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SEEDCCA: An Integrated R-Package for
Canonical Correlation Analysis and Partial
Least Squares
by Bo-Young Kim, Yunju Im and Jae Keun Yoo

Abstract Canonical correlation analysis (CCA) has a long history as an explanatory statistical method
in high-dimensional data analysis and has been successfully applied in many scientific fields such as
chemometrics, pattern recognition, genomic sequence analysis, and so on. The so-called seedCCA is a
newly developed R package that implements not only the standard and seeded CCA but also partial
least squares. The package enables us to fit CCA to large-p and small-n data. The paper provides a
complete guide. Also, the seeded CCA application results are compared with the regularized CCA in
the existing R package. It is believed that the package, along with the paper, will contribute to high-
dimensional data analysis in various science field practitioners and that the statistical methodologies
in multivariate analysis become more fruitful.

Introduction

Explanatory studies are important to identify patterns and special structures in data prior to developing
a specific model. When a study between two sets of a p-dimensional random variables X (X ∈ Rp) and
an r-dimensional random variable Y (Y ∈ Rr), are of primary interest, one of the popular explanatory
statistical methods would be canonical correlation analysis (CCA; Hotelling (1936)). The main goal of
CCA is the dimension reduction of two sets of variables by measuring an association between the two
sets. For this, pairs of linear combinations of variables are constructed by maximizing the Pearson
correlation. The CCA has successful application in many scientific fields such as chemometrics, pattern
recognition, genomic sequence analysis, and so on.

In Lee and Yoo (2014), it is shown that the CCA can be used as a dimension reduction tool for
high-dimensional data, but also it is connected to the least square estimator. Therefore, the CCA is not
only an explanatory and dimension reduction method but also can be utilized as an alternative to least
square estimation.

If max(p, r) is bigger than or equal to the sample size, n, usual CCA application is not plausible
due to no incapability of inverting sample covariance matrices. To overcome this, a regularized CCA is
developed by Leurgans et al. (1993), whose idea was firstly suggested in Vinod (1976). In practice, the
CCA package by González et al. (2008) can implement a version of the regularized CCA. To make the
sample covariance matrices saying Σ̂x and Σ̂y, invertible, in González et al. (2008), they are replaced
with

Σ̂
λ1
x = Σ̂x + λ1Ip and Σ̂

λ2
y = Σ̂y + λ1Ir.

The optimal values of λ1 and λ2 are chosen by maximizing a cross-validation score throughout the
two-dimensional grid search. Although it is discussed that a relatively small grid of reasonable values
for λ1 and λ2 can lesson intensive computing in González et al. (2008), it is still time-consuming as
observed in later sections. Additionally, fast regularized CCA and robust CCA via projection-pursuit
are recently developed in Cruz-Cano (2012) and Alfons et al. (2016), respectively.

Another version of CCA to handle max(p, r) > n is the so-called seeded canonical correlation
analysis proposed by Im et al. (2014). Since the seeded CCA does not require any regularization
procedure, which is computationally intensive, its implementation to larger data is quite fast. The
seeded CCA requires two steps. In the initial step, a set of variables bigger than n is initially reduced
based on iterative projections. In the next step, the standard CCA is applied to two sets of variables
acquired from the initial step to finalize the CCA of data. Another advantage is that the procedure of
the seeded CCA has a close relation with partial least square, which is one of the popular statistical
methods for large p-small n data. Thus the seed CCA can yield the PLS estimates.

The seedCCA package is recently developed mainly to implement the seeded CCA. However, the
package can fit a collection of the statistical methodologies, which are standard canonical correlation
and partial least squares with uni/multi-dimensional responses, including the seeded CCA. The
package is already uploaded to CRAN (https://cran.r-project.org/web/packages/seedCCA/index.
html).

The main goal of the paper is to introduce and illustrate the seedCCA package. Accordingly, three
real data are fitted by the standard CCA, the seeded CCA, and partial least square. Two of the three
data are available in the package. One of them has been analyzed in González et al. (2008). So, the
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implementation results by the seeded and regularized CCA are closely compared.

The organization of the paper is as follows. The collection of three methodologies is discussed in
Section 2. The implementation of seedCCA is illustrated, and compared with CCA in Section 3. In
Section 4, we summarize the work.

We will use the following notations throughout the rest of the paper. A p-dimensional random
variable X will be denoted as X ∈ Rp. So, X ∈ Rp means a random variable, although there is no
specific mention. For X ∈ Rp and Y ∈ Rr, we define that cov(X) = Σx, cov(Y) = Σy, cov(X, Y) = Σxy
and cov(Y, X) = Σyx. Moreover, it is assumed that Σx and Σy are positive-definite.

Collection of implemented methodologies in seedCCA

Canonical correlation analysis

Suppose the two sets of variable X ∈ Rp and Y ∈ Rr and consider their linear combinations of
U = aTX and V = bTY. Then we have var(U) = aTΣxa, var(V) = bTΣyb, and cov(U, V) = aTΣxyb,
where a ∈ Rp×1 and b ∈ Rr×1. Then Pearson-correlation between U and V is as follows:

cor(U, V) =
aTΣxyb√

aTΣxa
√

bTΣyb
. (1)

We seek to find a and b to maximize cor(U, V) by satisfying the following criteria.

1. The first canonical variate pair (U1 = aT
1 X, V1 = bT

1 Y) is obtained from maximizing (1).

2. The second canonical variate pair (U2 = aT
2 X, V2 = bT

2 Y) is constructed from the maximization
of (1) with restriction that var(U2) = var(V2) = 1 and (U1, V1) and (U2, V2) are uncorrelated.

3. At the k step, the kth canonical variate pair (Uk = aT
k X, Vk = bT

k Y) is obtained from the
maximization of (1) with restriction that var(Uk) = var(Vk) = 1 and (Uk, Vk) are uncorrelated
with the previous (k − 1) canonical variate pairs.

4. Repeat Steps 1 to 3 until k becomes q (= min(p, r)).

5. Select the first d pairs of (Uk, Vk) to represent the relationship between X and Y.

Under this criteria, the pairs (ai, bi) are constructed as follows: ai = Σ−1/2
x ψi and bi = Σ−1/2

y ϕi for
i = 1, . . . , q, where (ψ1, ..., ψq) and (ϕ1, ..., ϕq) are, respectively, the q eigenvectors of Σ−1/2

x ΣxyΣ−1
y ΣyxΣ−1/2

y

and Σ−1/2
y ΣyxΣ−1

x ΣxyΣ−1/2
x with the corresponding common ordered-eigenvalues of ρ∗2

1 ≥ · · · ≥
ρ∗2

q ≥ 0. Then, matrices of Mx = (a1, ..., ad) and My = (b1, ..., bd) are called canonical coefficient
matrices for d = 1, ..., q. Also, MT

x X and MT
y Y are called canonical variates. In the sample, the population

quantities are replaced with their usual moment estimators. For more details regarding this standard
CCA, readers may refer to Johnson and Wichern (2007).

Seeded canonical correlation analysis

Since the standard CCA application requires the inversion of Σ̂x and Σ̂y in practice, it is not plausible
for high-dimensional data with max(p, r) > n. In Im et al. (2014), a seeded canonical correlation
analysis approach is proposed to overcome this deficit. The seeded CCA is a two-step procedure
consisting of initialized and finalized steps. In the initialized step, the original two sets of variables are
reduced to m-dimensional pairs without loss of information on the CCA application. In the initialized
step, it is essential to force m << n. In the finalized step, the standard CCA is implemented to the
initially-reduced pairs for the repairing and orthonormality. A more detailed discussion on the seeded
CCA is as follows in the next subsections.

Development

Define a notation of S(M) as the subspace spanned by the columns of M ∈ Rp×r . Lee and Yoo (2014)
show the following relation:

S(Mx) = S(Σ−1
x Σxy) and S(My) = S(Σ−1

y Σyx). (2)

The relation in (2) directly indicates that Mx and My form basis matrices of S(Σ−1
x Σxy) and S(Σ−1

y Σyx)

and that Mx and My can be restored from Σ−1
x Σxy and Σ−1

y Σyx.
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Now, we define the following two matrices:

Rx,u1 ∈ Rp×ru1 = (Σxy, ΣxΣxy, . . . , Σu1−1
x Σxy) and

Ry,u2 ∈ Rr×pu2 = (Σyx, ΣyΣyx, . . . , Σu2−1
y Σyx). (3)

In Rx,u1 and Ry,u2 , the numbers of u1 and u2 are called termination indexes. They decide the number
of projections of Σxy and Σyx onto Σx and Σy, respectively. Also define that

M0
x,u1

∈ Rp×r = Rx,u1 (R
T
x,u1

ΣxRx,u1 )
−1RT

x,u1
Σxy and

M0
y,u2

∈ Rr×p = Ry,u2 (R
T
y,u2

ΣyRy,u2 )
−1RT

y,u2
Σyx. (4)

In Cook et al. (2007), it is shown that S(M0
x,u1

) = S(Σ−1
x Σxy) and S(M0

y,u2
) = S(Σ−1

y Σyx) in (4).
Hence M0

x,u1
and M0

y,u2
can be used to infer Mx and My, respectively. One clear advantage to use

M0
x,u1

and M0
y,u2

is no need of the inversion of Σx and Σy.

Practically, it is important to select proper values for the termination indexes u1 and u2 as they
define that ∆x,u1 = M0

x,u1+1 − M0
x,u1

and ∆y,u2 = M0
y,u2+1 − M0

y,u2
. Finally, the following measure for

increment of u1 and u2 is defined: nFx,u1 = ntrace(∆T
x,u1

Σx∆x,u1 ) and nFy,u2 = ntrace(∆T
y,u2

Σy∆y,u2 ).
Then, a proper value of u is set to have little changes in nFx,u1 and nFx,u1+1 and in nFy,u2 and nFy,u2+1.
It is not necessary that the selected u1 and u2 for M0

x,u1
and M0

y,u2
are common.

Next, the original two sets of variables of X and Y are replaced with M0 T
x,u1

X ∈ Rr and M0 T
y,u2

Y ∈
Rp. This reduction of X and Y does not cause any loss of information on CCA in the sense that
S(M0

x,u1
) = S(Mx) and S(M0

y,u2
) = S(My), and it is called initialized CCA. The initialized CCA has

the following two cases.

case 1: Suppose that min(p, r) = r << n. Then, the original X alone is replaced with M0 T
x,u1

X
and the original Y is kept.

case 2: If min(p, r) = r is not fairly smaller than n, Σxy and Σyx are replaced by their m largest
eigenvectors in the construction of Rx,u1 , Ry,u2 , M0

x,u1
and M0

y,u2
. The following two ways to

determine a proper value of m is recommended among many. One is a graphical determination
by a scree plot for eigenvalues of Σxy. The other is the number of eigenvalues whose sum is to
cover 90% or above of the total variations of Σxy.

The primary goal in the initialized step is the reduction of X and Y less than n without loss of
information on CCA. In case 1, X and Y are reduced to r-dimensional variates, while they are replaced
with the m-dimensional sets of variables in case 2. After the initialized step, r and m are fairly smaller
than n.

The next step is to conduct the standard CCA for M0 T
x,u1

X and M0 T
y,u2

Y for the repairing and
orthonormality. This CCA application is called finalized CCA. Finally, this two-step procedure for CCA
is called seeded CCA.

Partial least squares

The main goal of the two CCA methods is dimension reduction based on the joint relation of X and Y
rather than the conditional relation of Y|X. For simplicity, in this subsection, Y with r = 1 is assumed
as a response variable in a regression of Y|X.

Recall Rx,u1 in (3) and M0
x,u1

in (4):

Rx,u1 = (Σxy, ΣxΣxy, Σ2
xΣxy, . . . , Σu1−1

x Σxy) and M0
x,u1

= Rx,u1 (R
T
x,u1

ΣxRx,u1 )
−1RT

x,u1
Σxy.

According to Helland (1990), the population partial least square (PLS) with u components on the
regression of Y|X is as follows:

βu1,PLS = M0
x,u1

. (5)

It is noted that this PLS representation in (5) is equivalent to the canonical matrix for X via the seeded
CCA.
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Illustration of seedCCA package

Outline of seedCCA package

The methods discussed in the previous section are implemented through the main function seedCCA.
Its arguments are as follows.

seedCCA(X, Y, type="seed2", ux=NULL, uy=NULL, u=10, eps=0.01, cut=0.9, d=NULL, AS=TRUE,
scale=FALSE)

The main function seedCCA returns “seedCCA” class and three subclasses depending on the values
of type. The values of type and its resulting subclasses are as follows.

type="cca": standard CCA (max(p, r) < n and min(p, r) > 1) / “finalCCA” subclass

type="cca": ordinary least squares (max(p, r) < n and min(p, r) = 1) / “seedols” subclass

type="seed1": seeded CCA with case1 (max(p, r) ≥ n) / “finalCCA” subclass

type="seed2": seeded CCA with case2 (max(p, r) ≥ n) / “finalCCA” subclass

type="pls": partial least squares (p ≥ n and r < n) / “seedpls” subclass

The function seedCCA prints out estimated canonical coefficient matrices for all subclasses, and addi-
tionally does canonical correlations for “finalCCA” subclasses, although it produces more outputs. For
details, the readers are recommended to run ?seedCCA after loading the seedCCA package. It should
be noted that the seedCCA package must be loaded before using all functions in the package.: of CCA
and corpcor (Schafer et al. (2017)).

For illustration purpose, three data sets will be considered. Pulp data is used for the standard CCA,
which is available from the author’s webpage (http://home.ewha.ac.kr/~yjkstat/pulp.txt). For
the seeded CCA, along with the comparison with the regularized CCA and the partial least squares,
cookie and nutrimouse in seedCCA package will be illustrated.

Standard CCA: pulp data

Pulp data is measurements of properties of pulp fibers and the paper made from them. It contains two
sets of variables with 62 sample sizes. The first set, Y, is for the pulp fiber characteristics, which are
arithmetic fiber length, long fiber fraction, fine fiber fraction, and zero spans tensile. The second set, X,
is regarding the paper properties such as breaking length, elastic modulus, stress at failure, and burst
strength. To implement the standard CCA application, the function seedCCA with type="cca" should
be used. In this case, seeCCA results in the “finalCCA” subclass. The function requires two matrix-type
arguments, and it returns the following five components of cor, xcoef, ycoef, Xscores and Yscores.
The first component is cor is the sample canonical correlations. The next two ones, xcoef, and ycoef,
are the estimated canonical matrices for X and Y. The last two components, which are Xscores and
Yscores, are the estimated canonical variates for X and Y. A command plot(object) constructs a plot
of the cumulative correlations against the number of canonical pairs. The plot(object) will provide a
90% reference line as default, and users can change the reference line with plot(object,ref=percent).

## loading pulp data
> pulp <- read.table("http://home.ewha.ac.kr/~yjkstat/pulp.txt", header=TRUE)
> Y <- as.matrix(pulp[,1:4])
> X <- as.matrix(pulp[,5:8])

## standard CCA for X and Y
> fit.cca <- seedCCA(X, Y, type="cca")
NOTE: The standard CCA is fitted for the two sets.

> names(fit.cca)
[1] "cor" "xcoef" "ycoef" "Xscores" "Yscores"

## plotting cumulative canonical correlation
> par(mfrow=c(1, 2))
> plot(fit.cca, ref=80)
> plot(fit.cca)
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Figure 1: Cumulative canonical correlation plot in pulp data in Section 3.2

## first two canonical pairs
> X.cc <- fit.cca$Xscores[,1:2]
> Y.cc <- fit.cca$Yscores[,1:2]

According to Figure 1(a) and (b), with 80% cumulative canonical correlations, two canonical pairs are
enough, while three canonical pairs should be good with the default 90%.

Ordinary least squares: pulp data

If the dimension of either X or Y is equal to one, the estimated canonical coefficient matrix from
the standard CCA is equivalent to that from ordinary least squares. In such case, the command
seedCCA(X,Y[,1],type="cca") results in the ordinary least squares estimate, which is “seedols” sub-
class. The output of "seedols" has three components, which are the estimated coefficients and
the two sets of variables. For example, assume that a regression study of arithmetic fiber length,
which is the first column of Y, given X is of specific interest. It should be noted that the order
of seedCCA(X,Y[,1],type="cca") and seedCCA(Y[,1],X,type="cca") does not matter, and any of
them yields the same results. Also, the commands of coef(object) and fitted(object) return the
estimated coefficients and fitted values from the ordinary least squares, respectively.

## extracting arithmatic fiber from Y
> fit.ols <- seedCCA(X, Y[, 1], type="cca")
NOTE: One of the two sets are 1-dimensional, so a linear regression via ordinary least
square is fitted.

> names(fit.ols)
[1] "coef" "X" "Y"

> coef(fit.ols)
> fitted(fit.ols)

Seeded CCA (case 1): cookie data

The biscuit dough data set called cookie in seedCCA comes from the experiment of analyzing the
composition of biscuits by NIR spectroscopy. Two sets of variables are obtained from 72 biscuit
samples. The first set of variables is wavelengths measured by spectroscopy. In the original data set,
wavelengths at 700 different points from 1100 to 2798 nanometers (NM) at the steps of 2nm were
measured. However, since some of the figures seemed to contain little information, wavelengths from
1380nm to 2400 at an interval of 4nm were analyzed. The second set of variables is the percentages of
four ingredients: biscuits- fat, sucrose, dry flour, and water. Since the 23rd and 61st samples in the
data set were believed to be outliers, they were deleted from the data set. The standard CCA is not
applicable because of p = 256 > n = 72, and case 1 of the seeded CCA should be fitted, considering
that n = 72 >> r = 4.

The basic command for this is seedCCA(X,Y,type="seed1"), which results in “finalCCA” subclass.
Regardless of the order of X and Y, the lower dimensional set alone is reduced in the initial step.
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Therefore, seedCCA(X,Y,type="seed1") and seedCCA(Y,X,type="seed1") basically produce the same
seeded CCA results. For type="seed1", the values of the options of ux, uy, u, eps, and AS affect the
implementation, whose defaults are NULL, NULL, 10, 0.01, and TRUE, respectively.

Option u controls the maximum number of projections unless both ux and uy are specified. The
option ux=k works only when the dimension of the first set X is bigger than that of the second set Y.
Then, the maximum number of projections becomes the value given in ux=k. The option uy works
in the opposite way to ux. The options of AS=TRUE and eps control automatic termination of the
projections before reaching the maximum given in u, ux, or uy. The projection is terminated if the
increment gets less than the value given in eps. Then, the first candidate value, which satisfies the
stopping criteria, is suggested as a proper value of projections. If any of ux, uy, and u are specified not
enough to guarantee the automatic stopping, a notice is provided to increase it.

After running seedCCA(X,Y,type="seed1"), a plot for the proper selection of u is automatically
constructed, and a blue vertical bar in the plot is the suggested value of u.

## loading cookie data
> data(cookie)
> myseq<-seq(141, 651, by=2)
> A <- as.matrix(cookie[-c(23, 61), myseq])
> B <- as.matrix(cookie[-c(23, 61), 701:704])

## seedec CCA with case 1
> fit.seed1.ab <- seedCCA(A, B, type="seed1") ## the first set A has been initial-CCAed.
NOTE: Seeded CCA with case 1 is fitted. The set with larger dimension is initially reduced.
The first and second sets are denoted as X and Y, respectively.

> fit.seed1.ba <- seedCCA(B, A, type="seed1") ## the second set A has been initial-CCAed.
NOTE: Seeded CCA with case 1 is fitted. The set with larger dimension is initially reduced.
The first and second sets are denoted as X and Y, respectively.

> names(fit.seed1.ab)
[1] "cor" "xcoef" "ycoef" "proper.u" "initialMX0" "newX" "Y" "Xscores" "Yscores"

> names(fit.seed1.ba)
[1] "cor" "xcoef" "ycoef" "proper.u" "X" "initialMY0" "newY" "Xscores" "Yscores"

> fit.seed1.ab$xcoef[, 3] <- -fit.seed1.ab$xcoef[, 3] ## changing the sign
> fit.seed1.ab$xcoef[, 4] <- -fit.seed1.ab$xcoef[, 4] ## changing the sign

> all(round(fit.seed1.ab$cor, 5)== round(fit.seed1.ba$cor, 5))
[1] TRUE

> fit.seed1.ab$proper.u
[1] 3

> fit.seed1.ba$proper.u
[1] 3

> all(round(fit.seed1.ab$xcoef, 5) == round(fit.seed1.ba$ycoef, 5))
[1] TRUE

> fit.seed1.ab.ux <- seedCCA(A, B, type="seed1", ux=2)
The maximum number of iterations is reached. So, users must choose u bigger than 2.

> fit.seed1.ab.ux$proper.u
[1] 2

For fit.seed1.ab, the first set A is reduced in the initial step. The output component initialMX0
is the estimate of M0

x,u1
and newX is M̂0 T

x,u1
X. On the contrary, in case of fit.seed1.ba, the second

set A is initially reduced, so initialMY0 and newY are produced. So, it is observed that the canon-
ical correlations and suggested values of u from fit.seed1.ab and fit.seed1.ba are equal, not to
mention that fit.seed1.ab$xcoef and fit.seed1.ba$ycoef are the same. The selection plot for u
is reported in Figure 2, and three projections are suggested. Since ux is not given big enough in
seedCCA(A,B,type="seed1",ux=2), the following warning is given:

The maximum number of iterations is reached. So, users must choose u bigger than 2.
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Figure 2: Selection plot of u generated from seedCCA(A, B, type="seed1") in Section 3.4

Next, we change the values of ux, uy, AS, and eps. Since the usage of these options for type="seed1"
are the same as that for type="seed2" and type="pls". To measure the computing time, the tictoc
package (Izrailev (2014)) is used with Intel(R) Core(TM)i7 2.9GHz and 12GB Ram computer.

> seedCCA(A, B, type="seed1", ux=5)$proper.u
[1] 3

> seedCCA(B, A, type="seed1", eps=0.000001)$proper.u
[1] 4

> library(tictoc)
> tic()
> seedCCA(B, A, type="seed1", u=30)$proper.u
> toc()
0.03 sec elapsed

> tic()
> seedCCA(B, A, type="seed1", u=30, AS=FALSE)$proper.u
> toc()
0.29 sec elapsed

Usage of AS should be noted. With bigger choices of u and AS=FALSE, the running time of the function
will be longer.

Seeded CCA (case 2) versus Regularized CCA: nutrimouse data

The nutrimouse data was collected from a nutrition study in 40 mice (n = 40). One of two sets of
variables was expressions of 120 genes measured in liver cells by microarray technology. The other set
of variables was concentrations of 21 hepatic fatty acids(FA) measured through gas chromatography.
In addition, the forty mice are cross-classified based on two factors, genotype and diet. There are
two genotypes, wild-type (WT) and PPARα deficient (PPARα) mice and five diets: corn and colza oils
(50/50 REF), hydrogenated coconut oil for a saturated FA diet (COC), sunflower oil for ω6 FA-rich
diet (SUN), linseed oil for ω3-rich diet (LIN) and corn/colza/enriched fish oils (42.5/42.5/15, FISH).
The nutrimouse data is contained in the seedCCA package.

In this data, case 2 of the seeded CCA should be used because min(120, 21) is relatively big
compared to n = 40. Then, case 2 of the seeded CCA requires to choose how many eigenvectors of Σ̂xy
should be enough to replace it. This is another tuning parameter for case 2 of the seeded CCA along
with the number of projections. The option cut in seedCCA controls automatic selection of the number
of eigenvectors of Σ̂xy. The option cut=α determines a set of the eigenvectors whose cumulative
proportions of their corresponding eigenvalues is bigger than equal to α. For the set of eigenvectors to
be chosen conservatively, we set the default of cut at 0.9. Also, users can directly give the number of
eigenvectors using d. Unless d is NULL, the option cut is discarded. This means that cut works only
when d=NULL. If users want to use d, then a function covplot should be run first. The function covplot
has the option mind, which set the number of the eigenvalues to show their cumulative percentages.
Its default is NULL, and then it becomes min(p, r). The function returns the eigenvalues, the cumulative
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Figure 3: Scree plots for the selection of sets of eigenvectors to replace cov(X, Y) generated from
covplot(X, Y, mind=10) in Section 3.5

percentages, and the number of the eigenvectors to account for 60%, 70%, 80%, and 90% of the total
variation along with the scree plot of the eigenvalues.

The results of the seeded and regularized CCAs are compared. Since the regularized CCA is
necessary to choose proper values of the two parameters, we compare running times for the automatic
searches for the regularized and seeded CCAs via the tictoc package. For seedCCA, we use the default
value of cut.

> library(CCA)
> library(tictoc)

## loading nutrimouse data
> data(nutrimouse)
> X <- scale(as.matrix(nutrimouse$gene))
> Y <- scale(as.matrix(nutrimouse$lipid))

## determining the number of the eigenvectors of cov(X,Y) with cut=0.9
> tic("SdCCA")
> fit.seed2 <- seedCCA(X, Y)
> toc()
SdCCA: 0.13 sec elapsed

## finding the optimal values of lambda1 and lambda2 for RCCA
> tic("Regularized CCA")
> res.regul <- estim.regul(X, Y, plt=TRUE, grid1=seq(0.0001, 0.2, l=51), grid2=seq(0, 0.2, l=51))
> toc()
Regularized CCA 819.58 sec elapsed

## scree plot of cov(X, Y)
> names(covplot(X, Y, mind=10))
[1] "eigenvalue" "cum.percent" "num.evecs"

> names(fit.seed2)
[1] "cor" "xcoef" "ycoef" "proper.ux" "proper.uy" "d" "initialMX0" "initialMY0"
[9] "newX" "newY" "Xscores" "Yscores"

> fit.seed2$d
[1] 3

Since type="seed2" reduces the dimensions of X and Y at the initialized CCA step, the output compo-
nents of initialMX0, initialMY0, newX and newY and d are reported.

The plot generated from covplot(X,Y,mind=10) is given in Figure 3. According to Figure 3, the
first two, three, and four eigenvalues account for 79.6%, 91.8%, and 95.9% of the total variation of Σ̂xy,
respectively. Using 90% conservative guideline, it is determined that the first three largest eigenvectors
replace Σ̂xy well enough.
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Figure 4: Selection plot of ux and uy generated from seedCCA(X, Y) in Section 3.5

The selection plot of ux and uy is given in Figure 4. The figure suggests that ux and uy are equal to
7 and 6, respectively.

Now we compare the parameter selection time. For the regularized CCA, it can be done with
estim.regul, and users must provide a small enough range for them to reduce the computing time.
The resulted optimal λ1 and λ2 are 0.168016 and 0.004, respectively. With Intel(R) Core(TM)i7 2.9GHz
and 12GB Ram, the seeded CCA took 0.32 seconds, while 819.58 seconds, around 13.5 minutes, lapsed
for the regularized CCA. This difference is really huge, so time consumed in the selection of ux, uy and,
d is trivially small compared to the regularized CCA. This is a clear desirable aspect and advantage of
the seeded CCA over the regularized one.

Next, we compare the first two pairs of estimated canonical variates. The results shown in Figures
5–6 are equivalent to the analysis discussed in González et al. (2008).

## Extracting the first two pairs of canonical variates
> sx1 <- fit.seed2$Xscores[, 1]
> sx2 <- fit.seed2$Xscores[, 2]
> sy1 <- fit.seed2$Yscores[, 1]
> sy2 <- fit.seed2$Yscores[, 2]

## fitting the regularized CCA
> res.rcc <- rcc(X, Y, 0.168016, 0.004)
> RCCA.X <- X%*%res.rcc$xcoef
> RCCA.Y <- Y%*%res.rcc$ycoef
> rx1 <- RCCA.X[,1]
> rx2 <- RCCA.X[,2]
> ry1 <- RCCA.Y[,1]
> ry2 <- RCCA.Y[,2]

par(mfrow=c(1,2))
> with(plot(rx1, ry1, col=c(2,4)[genotype], pch=c(1,2)[genotype],
+ main="1st pair from RCCA", xlab="rx1", ylab="ry1"), data=nutrimouse)
> with(legend(-1.4, 1.4, legend=levels(genotype), col=c(2,4), pch=c(1,2), cex=1.5),
+ data=nutrimouse)
> with(plot(-sx1, -sy1, col=c(2,4)[genotype], pch=c(1,2)[genotype],
+ main="1st pair from seedCCA", xlab="sx1", ylab="sy1"), data=nutrimouse)
> with(legend(-1.5, 1.6, legend=levels(genotype), col=c(2,4), pch=c(1,2), cex=1.5),
+ data=nutrimouse)

> par(mfrow=c(1,2))
> with(plot(rx2, ry2, col=c(1:4,6)[diet], pch=c(15,16,17,18,20)[diet], cex=1.5,
+ main="2nd pair from RCCA", xlab="rx2", ylab="ry2"), data=nutrimouse)
> with(legend(-2.3, 1.9, legend=levels(diet), col=c(1:4,6), pch=c(15:18,20)),
+ data=nutrimouse)
> with(plot(sx2, sy2, col=c(1:4,6)[diet], pch=c(15,16,17,18,20)[diet], cex=1.5,
+ main="2nd pair from seedCCA", xlab="sx2", ylab="sy2"), data=nutrimouse)
with(legend(-2.5, 1.9, legend=levels(diet), col=c(1:4,6), pch=c(15:18,20)),
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Figure 5: the first pair of canonical variates from regularized CCA and seeded CCA marked with
genotype in Section 3.5
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diet in Section 3.5

+ data=nutrimouse)

According to Figures 5–6, the first pair of canonical variates from both CCAs distinguish genotype
very well, but their second pairs marked with diet are quite complex. To have more insight into
the results for the second pair on a diet, multivariate analysis of variance is fitted. Further pairwise
comparison is done via lsmeans (Lenth (2016)) with level 5% and p-values adjusted by false discovery
rate Benjamini and Hochberg (1995).

> library(lsmeans)
> fit2r <- manova(cbind(rx2, ry2)~diet, data=nutrimouse)
> fit3sd <- manova(cbind(sx2, sy2)~diet, data=nutrimouse)
> test( contrast( lsmeans(fit2r, "diet"), "pairwise"), side = "=", adjust = "fdr")
contrast estimate SE df t.ratio p.value
coc - fish -2.3842686 0.2684019 35 -8.883 <.0001
coc - lin -2.1749708 0.2684019 35 -8.103 <.0001
coc - ref -1.4881111 0.2684019 35 -5.544 <.0001
coc - sun -1.6582635 0.2684019 35 -6.178 <.0001
fish - lin 0.2092978 0.2684019 35 0.780 0.4897
fish - ref 0.8961575 0.2684019 35 3.339 0.0040
fish - sun 0.7260051 0.2684019 35 2.705 0.0175
lin - ref 0.6868597 0.2684019 35 2.559 0.0214
lin - sun 0.5167073 0.2684019 35 1.925 0.0780
ref - sun -0.1701524 0.2684019 35 -0.634 0.5302

Results are averaged over the levels of: rep.meas
P value adjustment: fdr method for 10 tests
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> test( contrast (lsmeans(fit3sd, "diet"), "pairwise"), side = "=", adjust = "fdr")
contrast estimate SE df t.ratio p.value
contrast estimate SE df t.ratio p.value
coc - fish -2.14838660 0.3163067 35 -6.792 <.0001
coc - lin -1.79396325 0.3163067 35 -5.672 <.0001
coc - ref -1.07697196 0.3163067 35 -3.405 0.0035
coc - sun -1.03303440 0.3163067 35 -3.266 0.0041
fish - lin 0.35442334 0.3163067 35 1.121 0.3001
fish - ref 1.07141463 0.3163067 35 3.387 0.0035
fish - sun 1.11535219 0.3163067 35 3.526 0.0035
lin - ref 0.71699129 0.3163067 35 2.267 0.0371
lin - sun 0.76092885 0.3163067 35 2.406 0.0308
ref - sun 0.04393756 0.3163067 35 0.139 0.8903

Results are averaged over the levels of: rep.meas
P value adjustment: fdr method for 10 tests

For the regularized CCA, the “coc” diet is different from the others. Moreover “fish” differs from
“sun”. However, the other pairwise comparisons are quite mixed. It is determined that there are
no significant differences between “fish-lin”, “lin-sun”, and “ref-sun”. On the contrary, reasonable
pairwise comparison results come from the seeded CCA. Like the others, the “coc” diet is different
from the others. Furthermore, “fish-lin” is not significantly different, and “ref-sun” is concluded to be
similar. Fish oil is known to contain ω3, and linseed oil is designed for it. Therefore, this conclusion
would be reasonable. Also, the reference oil diet consists of corn and colza oil, which is known to
contain ω6. Since sun-flower oil is, indeed, for ω6-rich diet, this result is also reasonable. In this regard,
the seeded CCA results would be preferable to the regularized CCA.

Partial least square application with nutrimouse data

With the nutrimouse data, consider a regression of the first one, “ C14.0” in concentrations of 21 hepatic
fatty acids given expressions of 120 genes measured in liver cells. In this case, partial least squares
is a front-runner choice. Then, to obtain the partial least square estimator in seedCCA, one needs
to implement seedCCA(X,Y,type="pls"). This results in “seedpls” subclass. An important matter
in partial least squares is that the first set of the variable must be predictors. The response variable
can be either univariate or multivariate. Option u is recommended to set reasonably small because
the estimated coefficients are reported up to the value given in u. If scale=TRUE, the predictors are
standardized to have zero sample means and the sample correlation matrix.

The estimated coefficients and fitted values by partial least square can be obtained via coef(object,u=NULL)
and fitted(object,u=NULL). The default of u in both coef and fitt is NULL. In both functions, usage
of u is equivalent. If u=k is specified, only the estimated coefficients and fitted values computed from
k projections are reported. All of the coefficient estimates and fitted values are reported up to u, if
u=NULL.

For type="pls", the automatic procedure to suggest a proper value of projections is not conducted.
For the “seedpls” subclass, plot(object) suggests a proper value of projections along with other
output components. If the terminating condition is not satisfied before reaching the value of u, then
plot(object) provides a caution to increase the value of u.

> data(nutrimouse)
> Y <- as.matrix(nutrimouse$lipid)
> X <- as.matrix(nutrimouse$gene)
> Y1 <- as.matrix(Y[, 1]) ## univariate response
> Y12 <- as.matrix(Y[, 1:2]) ## multivariate response

## fitting partial least square and obtaining the estimated coefficient vector
> fit.pls1.10 <- seedCCA(X, Y1, u=10, type="pls")
> fit.pls1.3 <- seedCCA(X, Y1, u=3, type="pls", scale=TRUE)

> names(fit.pls1.10)
[1] "coef" "u" "X" "Y" "scale"

> names(fit.pls1.10$coef)
[1] u=1" "u=2" "u=3" "u=4" "u=5" "u=6" "u=7" "u=8" "u=9" "u=10"
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> names(fit.pls1.3$coef)
[1] "u=1" "u=2" "u=3"

> fit.pls1.3$scale
[1] TRUE

> par(mfrow=c(1,2))
> plot(fit.pls1.10)
$proper.u
[1] 6
$nFu
[1] 6.344725e+00 2.383108e+00 1.681329e+00 2.669394e+00 1.853061e+00 3.217472e-04 5.296046e-05
[8] 6.017641e-06 4.895905e-07 3.117371e-08
$u
[1] 10
$eps
[1] 0.01
> title("fit.pls1.10")

> plot(fit.pls1.3)
Caution: The terminating condition is NOT satisfied. The number of projections should be bigger than 3.
$proper.u
[1] 3
$nFu
[1] 6.344725 2.383108 1.681329
$u
[1] 3
$eps
[1] 0.01
> title("fit.pls1.3")

> names(fitted(fit.pls1.10))
[1] "u=1" "u=2" "u=3" "u=4" "u=5" "u=6" "u=7" "u=8" "u=9" "u=10"

> fitted(fit.pls1.10, u=6)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.137 0.368 0.317 0.346 0.492 1.620 0.722 0.003 0.065 1.212 0.458 0.640 0.272 0.397
15 16 17 18 19 20 21 22 23 24 25 26 27 28

-0.103 0.426 1.448 0.287 1.264 0.517 2.803 0.914 0.043 0.028 0.234 0.598 0.875 0.434
29 30 31 32 33 34 35 36 37 38 39 40

0.694 0.666 2.958 2.350 0.620 0.958 0.495 2.790 0.701 0.168 0.767 0.535

> fit.pls.m <- seedCCA(X, Y12, u=5, type="pls")
> dim(fit.pls.m$coef$'u=1')
[1] 120 2

The selection of projections for two partial least squares by seedCCA(X,Y1,u=10,type="pls") and
seedCCA(X,Y1,u=3,type="pls",scale=TRUE) is given in Figure 7. According to Figure 7, the proper
value of projection is suggested at 6 for fit.pls1.10 object, while the termination condition is not
satisfied for fit.pls1.3 object, so a caution statement is given.

Discussion

When a study between two sets of variables, saying (X ∈ Rp, Y ∈ Rr), is of primary interest, canonical
correlation analysis (CCA; Hotelling (1936)) is still popularly used in explanatory studies. The CCA
has successful application in many science fields such as chemometrics, pattern recognition, genomic
sequence analysis, and so on.

The recently developed seedCCA package implements a collection of CCA methodologies includ-
ing the standard CCA application, seeded CCA, and partial least squares. The package enables us to fit
CCA to large-p and small-n data. The paper provides a complete guide for the package to implement
all the methods, along with three real data examples. Also, the seeded CCA application results are
compared with the regularized CCA in the existing CCA package.
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Figure 7: Selection plot of u generated from seedCCA(X, Y1, u=10, type="pls")(left) and seedCCA(X,
Y1, u=3, type="pls", scale=TRUE)(right) in Section 3.6

It is believed that the package, along with the paper, will contribute to high-dimensional data
analysis in various scientific field practitioners and that the statistical methodologies in multivariate
analysis become more fruitful.
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