating S{· · · }.

As said, the SB idea for GSM, together with some general results about its asymptotic behavior,
was introduced by Mammen and Nielsen (2003); specific algorithms and their implementation were
introduced and studied in Roca-Pardiñas and Sperlich (2010). Detailed information about the
implementation is given in a technical report (Roca-Pardiñas and Sperlich, 2008). The implemented
algorithms in wsbackfit are modified versions to speed up the procedure by binning techniques and
a combination of parametric linear with local constant kernel regression; see below. The models
considered in this package are semiparametric in the sense that they contain parametric as well
as nonparametric components. Most of them could be seen as extensions of a generalized linear
model (GLM) of type G(Z, β, g(X)) = G

(
η(Z, β, g(X))

)
= G(g0 + αtX + βtZ), see for example

McCullagh and Nelder (1989). So far, this package does not tackle random effects.
Regarding the choice of G, you have first to decide about the link G. For each conditional

distribution, there exists a canonical one: for the conditional Gaussian distribution, this is the
identity. For a binary response, it is the Logit (1 + 1/exp(•))−1, and for a conditional Poisson it is
exp(•). Note that the latter can also be used for Pseudo-Poisson estimation. The choice of G is
certainly linked to the specification of Λ which is supposed to be known. Then, such transformation
of Y can be performed a priori by the practitioner. Therefore, we henceforth suppress Λ, to simplify
our notation. For Λ entailing unknown parameters, consult Linton et al. (2008).

Roca-Pardiñas and Sperlich (2010) showed that the estimation procedure for all these models
can be summarized in one common feasible minimization problem, namely

minimize

∫ n∑
i=1

[
Ỹi − η{Zi, β, g(x)}

]2
Wi · Kh(x − Xi) dx , (3)

where Ỹi is the transformed (e.g. by Λ) or linearized (in local scoring if the link is not the identity)
response Yi, and Wi is a weight. For example, in the generalized additive model with β = 0 we
have covariates Zj ≡ 1 for j = 1, . . . , d, Wi contains the local scoring weights with Ỹi being the
accordingly adjusted dependent variable. Further, Kh(v) = h−1K(v/h) with K(·) is the kernel
function. It is well known that asymptotically, the choice of smoothing kernel does not have an
important impact, as to a large part the kernel effect is compensated by an adequate bandwidth
choice. We allow the user to choose between the Epanechnikov kernel which is asymptotically
the most efficient one, and the Gaussian kernel which is popular as it helps to avoid some of the
numerical problems that may arise in areas where data are sparse.

We call our procedure ‘weighted smooth backfitting’ to emphasize that the user has the option
to include a vector of additional weights. As said, by putting the usual kernel weights apart, part
of the weighting comes from local scoring in order to account for the link function G.2 However,
independently from the link function, the practitioner might also want to include sampling weights,
e.g., when using administrative data, or trimming weights, e.g., for excluding boundary points. A
particular case is when additional weights are included to improve the efficiency of your estimators,
e.g., to account for the (co-)variance structure. Roca-Pardiñas and Sperlich (2010) estimated in a
first step the mean function, afterward the variance from the squared residuals, and used these in
the third step as additional weights when re-estimating the conditional mean. The resulting average
mean squared error was substantially smaller than the one of the original estimator, which ignored
the (co-)variance structure; recall our discussion at the beginning of this section.

The models that package wsbackfit can presently estimate are: a partial linear GAM, a generalized
partial linear varying coefficient model (GVCM), and combinations of them. The first one is a
generalization of a GLM by replacing some linear components with additive nonparametric functions,

E [Y |X, Z] = G

(
g0 +

∑d

j=1
gj (Xj) + βtZ

)
,

where X1 to Xd are scalars, and Z is the vector of all covariates that are supposed to enter the index
function η linearly. The gj are nonparametric functions.3 It is actually true that this is a special
case of the partial linear GVCM of the form (2), obtained by setting Z1 = Z2 = · · · = Zd = 1. We
list them nonetheless separately because, besides the slightly different implementation, we want the
reader to recognize the difference in the modeling approach. First, the GVCM is a generalization of

2Yu et al. (2008) propose a somewhat different algorithm for GAMs replacing local scoring by an alternative
that makes asymptotic theory simpler.

3For identification we follow Lee et al. (2012), and Roca-Pardiñas and Sperlich (2010) for implementation
with modifications like the inclusion of a parametric linear slope for each gj , see below.
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a GLM in Z, as could be seen in (2). And second, here we allow for all the flexibility suggested by
Lee et al. (2012) regarding the alterations of covariates Xj and Zj . For example, all X1, . . . , Xd1
with d1 ≤ d could be the same scalar variable X1 such that∑d1

j=1
gj (Xj)Zj =

∑d1

j=1

{
gj0 + gj1 (X1)

}
Zj , (4)

with gj0 unknown constants and gj1 unknown nonparametric functions; or, alternatively, all
Z1, . . . , Zd1 with d1 ≤ d could be the same scalar variable Z1 such that (with g10 still a constant)∑d1

j=1
gj (Xj)Zj =

{
g10 +

∑d1

j=1
gj1 (Xj)

}
Z1 . (5)

Certainly, you can have a mixture of both, as long as the identification conditions of Lee et al.
(2012) are fulfilled to guarantee that the model does not suffer from concurvity. This includes the
possibility that some variables appear in both sets, X and Z. This could be of particular interest
when defining different types of interactions.

Finally, one can include all together, i.e., nonparametric additive terms, nonparametric varying
coefficients, and a parametric (linear) part like

E [Y |X, Z] = G

{
g0 +

∑d1

j=1
gj (Xj)Zj +

∑d

j=d1+1
gj (Xj) + βtZκ

}
, (6)

with X as before, Z = (Z1, . . . , Zd1 , Zκ) a set of scalar variables Z1, . . . , Zd1 , and a vector Zκ.
Again, some of the Xj may represent the same variable; the same holds for the Zj , j = 1, ..., d.

Cross-validation, bandwidths, and computational issues

Cross-validation (CV) can be used for model selection in general. However, for the sake of presentation
we describe here our implementation in the context of bandwidth selection.

Cross-validation for bandwidth

All nonparametric estimates of the gj(Xj) in (6) depend on some bandwidths h1, . . . , hd, which can
be preset by the user. Alternatively, the package provides the option to choose the bandwidths
data-adaptively via CV. Our implementation even allows for a mixture of both, i.e., users can fix
some bandwidths and choose the others by CV. Albeit we use binning techniques, performing CV
can render the program pretty slow, especially for high dimensions and huge data sets. Generally,
our implementation follows the ideas of Nielsen and Sperlich (2005) and Roca-Pardiñas and Sperlich
(2010). It is to be mentioned that several alternatives exist, in particular for the additive model. For
instance, Mammen and Park (2005) proposed bandwidths selectors based on penalized least squares
and plug-in approaches.

Given sample {Xi, Zi, Yi}n
i=1, bandwidths h1, . . . , hd can be selected by minimizing some CV

criterion in various ways. Allowing for limited dependent variables Y , the deviance is an appropriate
measure of discrepancy between observed and fitted values. It is derived as a likelihood ratio
test comparing the specified model with a so-called saturated one, when predicted values match
the observed responses exactly. More specifically, denoting the fitted mean response given by
µ̂i = Ê [Yi|Xi, Zi], the deviance is given by Dev =

∑n
i=1 Devi(Yi, µ̂i). The definition of the

individual deviance Devi depends on the link; namely

Devi(Yi, µ̂i)

Gaussian (Yi − µ̂i)
2

Binary −2 (Yi log µ̂i + (1 − Yi) log(1 − µ̂i))

Poisson Yi log Yi
µ̂i

− (Yi − µ̂i)

Generally spoken, unless bandwidths are fixed by the user, they can be selected as

(h1, . . . , hd) = arg min
(h•

1 ,...,h•
d
)

n∑
i=1

Devi

[
Yi, G

(
η̂
(−i)
Xi,Zi

)]
, (7)

with
η̂
(−i)
Xi,Zi

= ĝ
(−i)
0 +

∑d1

j=1
ĝ
(−i)
j (Xij)Zij +

∑d

j=d1+1
ĝ
(−i)
j (Xij) + β̂t(−i)Ziκ , (8)
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where ĝ
(−i)
j (Xij) indicates the fit at Xij leaving out the ith data point based on the smoothing

parameter h•
j . One option to solve the minimization in (7) is to use a complete bandwidth selection

that allows for all possible bandwidths combinations for the different covariates Xj . When the
number of covariates Xj is large, the computational cost becomes very high or even prohibitive.

In order to simplify the problem, we provide the following three options to the user:

1. the user just prefixes all bandwidths that shall be used as final bandwidths;
2. the user prefixes starting values for the bandwidths, say h̃j , and searches via CV for the

optimal bandwidth vector (h1, . . . , hd) with a common bandwidth factor ch ∈ R such that
(h1, . . . , hd) = ch(h̃1, . . . , h̃d);

3. the user only prefixes a bandwidth grid for a scalar hc such that (h1, . . . , hd) = hc(σ1, . . . , σd)
with σj being the standard deviation of Xj , and hc is chosen from the grid via CV.

The choice of prior h̃j typically follows some considerations of marginal distributions or marginal
smoothing. For example, you could first perform a CV bandwidth choice for each nonparametric gj

by setting all other gk ̸=j to zero, or by restricting them to be linear functions. The second method
follows the ideas of Han and Park (2018), and the third follows a standard recommendation in the
literature, see the review of Köhler et al. (2014). Combining options 1 and 3 is possible.

For the sake of presentation, we explain more details about the CV implementation only along
option 3; as for option 2, it works analogously. Moreover, suppose the user chooses all bandwidths
by option 3. As said, in option 3, hj = hcσj . While hc might be different for each j if hj is set
by the user or chosen by option 2, in option 3, it is the same for all j. That is, we reduce the
multidimensional search problem to a one-dimensional one. Specifically, if the user decides that all
bandwidths are to be chosen by CV, hc := hj/σj for all j, with

hc = arg min
h•

n∑
i=1

Devi

[
Yi, G

(
η̂
(−i)
Xi,Zi

)]
, (9)

where η
(−i)
Xi,Zi

indicates the fitted additive predictor at {Xi, Zi} (see (8)) leaving out the ith data
point, and based on the smoothing parameters h•σj , (j = 1, . . . , d).

Unfortunately, a naive implementation of the leave-one-out CV technique would still imply a
high computational cost as for each potential value of h•, it is necessary to repeat the estimation as
many times as we have data points. To speed up the process, the wsbackfit package uses k-fold CV
instead. In brief, k-fold CV consists of randomly splitting the available sample into k complementary
subsamples of (approximately) the same size such that each data point only belongs to one of the k
subsamples, say κ(i). Then, the k-fold CV version of (9) is

hc = arg min
h•

n∑
i=1

Devi

[
Yi, G

(
η̂
(−κ(i))
Xi,Zi

)]
, (10)

where η
(−κ(i))
Xi,Zi

indicates the fitted additive predictor at {Xi, Zi} computed with the κ(i) subsample
removed. In contrast to leave-one-out CV, in k-fold CV, you repeat the estimations only k times,
leaving-out one different subsample each time.

We conclude with two remarks. First, as said, the wsbackfit package also allows the user to
specify the bandwidths hj for some nonparametric functions, which are therefore treated as given in
(10)), while letting the CV procedure select the others along option 3. A combination of option 2
with the others is not implemented. Examples can be found in Sections Package description and
Examples and applications. Second, the minimum in (10) is determined by a grid search. The grid
for the h• (option 3) is by default seq(0.01,0.99,length = 30) but can optionally be set by the
user via option bw.grid, see below. For option 2, the algorithm looks for the optimal ch on an
equispaced grid from 0.5 to 1.5.

Convergence Criteria

As explained above, smooth backfitting is solved by an iterative procedure to solve (3). When
the link function is the identity, then there is only the loop running over the different additive
components. If the link is not the identity, then there is also an outer loop carrying out the local
scoring iteration. Then, within each of such outer iteration steps, the formerly mentioned loop of
the smooth backfitting is conducted. Both loops are triggered by two factors, the tolerance tol in
deviations between subsequent iterations and the maximum number maxit of iterations conducted.
The defaults for the maximum number of iterations and the tolerance of deviation are maxit = 10
and tol = 0.01, respectively.
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The inner loop stops when for iteration l, the updated ĝl
j(·) comply with criterion

∑n
i=1

(
ĝl

j(Xij) − ĝl−1
j (Xij)

)2

∑n
i=1 ĝl−1

j (Xij)2
≤ tol for j = 1, . . . , d ,

where the gl−1
j refer to the estimates of the previous iteration. Similarly, the outer loop stops when

for iteration k, the convergence criterion

Dev =

∑n
i=1 Devi(Yi, µ̂k−1

i ) − Devi(Yi, µ̂k
i )∑n

i=1 Devi(Yi, µ̂k−1
i )

≤ tol ,

is met, where µ̂k
i and µ̂k−1

i are the estimates of µi obtained in the present iteration and in the
previous one (k − 1), respectively.

Binning and integration

Although we implemented some modifications and simplifications like the above described k-fold CV,
or the combination of parametric linear with local constant estimation, for details see the Section
Identification, SB in high dimensions might still imply a high computational cost. Therefore, as
already indicated above, we implemented the kernel smoothing inside the wsbackfit package using
binning-type procedures. These are used throughout, also for CV when selecting bandwidths. The
key idea of this binning is to reduce the number of kernel evaluations (exploiting the fact that many
of these are nearly identical) by replacing the original data set (composed of n data points) with a
‘grouped’ data set (with N groups as new data points with sampling weights, where N << n). The
estimation is carried out on these N groups, including the sampling weights in Wi. For a detailed
description of binning for kernel regression, see Fan and Gijbels (1996).

Note that for minimizing (3), we need to solve some univariate integrals over nonparametric
estimates which is therefore done numerically. This is calculated by the Simpson rule with 51
equidistant grid points over the entire range of the respective covariate, i.e., from its smallest to the
largest observation. Simulations showed that finer grids led to no improvement of the final estimates.

Identification

When we introduced the class of GSM in Section The models that can be estimated by wsbackfit,
we restricted our presentation to models that can be estimated by the here introduced package. At
this stage – note that the package design invites further contributions of SB-based methods – the
package is able to estimate model (6) only for some link functions, and all gj being one-dimensional
nonparametric functions. Lee et al. (2012) discuss identification of model (6) in a very general
way, also allowing all gj to be multidimensional, and covariates Xj being overlapping vectors (i.e.,
containing, at least partly, the same elements), and possibly also containing some elements of the Z
covariate vector. Essentially, they clarify which overlaps would render a model unidentifiable. As
such discussion is quite technical and would go beyond the slope of this paper, we only refer to them.

Now recall models (4) and (5), which probably represent the most common cases in practice.
For these models, consider the identification of the gj with respect to location and scale. Each gj in
model (6) has been decomposed into a linear effect αj · Xj together with a purely nonparametric
(beyond the linear) one, say g̃j . In addition, for gj being varying coefficients, we have included
constants gj0, j = 1, . . . , d1. Then, we can re-write model (6) as

G

{
g0 +

∑d1

j=1
(gj0 + αj · Xj + g̃j (Xj))Zj +

∑d

j=d1+1
(αj · Xj + g̃j (Xj)) + βtZκ

}
. (11)

For this model, we set E[g̃j(Xj)] = 0 (j = 1, . . . , d) and E[Xj · g̃j(Xj)] = 0 (j = 1, . . . , d1). Apart
from identification issues, this prevents us from biases in the linear direction, i.e., in the slope of the
gj , such that we can estimate the g̃j by local constant SB speeding up the algorithm significantly.
Finally, this reparametrization helps us to see how to choose the starting values for the iterative
backfitting procedure. For the first step, you can simply start with a parametric GLM estimator,
setting g̃j ≡ 0 for all j. Then, for ĝ0, β̂, ĝj,0, and α̂j , j = 1, . . . , d obtained from that GLM
estimation, you proceed estimating the g̃j as outlined in Roca-Pardiñas and Sperlich (2010), to
afterward update all estimates via iteration.
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Package description

The package is composed of several functions that enable users to fit the models with the methods
described above. Table 1 provides a summary of the presently available functions.

wsbackfit functions
sback Main function for fitting generalized structures models using smooth backfit-

ting.
sb Function used to indicate the nonparametric terms and varying coefficient

terms in the sback() formula.
plot Function that provides plots of sback objects produced by sback().
print The default print method for an sback() object.
summary Function that takes a fitted object produced by sback() and produces various

useful summaries from it.
predict Function that provides predictions (e.g., fitted values and nonparametric

terms) based on an sback object for a new data set (newdata).
residuals Returns residuals of sback objects produced by sback(). Deviance, Pearson,

working and response residuals are available.
summary Summary for objects of class sback.

Table 1: Summary of functions of wsbackfit.

The package has been designed similarly to other regression packages. The main function
is sback. It fits GSM with SB, and creates an object of class sback. Numerical and graphical
summaries of the fitted model can be obtained by using print, summary, and plot, implemented
for sback objects. Moreover, function predict allows obtaining predictions (e.g., fitted values and
nonparametric terms) for data different from those used for estimation, called, therefore, newdata.
The main arguments of the sback function are listed in Table 2, and the list of outputs is given in
Table 3.

sback arguments – input values
formula A formula object specifying the model to be fitted.
data Data frame representing the data and containing all needed variables.
offset An optional numerical vector containing a priori known components to be

included in the linear predictor during fitting. Default is zero.
weights An optional numeric vector of ‘prior weights’ to be used in the fitting process.

By default, the weights are set to one.
kernel A character specifying the kernel function. Implemented are: Gaussian and

Epanechnikov. By default "Gaussian".
bw.grid Numeric vector; a grid for searching the bandwidth factor hc. The bandwidth

for dimension j is hcσj . Default is seq(0.01,0.99,length = 30)
c.bw.factor logical; indicates whether the common factor scheme for bandwidth selection

proposed by Han and Park (2018) is performed. If TRUE, and provided the
user has specified the (marginal) bandwidths for all nonparametric functions,
say h̃j , the functions searches for the common factor ch that minimizes
the deviance via (k-fold) cross-validation when the bandwidth used for
dimension (covariate) j is chh̃j . The search is done in an equispaced grid of
length 15 between 0.5 and 1.5. The default is FALSE.

KfoldCV Number of cross-validation folds to be used for either (1) automatically
selecting the optimal bandwidth (in the sequence given in argument bw.grid)
for each nonparametric function; or (2) automatically selecting the optimal
common bandwidth factor (see argument c.bw.factor). Default is 5.

kbin An integer value specifying the number of binning knots. Default is 30.
family A character specifying the distribution family. Implemented are: Gaussian,

Binomial and Poisson. In all cases, the link function is the canonical one.
By default "gaussian".

Table 2: Summary of the arguments of the main function sback.

We call function sback by
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sback output values
call The matched call.
formula The original supplied formula argument.
data The original supplied data argument.
weights The original supplied weights argument.
offset The original supplied offset argument.
kernel The original supplied kernel argument.
kbin The original supplied kbin argument.
family The original supplied family argument.
effects Matrix with the estimated nonparametric functions (only the nonlinear

component) for each covariate value in the original supplied data.
fitted.values A numeric vector with the fitted values for the supplied data.
residuals A numeric vector with the deviance residuals for the supplied data.
h A numeric vector of the same length as the number of nonparametric

functions, with the bandwidths used to fit the model.
coeff A numeric vector with the estimated regression coefficients. This vector

contains the estimates of the regression coefficients associated with the
parametric part of the model (if present) as well as the linear components
of the nonparametric functions.

err.CV Matrix with the cross-validated error (deviance) associated with the se-
quence of tested bandwidths (those provided in argument bw.grid in
function sback).

Table 3: Summary of output values of the sback function.

sback(formula, data, offset = NULL, weights = NULL,
kernel = c("Gaussian", "Epanechnikov"),
bw.grid = seq(0.01, 0.99, length = 30), c.bw.factor = FALSE,
KfoldCV = 5, kbin = 30,
family = c("gaussian", "binomial", "poisson"))

The argument formula corresponds to the model for the conditional mean function (6). This
formula is similar to that used for glm, except that nonparametric functions can be added to the
additive predictor by means of function sb (for details, see Table 4). For instance, specification y ~
x1 + sb(x2,h = -1) assumes a parametric effect of x1 (with x1 either numerical or categorical),
and a nonparametric effect of x2. Varying coefficient terms get incorporated similarly. For example,
y ~ sb(x1,by = x2) indicates that the coefficient(s) of x2 depend nonparametrically on x1. In this
case, both, x1 and x2 should be numerical predictors. More examples are provided further below.

sb arguments
x1 The univariate predictor.
by Numeric predictor of the same dimension as x1. If present, the coefficients

of this predictor depend nonparametrically on x1, i.e., a varying coefficient
term.

h Bandwidth for this term. If h = -1, the bandwidth is automatically selected
using k-fold cross-validation. A value of 0 would indicate a linear fit. By
default -1.

Table 4: Summary of the arguments of the function sb.

The bandwidths associated with the nonparametric functions are specified inside sb through
argument h (see Table 4), either as final bandwidth (by setting h = hj ; option 1), as starting value
to be multiplied by an optimal constant ch found via CV from an equispaced grid of length 15
between 0.5 and 1.5 (by setting h = h̃j and c.bw.factor = TRUE; option 2), or by demanding a
CV-bandwidth which is the product of a common factor hc (chosen from bw.grid) times the scale
σj of covariate Xj (by setting h = -1; option 3); recall Section Cross-validation, bandwidths, and
computational issues. Actually, the user has even four options. These are specified through argument
h of function sb, where option 4 is a mixture of options 1 and 3 by setting h = hj inside sb for some
nonparametric functions, and h = -1 for the others. The number k of CV folds is specified through
KfoldCV, with 5 being the default.

In Section The models that can be estimated by wsbackfit, recall expression (3) with subsequent
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discussion, we saw that the SB algorithm is implemented with potentially adjusted dependent
variable Ỹ and weights W . The arguments offset and weights allow the user to modify them on
top of what is done automatically (e.g., due to the local scoring). More specifically, the vector offset
is subtracted from Ỹ when estimating. A standard application is the log of exposure in Poisson
regression; see also the example in Section Poisson regression with offset. Regarding the weight W ,
recall that parts of it are automatically calculated (and updated in each backfitting iteration) by the
local scoring procedure to account for the given link function, which is 1 if the link is the identity.
This is multiplied by the optional vector weights provided by the user. For an example in which
this option is used to improve the efficiency of the estimators, see Section Gaussian simulated data.

The desired smoothing kernel, either Epanechnikov or Gaussian, is specified through the argument
kernel (by default Gaussian). With kbin, the user indicates the number of binning knots (denoted
as N in Section Cross-validation, bandwidths, and computational issues). The argument family
specifies the conditional distribution of the response variable. So far, the user can select among
Gaussian, Poisson, and binary. In all cases, the canonical link function is considered. Finally, recall
that predictions for data different from those being used for estimation can be obtained by means of
function predict, specifying the new dataset in argument newdata.

Simulation study

This section reports the results of a small simulation. Two different scenarios are considered, namely

Scenario I. Additive model. Covariates X1 and X2 are simulated independently from the uniform
distributions on the intervals [0, 1] and [−10, 1.5], respectively, and

η = g1 (X1) + g2 (X2) = 2 + 3X2
1 + 0.01X3

2 .

Here, Y is generated under two different distributions

• Y = η + ε, where ε ∼ N
(
0, 0.52)

.
• Y ∼ Bernoulli (p), with p = exp (η̃) / exp (1 + η̃), where η̃ = η/4,

where the scaling factor in the Bernoulli case is used to control the signal-to-noise ratio.
Scenario II. Varying coefficient model. Here, covariates X1, X2, Z1 and Z2 are simulated inde-

pendently from a uniform distribution on the interval [0, 1], and

η = g1 (X1)Z1 + g2 (X2)Z2 = 5 sin(2πX1)Z1 + X2Z2.

As for Scenario I, Y is generated according to

• Y = η + ε, where ε ∼ N
(
0, 0.52)

.
• Y ∼ Bernoulli (p), with p = exp (η) / exp (1 + η).

Results for Scenarios I and II are shown in Figure 1 and Figure 2, respectively. In both cases, the
true and estimated functions are centered before plotting to make results comparable. All results
are based on a sample size of n = 500 with R = 500 replicates. Also, we use the Gaussian kernel,
30 binning knots, and all bandwidths being selected using 5-fold cross-validation (option 3). We
obtained essentially the same figures when we repeated these simulations with the Epanechnikov
kernel. Not surprisingly, simulation results with options 1 and 2 for the bandwidth choice depended
quite a bit on the setting of our (prior) bandwidths and are therefore not shown.

Examples and applications

The last section is dedicated to examples with generalized additive and/or varying coefficient, partial
linear models with and without heteroscedasticity, given different link functions. In fact, we have
examples for each of the three link functions presently available. Among other things, it is shown
how the optional weighting can be used to improve efficiency. While some examples are simulated,
others illustrate applications from biometrics and health. Finally, we also show how to create useful
graphics for interpreting the estimates.

Gaussian simulated data

We start with the presentation of a simulation example for estimating an additive model under
heteroscedasticity. Consider the situation where the variance is a function of a dummy variable,
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Figure 1: The simulation study and Scenario I. From left to right: true curve g1 (solid line) and
average estimate ĝ1 (dashed line); true curve g2 (solid line) and average estimate ĝ2 (dashed line). In
both cases, 2.5 and 97.5 simulation quantiles are plotted. Top row: Gaussian distribution. Bottom
row: Bernoulli distribution.

i.e., one faces two noise levels. This is estimated and afterward used to improve the efficiency of
the mean regression. As explained in the above sections, this requires a three-step procedure: first
estimate the mean model, then the variance function, and finally re-estimate the mean model but
including the inverse of the variance as an additional weight. Consider model

Y =

4∑
j=1

gj(Xj) + β1{X5=1} + ε(X5), (12)

with g1(x) = 2 sin(2x), g2(x) = x2, g3(x) = 0, g4(x) = x, β = 1.5, and 1A denoting the indicator
function of event A. The covariates X1 to X4 are independent random variables, uniformly
distributed on [−2, 2], and X5 ∈ Bernoulli(0.4). The error term is given by ϵ(X5) ∈ N(0, σ2(X5))
with σ(0) = 4 and σ(1) = 2. Data are generated and fitted by

R> library(wsbackfit)
R> set.seed(123)
R> # Define the data generating process
R> n <- 1000
R> x1 <- runif(n)*4-2
R> x2 <- runif(n)*4-2
R> x3 <- runif(n)*4-2
R> x4 <- runif(n)*4-2
R> x5 <- as.numeric(runif(n)>0.6)

R> g1 <- 2*sin(2*x1)
R> g2 <- x2^2
R> g3 <- 0
R> g4 <- x4

R> mu <- g1 + g2 + g3 + g4 + 1.5*x5
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Figure 2: The simulation study and Scenario II. From left to right: true curve g1 (solid line) and
average estimate ĝ1 (dashed line); true curve g2 (solid line) and average estimate ĝ2 (dashed line). In
both cases, 2.5 and 97.5 simulation quantiles are plotted. Top row: Gaussian distribution. Bottom
row: Bernoulli distribution.

R> err <- (0.5 + 0.5*x5)*rnorm(n)
R> y <- mu + err

R> df_gauss <- data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = as.factor(x5), y = y)

R> # Fit the model with a fixed bandwidth for each covariate
R> m0 <- sback(formula = y ~ x5 + sb(x1, h = 0.1) + sb(x2, h = 0.1) +
+ sb(x3, h = 0.1) + sb(x4, h = 0.1), kbin = 30, data = df_gauss)

A numerical summary of the fitted model can be obtained by calling print.sback() or
summary.sback() with shortcuts print() and summary().

R> summary(m0)

Generalized Smooth Backfitting/wsbackfit:

Call: sback(formula = y ~ x5 + sb(x1, h = 0.1) + sb(x2, h = 0.1) +
sb(x3, h = 0.1) + sb(x4, h = 0.1), data = df_gauss, kbin = 30)

Sample size: 1000

Bandwidths used in model:
Effect h
sb(x1, h = 0.1) 0.1
sb(x2, h = 0.1) 0.1
sb(x3, h = 0.1) 0.1
sb(x4, h = 0.1) 0.1

Linear/Parametric components:
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Intercept x1 x2 x3 x4 x51
1.342678178 0.346506090 -0.040989607 -0.005250654 1.010634908 1.327833794

The output obtained from summary (corresponding to the prior sback call) includes the bandwidth
of each nonparametric function, the parameters of the parametric part (here the intercept and β),
and the linear slopes (i.e., the αj in (11) in Section Identification) of the nonparametric functions
gj . Recall (Section Identification) that the algorithm decomposes each nonparametric function in a
linear and a nonparametric local constant one. For a varying coefficient gj , you also get constant
g0j .

To complement the numerical results, the wsbackfit package also provides graphical outputs by
the use of plot. In particular, it provides the plots of the estimated nonparametric functions. Figure
3 shows the figures that appear as a result of the following code. We note that through argument
select, the user can specify the model term to be plotted and use ylim to indicate the range for
the y-axis. This, however, is optional. Alternatively, the program provides plots that automatically
explore the variation of the estimates.

R> op <- par(mfrow = c(2,2))
R> plot(m0, select = 1, ylim = c(-2.5,2.5))
R> plot(m0, select = 2, ylim = c(-2.5,2.5))
R> plot(m0, select = 3, ylim = c(-2.5,2.5))
R> plot(m0, select = 4, ylim = c(-2.5,2.5))
R> par(op)
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Figure 3: Model (12): Estimated nonparametric functions. These estimates correspond to the sum
of the linear and the nonparametric local constant component, recall (11).

If the user is interested in plotting separately each component (αj and g̃j), then the argument
composed is to be set to FALSE. The result is shown in Figure 4.
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R> op <- par(mfrow = c(2,2))
R> plot(m0, select = 1, composed = FALSE, ylim = c(-2.5,2.5))
R> plot(m0, select = 2, composed = FALSE, ylim = c(-2.5,2.5))
R> plot(m0, select = 3, composed = FALSE, ylim = c(-2.5,2.5))
R> plot(m0, select = 4, composed = FALSE, ylim = c(-2.5,2.5))
R> par(op)
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Figure 4: Model (12): Estimated linear and nonlinear components in which each nonparametric
function is decomposed, recall (11).

Note that both summary and plot make use of the information contained in the m0 object.

R> names(m0)

[1] "call" "formula" "data" "weights"
[5] "offset" "kernel" "kbin" "family"
[9] "effects" "fitted.values" "residuals" "h"

[13] "coeff" "err.CV"

This is the list of outputs created by sback. A detailed description of what each component of this
list contains was given in Table 3. The user can access this information explicitly and individually,
may it be to create its own plots or for further reporting.

As a next step in the analyses of our example, we use the fitted model to estimate the variance.
In our example, this is considered to be a function of the binary covariate X5. Call

R> resid <- y - m0$fitted.values
R> sig0 <- var(resid[x5 == 0])
R> sig1 <- var(resid[x5 == 1])

The third and final step is to re-estimate the mean model for efficiency reasons with weights
that are the inverse of the estimated variance. The code, including the summary, is
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R> w <- x5/sig1 + (1-x5)/sig0
R> m1 <- sback(formula = y ~ x5 + sb(x1, h = 0.1) + sb(x2, h = 0.1) +
+ sb(x3, h = 0.1) + sb(x4, h = 0.1),
+ weights = w, kbin = 30, data = df_gauss)
R> summary(m1)

Generalized Smooth Backfitting/wsbackfit:

Call: sback(formula = y ~ x5 + sb(x1, h = 0.1) + sb(x2, h = 0.1) +
sb(x3, h = 0.1) + sb(x4, h = 0.1), data = df_gauss, weights = w,
kbin = 30)

Sample size: 1000

Bandwidths used in model:
Effect h
sb(x1, h = 0.1) 0.1
sb(x2, h = 0.1) 0.1
sb(x3, h = 0.1) 0.1
sb(x4, h = 0.1) 0.1

Linear/Parametric components:
Intercept x1 x2 x3 x4 x51

1.31707760 0.32888538 -0.01262394 0.01222234 1.00289877 1.33368035

In the previous fits of this example, we specified all bandwidths used. For the rest of this example,
let us consider the case when we ask the program to choose the bandwidths via k-fold CV. We do
this for all nonparametric functions, using the following code in which, for the sake of clarity and
presentation, we specify h = -1 although this is actually the default. For convenience, we also call
the summary command directly:

R> m1cv <- sback(formula = y ~ x5 + sb(x1, h = -1) + sb(x2, h = -1) +
+ sb(x3, h = -1) + sb(x4, h = -1), weights = w, kbin = 30,
+ bw.grid = seq(0.01, 0.99, length = 30), KfoldCV = 5, data = df_gauss)
R> summary(m1cv)

Generalized Smooth Backfitting/wsbackfit:

Call: sback(formula = y ~ x5 + sb(x1, h = -1) + sb(x2, h = -1) + sb(x3,
h = -1) + sb(x4, h = -1), data = df_gauss, weights = w, bw.grid = seq(0.01,
0.99, length = 30), KfoldCV = 5, kbin = 30)

Sample size: 1000

Bandwidths used in model:
Effect h
sb(x1, h = 0.0892) 0.0892
sb(x2, h = 0.0887) 0.0887
sb(x3, h = 0.0907) 0.0907
sb(x4, h = 0.0912) 0.0912

Linear/Parametric components:
Intercept x1 x2 x3 x4 x51

1.31708207 0.32881191 -0.01219359 0.01247328 1.00258427 1.33366258

We do not further discuss the results because their interpretation is the same as before, also
because the automatically found data-driven optimal bandwidths are close to what we used as
prefixed bandwidths in the former codes. We conclude this section with a brief example in which we
specify the bandwidths for some of the nonparametric functions, while for the remaining ones, we
let our CV procedure select the bandwidths. For brevity, we skip output and discussion.

R> m2cv <- sback(formula = y ~ x5 + sb(x1, h = 0.1) + sb(x2, h = -1) +
+ sb(x3, h = 0.1) + sb(x4, h = 0.1),
+ weights = w, kbin = 30, KfoldCV = 5, data = df_gauss)
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Post-operative infection data

The next example is an application with data studied, among others, in Roca-Pardiñas and Sperlich
(2010). They were taken from a prospective analysis conducted at the University Hospital of Santiago
de Compostela in the North of Spain. A total of n = 2318 patients who underwent surgery at this
center between January 1996 and March 1997 were considered. The main interest is learning about
indicators that could predict whether patients may suffer (inf=1) or not post-operative infection
(inf=0), and to see how they relate to the risk of infection. Such predictive indicators could be
various, but given the previous studies we concentrate on the pre-operative values of plasma glucose
(gluc) concentration (measured in mg/dl), and lymphocytes (linf, expressed as relative counts (in
% of the white blood cell count). The data can be found in wsbackfit under the name infect.

R> data(infect)
R> head(infect)

age sex linf gluc diab inf
1 85 2 28 55 2 0
2 38 1 18 56 2 1
3 49 2 29 56 2 1
4 63 2 20 60 2 0
5 91 2 17 62 2 0
6 26 2 22 66 2 0

In the original studies, it was controlled for other covariates like age (in years) and sex (coded
as 1 = male; 0 = female). For illustrative purposes, we limit our analysis to the investigation of the
association of the risk of post-operative infections inf with the predictors linf and gluc, putting
all other covariates aside. It is well known that the effect of linf on inf varies strongly with the
concentration of gluc. Therefore, one may think of a generalized varying coefficient model of type

log P (inf = 1|linf, gluc)
1 − P (inf = 1|linf, gluc) = g0 + g1(gluc) + g2(gluc)linf

= g0 + (α1 · gluc + g̃1(gluc)) + (g20 + α2 · gluc + g̃2(gluc)) linf, (13)

in which we are working with the Logit link. This can be fitted using of the following code

R> data(infect)
R> # Generalized varying coefficient model with binary response
R> m2 <- sback(formula = inf ~ sb(gluc, h = 10) + sb(gluc, by = linf, h = 10),
+ data = infect, kbin = 15, family = "binomial")

R> summary(m2)

Generalized Smooth Backfitting/wsbackfit:

Call: sback(formula = inf ~ sb(gluc, h = 10) + sb(gluc, by = linf,
h = 10), data = infect, kbin = 15, family = "binomial")

Sample size: 2312

Bandwidths used in model:
Effect h
sb(gluc, h = 10) 10
sb(gluc, by = linf, h = 10) 10

Linear/Parametric components:
Intercept gluc linf gluc:linf

-1.4155401353 0.0068313875 -0.0346648080 -0.0000456441

Note that this model, recall (13), contains, in addition to the constant term (intercept), the
main linear effects of gluc α1 and linf g20, and the linear interaction between gluc and linf α2,
all provided in the very last line. Our bandwidths have been chosen for graphical convenience. The
graphical output, i.e., the plots of the estimated nonparametric functions, is obtained by the code

R> op <- par(mfrow = c(1,3))
R> plot(m2, composed = FALSE, ask = FALSE, cex.main = 2, cex = 2, cex.lab = 1.5,
+ cex.axis = 2)
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R> par(op)

R> op <- par(mfrow = c(1,3))
R> plot(m2, composed = FALSE, ask = FALSE, cex.main = 2, cex = 2, cex.lab = 1.5,
+ cex.axis = 2)
R> par(op)
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Figure 5: Post-operative infection data. Upper row: estimates of α1 · gluc + g̃1(gluc) (left),
α2 · gluc + g̃2(gluc) (middle), and (α2 · gluc + g̃2(gluc)) linf (right) obtained from model (13). The
plots on the left and the center in the bottom line show the estimates of the linear and nonlinear
components separately. In this example, the right plot is simply repeated.

In Figure 5, you see the functionals of the nonparametric additive effect of gluc on the index η
(left column), the varying coefficient (center), and the interaction surface (right column), because the
interest is in revealing how the effect of lymphocytes changes with the plasma glucose concentration.
If the interest is also in knowing the resulting probabilities of post-operational infection, then there
are the options of plotting the two-dimensional function as a (dynamic) 3-D plot (less appropriate
for printed figures) or by contour plots as done in Figure 6. This was created with the code

R> # Dataframe for prediction (and plotting)
R> ngrid <- 30
R> gluc0 <- seq(50,190, length.out=ngrid)
R> linf0 <- seq(0,45, length.out=ngrid)
R> infect_pred <- expand.grid(gluc = gluc0, linf = linf0)

R> m2p <- predict(m2, newdata = infect_pred)
R> n <- sqrt(nrow(infect_pred))
R> Z <- matrix(m2p$pfitted.values, n, n)
R > filled.contour(z = Z, x = gluc0, y = linf0,
+ xlab = "Glucose (mg/dl)", ylab = "Lymphocytes (%)",
+ col = cm.colors(21))

As can be seen from Figure 6, high levels of gluc increase the post-operative infection risk, but
higher linf values can mitigate this effect significantly.

Poisson regression with offset

Let us now consider a simulated example that illustrates the use of Poisson regression with a
nontrivial use of option offset. We simulate data where each subject may have different levels of
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Figure 6: The post-operative infection data: Estimated probability of post-operational infection.

exposure to the event of interest. As explained in the above sections, this can be handled with the
offset option. More specifically, for the level of exposure P we consider

Y ∈ P oisson
(
P · exp

(
2 + 3X2

1 + 5X3
2
))

.

In our simulations, X1 and X2 were generated as independent continuous random variables uniformly
distributed on [−1, 1], and P as an approximately uniformly distributed discrete variable with support
{50, 51, . . . , 100}. The complete code for simulation, estimation, and summary of results is

R> set.seed(123)
R> # Generate the data
R> n <- 1000
R> x1 <- runif(n,-1,1)
R> x2 <- runif(n,-1,1)
R> eta <- 2 + 3*x1^2 + 5*x2^3
R> exposure <- round(runif(n, 50, 500))
R> y <- rpois(n, exposure*exp(eta))
R> df_poiss <- data.frame(y = y, x1 = x1, x2 = x2)
R> # Fit the model
R> m4 <- sback(formula = y ~ sb(x1, h = 0.1) + sb(x2, h = 0.1),
+ data = df_poiss, offset = log(exposure),
+ kbin = 30, family = "poisson")

R> summary(m4)

Generalized Smooth Backfitting/wsbackfit:

Call: sback(formula = y ~ sb(x1, h = 0.1) + sb(x2, h = 0.1), data = df_poiss,
offset = log(exposure), kbin = 30, family = "poisson")

Sample size: 1000

Bandwidths used in model:
Effect h
sb(x1, h = 0.1) 0.1
sb(x2, h = 0.1) 0.1

Linear/Parametric components:
Intercept x1 x2

3.00099626 0.09698672 3.06092318

As for the previous examples, a graphical output can be obtained using the plot function like in
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the following code. The results are shown in Figure 7, namely the additive components.

R> op <- par(mfrow = c(1,2))
R> plot(m4, ask = FALSE)
R> par(op)
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Figure 7: The Poisson Simulated Data: Estimated nonparametric functions.

Summary

We have first given a general introduction into the class of Generalized Structures Models, together
with the powerful kernel-based smooth backfitting estimator to fit the members of this model class.
This was accompanied by a (certainly incomplete) literature review and closed with a small review
and discussion of existing methods and software for similar and related models. Except for the
varying coefficient model estimator in the np package, they are all based on splines. We concluded
that, while there is a huge body of literature on SB and its advantages, it is hardly used in practice
due to the lack of software. The wsbackfit package intends to close this gap.

Next, we provided some insight into the weighted SB and the objective function that is minimized
by our algorithm. This allowed us to better explain the users’ options like weights and offset.
We outlined which models can be estimated by the presently available package. The description of
the procedure was complemented by a section on the implemented CV, bandwidth choice, binning,
convergence, and identification issues to clarify the location and scaling of the resulting estimates.

The package description has been kept condense but its use has been illustrated along several
examples that cover some of the estimable models. They comprise the use of all options provided.
Moreover, the numerical examples give an idea of the estimators’ performance. For more details, we
recommend consulting the cited articles dealing with the particular models.

We believe that this package is an important enrichment of the existing methods with many
useful applications of flexible data analysis and prediction. It can almost straightforwardly be used
for testing (Cadarso-Suárez et al., 2006; Mammen and Sperlich, 2021) or studying the heterogeneity
of causal effects (Benini and Sperlich, 2021) and many other interesting applications. The next
challenge will be the extension of this package to cover the analysis of more complex data (Jeon and
Park, 2020). The package is not just open for extensions. We explicitly invite people to contribute.
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