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Provenance of R’s Gradient Optimizers
by John C Nash

Abstract Gradient optimization methods (function minimizers) are well-represented in both the
base and package universe of R (R Core Team, 2019). However, some of the methods and the codes
developed from them were published before standards for hardware and software were established,
in particular the IEEE arithmetic (IEEE, 1985). There have been cases of unexpected behaviour or
outright errors, and these are the focus of the histoRicalg project. A summary history of some of the
tools in R for gradient optimization methods is presented to give perspective on such methods and
the occasions where they could be used effectively.

The task

Ignoring exogenous data (assume that it is supplied when needed), our problem is to find

argminx f (x)

where x is our set of n parameters and f () is a scalar real function of those parameters. The gradient
of f (x) is the vector valued function

g(x) = ∂ f (x)/∂x.

The Hessian of f (x) is the matrix of second partial derivatives

H(x) = ∂2 f (x)/∂x2.

We will be considering methods for this problem where a gradient can be supplied, though many of
the R tools will use a numerical approximation if needed.

General approaches

The so-called Newton method tries to find x that satisfies the first order conditions for an extremum,
namely,

H(x)δ = −g(x)

and then updates x to (x + δ).

The main objections to this approach are

• the Hessian is generally expensive to compute, though because an accurate Hessian is so useful,
I strongly recommend that workers examine whether it can be computed in a reasonable way;

• it is necessary to apply safeguards on the computations and the size of δ to avoid cases where
the Hessian is near singular, poorly computed, or the assumptions of the method are violated.

There are four main approaches to simplifying the Newton method:

• The variable metric or quasi-Newton methods use clever ways to improve an approximate
Hessian or Hessian inverse while finding lower points x on the function surface, using only
function and gradient values computed in the process.

• Truncated Newton methods use a linear conjugate gradient method to inexactly solve the
Newton equations, thereby reducing memory requirements.

• Conjugate gradient methods aim to search "downhill" for better points on the functional surface
using only recent gradient information. The traditional first search direction is that of steepest
descents, namely, −g, the negative gradient. After a line search selects a suitable step size, we
have a new point, a new function value that is lower than the initial point, and a new gradient.
Using this information and possibly the last search direction, we compute a new search direction
that is somehow "conjugate" to the previous one. For a problem with n parameters, of course,
there are only n independent search directions, so we need to restart the procedure on or before
that step. Indeed there are a number of strategies for deciding when to restart the conjugacy
cycle. And, of course, there are a number of choices for updating the search direction and for
performing the line search.
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• Limited Memory BFGS methods use reduced memory approaches to variable metric methods,
but can also be thought of as extending conjugate gradients methods by using several rather
than the two most recent gradients.

The histoRicalg project

The R Consortium awarded some modest funding for histoRicalg, a project to document and transfer
knowledge of some older algorithms used by R and by other computational systems. These older
codes are mainly in Fortran, but some are in C, with the original implementations possibly in other
programming languages. This effort was prompted by finding some apparent bugs in codes, which
could be either from the original programs or else the implementations. Two examples in particular
– in nlm() and in optim--L-BFGS-B – gave motivation for the project. We welcome interest and
participation, and have a project repository https://gitlab.com/nashjc/histoRicalg, where several
aspects of this work are in various stages of completion.

The function optim() in base-R has three of the optimizers from the 1990 edition of Compact
Numerical Methods (Nash, 1979), abbreviated CNM henceforth. Given the dates of their conception,
these are an obvious focus for histoRicalg. The direct-search Nelder-Mead method (Nelder and Mead,
1965) is in fact the default solver i.e., it uses method="Nelder-Mead" in the optim() call and does not
require a gradient routine to be supplied. In fact, Nelder-Mead will be used even if a gradient routine
is included unless some other method is suggested. The choice if method="BFGS" is the variable metric
method of Fletcher (1970). The third choice from CNM is method="CG" for conjugate gradients, which
is a combination of several similar approaches.

In this article on the provenance of the methods, the details will be discussed only in general terms.
However, it is critical to get those details right.

Provenance of the R optim–BFGS solver

If the source code for base R is in a directory that is named R-X.Y.Z (in my case 3.5.1 when this
vignette was started) then the calling routine for optim() is src/library/stats/R/optim.R, but this
uses the .External2 method to call src/library/stats/src/optim.c, where the function vmmin is
called. However, the source for vmmin is in src/appl/optim.c. I will venture that having two files of
the same name in different directories is tempting an error.

I will use optim--BFGS when using the call method="BFGS" in optim(), and similar abbreviations for
the other methods. To use optim--BFGS, the relevant code is a C routine vmmin. In src/appl/optim.c,
above this routine is the comment

{,comment}
/* BFGS variable-metric method, based on Pascal code
in J.C. Nash, `Compact Numerical Methods for Computers', 2nd edition,
converted by p2c then re-crafted by B.D. Ripley */

As author of this work, I can say that the code used is Algorithm 21 of (Nash, 1979). In the First
Edition, this was a step-and-description code which was replaced by Turbo Pascal in the Second Edition.
The methods were worked out mainly on a Data General Nova which had partitions of between 3.5 K
and 8 K bytes accessible via a 10 character per second teletype. The floating point available had a 24
bit mantissa, in a single level of precision with (as I recall) no guard digit. Programming was in a fairly
early and simple form of BASIC.

This machine was at Agriculture Canada. In the late 1970s, it was replaced with a Data General
Eclipse, but largely the facilities were the same, except the floating point went to 6 hexadecimal digits
with no guard digit. I also implemented some codes on HP 9830 and Tektronix 4051 "programmable
calculators". A Fortran translation was made as NASHLIB, which ran mainly on IBM System 360 class
computers, but also was tested at least partially on Univac 1108, ICL 1906A and Xerox-Honeywell
CP-6 machines. The codes were distributed as Fortran source code. See https://gams.nist.gov/cgi-
bin/serve.cgi/Package/NASHLIB. I have been informed that the servers supporting this link will not
be replaced when they fail.

NASHLIB dates from the 1979-1981 period, though the methods were developed in the mid-
1970s at Agriculture Canada to support economic modelling. In 1975, I received an invitation (from
Brian Ford) to collaborate with the Numerical Algorithms Group in Oxford, and Agriculture Canada
generously allowed me two 6-week periods to do so. During the second of these, in the tail end of
the hurricane of January 1976, I drove to Dundee to meet Roger Fletcher. He took an interest in the
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concept of a program that used minimal memory. We found a printout of the Fortran for the method
in (Fletcher, 1970), and with a ruler and pencil, Roger and I scratched out the lines of code that were
not strictly needed. As I recall, the main deletion was the cubic interpolation line search. The resulting
method simply used backtracking with an acceptable point condition.

On my return to Ottawa, I coded the method in BASIC and made two small changes:

• I managed to re-use one vector, thereby reducing the storage requirement to a square matrix
and five vectors of length n, the number of parameters.

• The very short floating point precision seemed to give early termination on some problems.
Often this was due to failure of the update of the approximate inverse Hessian when an
intermediate quantity indicated the approximate Hessian was not positive definite. As a quick
and dirty fix, I simply checked if

the current search was a steepest descent. If so, then the method is terminated. If not, the inverse
Hessian approximation is reset to the unit matrix and the cycle restarted. This "quick fix" has, of course,
become permanent. My experience over the years suggests it is a reasonable compromise, but the
possibility of better choices is still open.

Evolution of the code

Considering the simplicity of the method, it is surprising to me how robust and efficient it has shown
itself to be over the last four decades.

The code does allow of some variations:

• the organization of some of the calculations may have an influence on outcomes. There are
opportunities for accumulation of inner products, and the update of the inverse Hessian ap-
proximation involves subtractions, so digit cancellation could be an issue.

• tolerances for termination, for the "acceptable point" (Armijo) condition, and other settings
could be changed. However, I have found the original settings seem to work as well or better
than other choices I have tried.

In the mid-1980s, the BASIC code was extended to allow for masks (fixed parameters) and bounds
(or box) constraints on the parameters (Nash and Walker-Smith, 1987). This adds about 50% more
code, as well as vector storage for the constraints and indices to manage them (essentially 3 ∗ n), but
does permit a much wider variety of problems to be solved. Even for unconstrained problems that
may have difficult properties, imposing loose bounds can prevent extreme steps in the parameters. To
add this capability to R, I put the package Rvmmin on CRAN in 2011 (Nash, 2018). This code is, as of
2018, part of a new optimx (Nash and Varadhan (2011), Nash (2014a)) package on CRAN. It is entirely
written in R.

Extensions and related codes

There are other R packages with related capability. In particular, ucminf (Nielsen and Mortensen,
2012) is based on the Fortran code of Nielsen (2000). This appears to use a very similar algorithm to
optim--BFGS, but employs a more sophisticated line search. This package does not, however, allow for
constraints in the form of bounds or masks.

The approximate inverse Hessian could also be saved and used to provide some estimates of
parameter dispersion. Clearly, the use of a steepest descents direction for the final line search in Rvmmin
before termination means that the penultimate approximation must be saved. In practice, I have
found the approximate inverse Hessian bears little or no resemblance to the actual Hessian. This may
be because the construction of the approximation maintains the positive definite condition. It is an
open question whether the approximation has any utility.

Package mize (Melville, 2017) offers some options to build a gradient minimizer and could possibly
allow some algorithmic comparisons to be made, but I have not had the time to delve into this.

Rather more sophisticated codes are part of base R in nlm() and nlminb(). The former is a
polyalgorithm of quasi-Newton type for unconstrained problems (Schnabel et al., 1985). The latter
allows bounds constraints and is drawn from the PORT library (Fox, 1997) code by Gay (1990), but
there are a number of common ideas in both methods. For users, these two functions generally work
well with the default settings of their controls. This is fortunate, as even though I am fairly experienced
with such programs, I hesitate to play with the numerous control parameters.
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To underline this last sentence, there was a thread on the R-help mailing list in 2010 (see, for ex-
ample, https://stat.ethz.ch/pipermail/r-help/2010-July/245182.html) noting that the default
behaviour of nlminb() at that time was to assume a positive objective function such as a sum of
squares. Thus the function would terminate if a non-positive evaluation occurred. This has since been
corrected, but was present in R for some years, possibly resulting in erroneous results being published.

Provenance of the R optim–CG and related solvers

The original Algorithm 22 of CNM which was converted to C and included in R as the method="CG"
choice for optim() by Brian Ripley is an approach that has never felt quite right to me. And I am the
author! It offers three different search direction updates using the type element of the control list. The
default is type=1 for the Fletcher-Reeves update (Fletcher and Reeves, 1964), with 2 for Polak–Ribiere
(Polak and Ribiere, 1969) and 3 for Beale–Sorenson (Sorenson, 1969), (Beale, 1972).

In the mid-1980’s I updated the CG code (in BASIC) to handle bounds and masks. Then in 2009
I incorporated the Yuan/Dai (Dai and Yuan, 2001) search direction update that melds the different
formulas used in optim--CG. This gives a remarkably effective method that retains a surprisingly short
code, and entirely in R, with a version that handles bounds and masks. This is package Rcgmin (Nash,
2014c).

There has been a flurry of work on CG-related optimizers in the last decade or so, in particular
associated with Hager and Zhang. See (Hager and Zhang, 2006a) and (Hager and Zhang, 2006b).
I have experimentally wrapped the CG-Descent code, but as yet do not feel the program is ready
for production release. However, collaboration on this and related codes I have been exploring is
welcome.

Provenance of the R optim–L-BFGS-B and related solvers

The base-R code lbfgsb.c (at the time of writing in R-3.5.2/src/appl/) is commented:

/* l-bfgs-b.f -- translated by f2c (version 19991025).

From ?optim:
The code for method ‘"L-BFGS-B"’ is based on Fortran code by Zhu,
Byrd, Lu-Chen and Nocedal obtained from Netlib (file 'opt/lbfgs_bcm.shar')

The Fortran files contained no copyright information.

Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995) A limited
memory algorithm for bound constrained optimization.
\emph{SIAM J. Scientific Computing}, \bold{16}, 1190--1208.

*/

The paper (Byrd et al., 1995) builds on (Lu et al., 1994). There have been a number of other workers
who have followed-up on this work, but R code and packages seem to have largely stayed with codes
derived from these original papers. Though the date of the paper is 1995, the ideas it embodies were
around for a decade and a half at least, in particular in (Nocedal, 1980) and (Liu and Nocedal, 1989).
The definitive Fortran code was published as (Zhu et al., 1997). This is available as toms/778.zip on
http://www.netlib.org.

Besides the ACM TOMS code, there are two related codes from the Northwestern team on NETLIB:

• http://netlib.org/opt/lbfgs_um.shar is for unconstrained minimization, while

• http://netlib.org/opt/lbfgs_bcm.shar handles bounds constrained problems.

To these are attached references (Liu and Nocedal, 1989) and (Byrd et al., 1995) respectively, most
likely reflecting the effort required to implement the constraints.

The unconstrained code has been converted to C under the leadership of Naoaki Okazaki (see http:
//www.chokkan.org/software/liblbfgs/, or the fork at https://github.com/MIRTK/LBFGS). This has
been wrapped for R as the lbfgs package (Coppola et al., 2014). I have included this as one of the
solvers callable from package optimx.

A side-by-side comparison of the main subroutines in the two downloads from Netlib (toms and
opt) unfortunately shows a lot of differences. I have not tried to determine if these affect performance
or are simply cosmetic.
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More seriously perhaps, there were some deficiencies in the code(s), and in 2011 Nocedal’s team
published a Fortran code with some corrections (Morales and Nocedal, 2011). Since the R code in C
predates this by many years, I prepared package lbfgsb3 to wrap the Fortran code. However, I did
not discover any test cases where the optim--L-BFGS-B and lbfgsb3 gave different output different,
though I confess that the tests I ran are not exhaustive.

In 2016, I was at a Fields Institute optimization conference in Toronto for the 70th birthday of Andy
Conn. By sheer serendipity, Nocedal did not attend the conference, but sat down next to me at the
conference dinner. When I asked him about the key changes, he said that the most important one was
to fix the computation of the machine precision, which was not always correct in the 1995 code. Since
R gets this number as .Machine$double.eps, the offending code is irrelevant.

Within (Morales and Nocedal, 2011), there is also reported an improvement in the subspace
minimization that is applied in cases of bounds constraints. In the few tests I have applied with
bounds constraints, I have yet to see any substantive differences, but welcome communcation should
such be found.

Using Rcpp (see Eddelbuettel and François (2011) and the Fortran code in package lbfgs3, Matthew
Fidler developed package lbfgsb3c. As this provides a more standard call and return than lbfgsb3,
Fidler and I have unified the two packages, but are still checking and cleaning the package at the time
of writing.

Provenance of truncated Newton codes for R

There are (at least) two implementations of truncated Newton methods available.

nloptr--tnewton() is a wrapper of the NLopt truncated Newton method translated to C and
somewhat modified by Steven G. Johnson in the nlopt project (https://nlopt.readthedocs.io/
en/latest/NLopt_Algorithms/) from Fortran code due to Ladislav Luksan (http://www.cs.cas.cz/
luksan/subroutines.html). The many layers and translations make it difficult to unravel the particu-
lar details in this code, and I do not feel confident to provide a competent overview.

optimx--tn() and optimx--tnbc() are translations from Matlab source of the Truncated Newton
codes of Stephen Nash (Nash, 1983) that I prepared, initially in package Rtnmin. The code is entirely
in R. In implementing the codes, the principal awkwardness was in making available to different
functions a quite extensive set of variables relating to the function and gradient. My choice was to
use the list2env() function to create an environment to hold this data. Note the survey of truncated
Newton methods by Stephen in (Nash, 2000).

Discussion

This story of some of the function minimizers available to R users is not finished. There are certain to
be related methods in packages or collections I have overlooked. Moreover, I have not had the time or
energy to fully explore some of the items I have mentioned. Nevertheless, how codes come about is
important to understanding their strengths and weaknesses and in maintaining them to a level that
users can reliably use them. Such matters were a large consideration for Nash (2014b), but have been
more explicitly addressed by histoRicalg.

When evaluating such tools, it is important to consider what is wanted. Personally, I value
reliability as more important than speed. By this, I mean

• the program will always proceed towards a minimum

• on termination it will provide useful information on the result obtained, such as whether there
are good indications of a satisfactory result, or that we have halted for some reason such as
exhausting a computational limit.

"Speed" is, of course, desirable, but how this is measured is debatable. Execution time is notoriously
sensitive to hardware and software environments, as well as to the way functions and gradients are
coded. Number of function and gradient counts is an alternative, since these computations often are
the bottleneck of optimization. However, there are some methods where the optimization calculations
are demanding either in cycles or memory.

Readers may note that I have highlighted that some codes are written entirely in R. This allows for
customization or in-line use of faster code, and I have exchanged notes with several workers wanting
to speed up time-consuming optimizations by such ideas. Profiling and debugging tools are generally
quite challenging to use when there are multiple programming languages involved. All-R code may
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also be much easier to read and maintain if well-coded, especially as the programming language
support for "old" languages diminishes.

These considerations are, of course, why we have a number of methods, and why Ravi Varadhan
and I prepared the optimx package with tools to allow for comparison of several methods. But please,
do use the comparison for evaluating and choosing a method, not for production minimization by a
"try everything" strategy. As new methods are released, we hope to include them in the set optimx
can call via a unified interface that is very close to the optim() function. We note that a somewhat
different approach to unifying methods is available in the ROI package of Hornik et al. (2011).
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