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spinifex: An R Package for Creating a
Manual Tour of Low-dimensional

Projections of Multivariate Data
by Nicholas Spyrison and Dianne Cook

Abstract Dynamic low-dimensional linear projections of multivariate data collectively known as tours
provide an important tool for exploring multivariate data and models. The R package tourr provides
functions for several types of tours: grand, guided, little, local and frozen. Each of these can be viewed
dynamically, or saved into a data object for animation. This paper describes a new package, spinifex,
which provides a manual tour of multivariate data where the projection coefficient of a single variable
is controlled. The variable is rotated fully into the projection, or completely out of the projection. The
resulting sequence of projections can be displayed as an animation, with functions from either the
plotly or gganimate packages. By varying the coefficient of a single variable, it is possible to explore
the sensitivity of structure in the projection to that variable. This is particularly useful when used
with a projection pursuit guided tour to simplify and understand the solution. The use of the manual
tour is applied particle physics data to illustrate the sensitivity of structure in a projection to specific
variable contributions.

Introduction

Exploring multivariate spaces is a challenging task, increasingly so as dimensionality increases. Tradi-
tionally, static low-dimensional projections are used to display multivariate data in two dimensions
including principal component analysis, linear discriminant spaces or projection pursuit. These are
useful for finding relationships between multiple variables, but they are limited because they show
only a glimpse of the high-dimensional space. An alternative approach is to use a tour (Asimov, 1985)
of dynamic linear projections to look at many different low-dimensional projections. Tours can be
considered to extend the dimensionality of visualization, which is important as data and models exist
in more than 3D. The package tourr (Wickham et al., 2011) provides a platform for generating tours.
It can produce a variety of tours, each paired with a variety of possible displays. A user can make
a grand, guided, little, local or frozen tour, and display the resulting projected data as a scatterplot,
density plot, histogram, or even as Chernoff faces if the projection dimension is more than 3.

This work adds a manual tour to the collection. The manual tour was described in Cook and Buja
(1997) and allows a user to control the projection coefficients of a selected variable in a 2D projection.
The manipulation of these coefficients allows the analyst to explore their sensitivity to the structure
within the projection. As manual tours operate on only one variable at a time, they are particularly
useful once a feature of interest has been identified.

One way to identify “interesting” features is with the use of a guided tour (Cook et al., 1995-09).
Guided tours select a very specific path, which approaches a projection that optimizes an objective
function. The optimization used to guide the tour is simulated annealing (Kirkpatrick et al., 1983). The
direct optimization of a function allows guided tours to rapidly identify interesting projection features
given the relatively large parameter-space. After a projection of interest is identified, an analyst can
then use the “finer brush” of the manual tour to control the contributions of individual variables to
explore the sensitivity they have on the structure visible in the projection.

The paper is organized as follows. Section 2.2 describes the algorithm used to perform a radial
manual tour as implemented in the package spinifex. Section 2.2.2 explains how to generate an
animation of the manual tour using the animation frameworks offered by plotly (Sievert, 2020) and
gganimate (Pedersen and Robinson, 2020). Package functionality and code usage following the order
applied in the algorithm follows in section 2.3.3. Section 2.4 illustrates how this can be used for
sensitivity analysis applied to multivariate data collected on high energy physics experiments (Wang
et al., 2018). Section 2.5 summarizes this paper and discusses potential future directions.

Algorithm

The algorithm to conduct a manual tour interactively, by recording mouse/cursor motion, is described
in detail in Cook and Buja (1997). Movement can be in any direction and magnitude, but it can also be
constrained in several ways:
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¢ radial: fix the direction of contribution, and allow the magnitude to change.

* angular: fix the magnitude, and allow the angle or direction of the contribution to vary.

e horizontal, vertical: allow rotation only around the horizontal or vertical axis of the current 2D
projection.

The algorithm described here produces a radial tour as an animation sequence. It takes the current
contribution of the chosen variable, and using rotation brings this variable fully into the projection,
completely removes it, and then returns to the original position.

Notation
The notation used to describe the algorithm for a 2D radial manual tour is as follows:

¢ X, the data, an n x p numeric matrix to be projected to 2D.

e B = (B;, By), any 2D orthonormal projection basis, p x 2 matrix, describing the projection from
R? = RR?. This is called this the “original projection” because it is the starting point for the
manual tour.

* k, is the index of the variable to manipulate, called the “manip var”.
¢ ¢, a 1D basis vector of length p, with 1 in the k-th position and 0 elsewhere.

* Mis a p x 3 matrix, defining the 3D subspace where data rotation occurs and is called the
manip(ulation) space.

¢ R, the 3D rotation matrix, for performing unconstrained 3D rotations within the manip space,
M.

e 0, the angle of in-projection rotation, for example, on the reference axes; cy, sy are its cosine and
sine.

* ¢, the angle of out-of-projection rotation, into the manip space; cy, 54 are its cosine and sine. The
initial value for animation purposes is ¢;.

¢ U, the axis of rotation for out-of-projection rotation orthogonal to e.

¢ Y, the resulting projection of the data through the manip space, M, and rotation matrix, R.

The algorithm operates entirely on projection bases and incorporates the data only when making
the projected data plots, in light of efficiency.

Steps
Step 0) Set up

The flea data (Lubischew (1962)), available in the tourr package, is used to illustrate the algorithm. The
data contains 74 observations on 6 variables, which are physical measurements made on flea beetles.
Each observation belongs to one of three species.

An initial 2D projection basis must be provided. A suggested way to start is to identify an
interesting projection using a projection pursuit guided tour. Here the holes index is used to find a
2D projection of the flea data, which shows three separated species groups. Figure 1 shows the initial
projection of the data. The left panel displays the projection basis (B) and can be used as a visual guide
of the magnitude and direction that each variable contributes to the projection. The right panel shows
the' projec.ted data, Y'[n/ 2] = ).([n/ p]B[r{, 2)- The cqlor fand s_hz%pe of pqints are mapped to the flea .species.
This plot is made using the view_basis() function in spinifex, which generates a ggplot2 (Wickham,
2016) object.

Step 1) Choose manip variable

In figure 1 the contribution of the variables tars1 and aede2 mostly contrast the contribution of the
other four variables. These two variables combined contribute in the direction of the projection where
the purple cluster is separated from the other two clusters. The variable aede?2 is selected as the manip
var, the variable to be controlled in the tour. The question that will be explored is: how important is
this variable to the separation of the clusters in this projection?
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Figure 1: Initial 2D projection: representation of the basis (left) and resulting data projection (right)
of standardized flea data. The color and shape of data points are mapped to beetle species. The
basis was identified using a projection pursuit guided tour, with the holes index. The contribution
of the variables aede2 and tars1 approximately contrasts the other variables. The visible structure in
the projection are the three clusters corresponding to the three species. Produced with the function
view_basis().

Step 2) Create the 3D manip space

Initialize the coordinate basis vector as a zero vector, e, of length p, and set the k-th element to 1. In the
example data, aede? is the fifth variable in the data, so k = 5, set es = 1. Use a Gram-Schmidt process
to orthonormalize the coordinate basis vector on the original 2D projection to describe a 3D manip
space, M.

e+ 1
e’[kp’ y=e- (e,B1)B; — (e, B;)B,
M|, 3 = (By, By, e”)

The manip space provides a 3D projection from p-dimensional space, where the coefficient of the
manip var can range completely between [0, 1]. This 3D space serves as the medium to rotate the
projection basis relative to the selected manipulation variable. Figure 2 illustrates this 3D manip space
with the manip var highlighted. This representation is produced by calling the view_manip_space ()
function. This diagram is purely used to help explain the algorithm.

Step 3) Defining a 3D rotation

The basis vector corresponding to the manip var (red line in Figure 2), can be operated like a lever
anchored to the origin. This is the process of the manual control, that rotates the manip variable into
and out of the 2D projection (Figure 3). As the variable contribution is controlled, the manip space
rotates, and the projection onto the horizontal projection plane correspondingly changes. This is a
manual tour. Generating a sequence of values for the rotation angles produces a path for the rotation
of the manip space.

For a radial tour, fix 0, the angle describing rotation within the projection plane, and compute a
sequence for ¢, defining movement out of the plane. This will change ¢ from the initial value, ¢, the
angle between e and its shadow in B, to a maximum of 0 (manip var fully in projection), then to a
minimum of 77/2 (manip var out of projection), before returning to ¢;.

Rotations in 3D can be defined by the axes they pivot on. Rotation within the projection, 6, is
rotation around the Z axis. Out-of-projection rotation, ¢, is the rotation around an axis on the XY
plane, U, orthogonal to e. Given these axes, the rotation matrix, R can be written as follows, using
Rodrigues’ rotation formula (originally published in Rodrigues (1840)):
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Figure 2: Illustration of a 3D manip space, this space is rotated effectively changing the contribution of
the manip variable, aede2 in the example data. The blue circle and variable map lies on the projection
plane. The red circle, orthogonal to the projection plane, illustrates the manipulation space and how
the manip var can be controlled and how this affects the variable contribution back onto the projection
plane. The other variables are omitted from the manipulation dimension for simplicity. Picturing the
other variables in that dimension reveals the intuition that rotating one variable performs a constrained
rotation on the others. This is illustrated with the view_manip_space() function.

R[3, 3] = I3 +spU + (1- C¢)U2
100 0 0 cosy —co(l—cp)  s3(1—cyp) 0
=10 1 0|+]| 0 0 sgsp| + |—cpse(1—cy) —s3(1—cg) O
0 0 1 —CQS¢ —SQS¢ 0 0 0 C¢ -1
cgc(,; + sg —cpsg(1 —cy) —cosg
= | —cose(1—cyp) s3cp + 3 —505¢
CoS¢ 5S¢ Cp
where

U = (uy, uy, uz) = (9, —c4,0)

0 —Uy Uy 0 0 —cp
= | uy 0 —uy| =10 0 —s9
—Uy Uy 0 cg sg O

Step 4) Creating an animation of the radial rotation

The steps outlined above can be used to create any arbitrary rotation in the manip space. To use these
for sensitivity analysis, the radial rotation is built into an animation where the manip var is rotated
fully into the projection, completely out, and then back to the initial value. This involves allowing ¢ to
vary between 0 and 7/2, call the steps ¢;.

#> function ("_class™ = NULL, ~_inherit™ = NULL, ...)

# {

#> e <- new.env(parent = emptyenv())

#> members <- list(...)

#> if (length(members) != sum(nzchar(names(members)))) {

#> abort("All members of a ggproto object must be named.")
#> 3}
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Figure 3: Snapshots of a radial manual tour manipulating aede2: (1) original projection, (2) full
contribution, (3) zero contribution, (4) back to original.

#> if (length(members) > @) {

#> list2env(members, envir = e)

#> }

#> “_inherit® <- substitute( _inherit™)

#> env <- parent.frame()

#> find_super <- function() {

#> eval("_inherit~, env, NULL)

#> 3

#> super <- find_super()

#> if (lis.null(super)) {

#> if (!is.ggproto(super)) {

#> abort(" _inherit™ must be a ggproto object."”)
#> 3

#> e$super <- find_super

#> class(e) <- c("_class™, class(super))
#> }

#> else {

#> class(e) <- c("_class™, "ggproto", "gg")
#> 3

#> e

# )

#> <bytecode: 0@x7f9c6f227828>
#> <environment: namespace:ggplot2>

1. Set initial value of ¢ and 6: ¢; = cos ™1 \/8%1 + B,%z, 0 = tan~! g—g. Where ¢, is the angle
between e and its shadow in B.

2. Set an angle increment (Ay) that sets the step size for the animation, to rotate the manip var
into and out of the projection. (Note: Using angle increment, rather than a number of steps, to
control the movement, is consistent with the tour algorithm as implemented in the tourr).

3. Step towards 0, where the manip var is completely in the projection plane.

4. Step towards 71/2, where the manip variable has no contribution to the projection.

5. Step back to ¢.

In each of the steps 3-5, a small step may be added to ensure that the endpoints of ¢ (0, 7/2, ¢1)
are reached.

Step 5) Projecting the data

The operation of a manual tour is defined on the projection bases. Only when the data plot needs to be
made is the data projected into the relevant basis.

0 _ (i)
Y, 31 = Xin, iMip, 3R 3 5

where RE;

columns of Y. Show the projected data for each frame in sequence to form an animation.

>3] is the incremental rotation matrix, using ¢;. To make the data plot, use the first two

Figure 4 illustrates a manual tour sequence having 15 steps. The projection axes are displayed on
the top half, which corresponds to the projected data in the bottom half. When aede2 is removed from
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Table 1: Summary of available functions.

Type Function Description

construction create_manip_space forms the 3D space of rotation

construction rotate_manip_space performs 3D rotation

construction manual_tour generates sequence of 2D frames

render array2df turn the tour path array into long form, for plotting
render render_ render long form as a ggplot2 objection for animation
render render_plotly render the animation as a plotly object (default)
render render_gganimate render the animation as a gganimate object
animation play_tour_path composite function animating the specified tour path
animation play_manual tour = composite function animating the specified manual tour
specialty print_manip_space table of the rotated basis and manip space

specialty oblique_frame display the reference axes of a given basis

specialty view_manip_space illustrative display of any manip space

the projection, the purple cluster overlaps with the green cluster. This suggests that aede2 is important
for distinguishing between these species.

Tours are typically viewed as an animation. The animation of this tour can be viewed online at

https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/flea_radialtour_mvar5.
gif. The page may take a moment to load. Animations can be produced using the function
play_manual_tour().

Package structure and functionality

This section describes the functions available in the package, and how to use them.

Installation

The spinifex is available from CRAN, and can be installed by:

## Install from CRAN
install.package("spinifex")
## Load into session
library("spinifex™)

Also see the shiny app for understandign and the vignette for basic usage:

## Shiny app for visualizing basic application
run_app("intro")

## View the code vignette
vignette("spinifex_vignette")

The development version can be installed from github:

## Optionally install latest developmention version from GitHub
remotes::install_github("nspyrison/spinifex")

Functions

Table 1 lists the primary functions and their purpose. These are grouped into four types: construction
for building a tour path, render to make the plot objects, animation for running the animation, and
specialty for providing illustrations used in the algorithm description.
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Figure 4: Radial manual tour manipulating aede2 of standardized flea data. The axis for aede2
increases in contribution to the projection, from its initial value to 1, decreasing to 0 and then returning
to the initial value. This effects the separation between the purple and green clusters. This shows that
aede? is important for distinguishing the purple species, because the separation disappears when
aede? is not contributing to the projection.
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Usage

Using the flea data from the tourr package, we will illustrate generating a manual tour to explore the
sensitivity of the cluster structure is to the variable aede2.

library(spinifex)
## Standardized flea data
f_data <- tourr::rescale(fleal, 1:61)
## Guided tour path, holes index
f_path <- save_history(f_data, guided_tour(holes()))
## Local extrema found
f_basis <- matrix(f_path[,, max(dim(f_path)[3])], ncol=2)
## Categorical class variable
f_clas <- factor(flea$species)
## Manip var, number of the variable to alter
f_mvar <- 5
## Anglular dist between frames (radians)
step_size <- .26
## Render and play animate, as plotly object by default
play_manual_tour(data = f_data,
basis = f_basis,
manip_var = f_mvar,
angle = step_size,
col = f_clas,
pch = f_clas)

The play_manual_tour () function is a composite function handling interaction between manual_tour (),
array2df (), and render_plotly(). This will generate an html animation using plotly. Switching the
renderer to render_gganimate() alternatively creates an animated gif. Each of these formats allows for
the animation to be made available on a web site, or directly visible in an html formatted document.

Making illustrations

The function oblique_frame can be used to show a projection of the basis, or with the data overlaid.
For example, the plots in Figures 1 and 3 were made with code similar to this:

## View a basis and projected data
oblique_frame(basis = f_basis,
data = f_data,
color = f_clas,
shape = f_clas)

An illustration of the manip space (as shown in Figure 2) is made with the view_manip_space function,
as follows:

## Displays the projection plane and manipulation space for the
view_manip_space(basis = f_basis,

manip_var = f_mvar,

lab = colnames(f_data))

Application

Wang et al. (2018) introduces a new tool, PDFSense, to visualize the sensitivity of hadronic experiments
to nucleon structure. The parameter-space of these experiments lies in 56 dimensions, § € R*, and
are visualized as 3D subspaces of the 10 first principal components in linear (PCA) and non-linear
(t-SNE) embeddings.

Cook et al. (2018) illustrates how to learn more about the structures using a grand tour. Tours can
better resolve the shape of clusters, intra-cluster detail, and better outlier detection than PDFSense
& TFEP (TensorFlow embedded projections) or traditional static embeddings. This example builds
from here, illustrating how the manual tour can be used to examine the sensitivity of structure in
a projection to different parameters. The specific 2D projections passed to the manual tour were
provided in their work.
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The data has a hierarchical structure with top-level clusters; DIS, VBP, and jet. Each cluster is
a particular class of experiments, each with many experimental datasets which, each have many
observations of their own. In consideration of data density, we conduct manual tours on subsets of the
DIS and jet clusters. This explores the sensitivity of the structure to each of the variables in turn and
we present the subjectively best and worst variable to manipulate for identifying dimensionality of
the clusters and describing the span of the clusters.

Jet cluster

The jet cluster resides in a smaller dimensionality than the full set of experiments with four principal
components explaining 95% of the variation in the cluster (Cook et al., 2018). The data within this 4D
embedding is further subsetted, to ATLAS7old and ATLAS7new, to focus on two groups that occupy
different parts of the subspace. Radial manual tours controlling contributions from PC4 and PC3 are
shown in Figures 5 and 6, respectively. The difference in shape can be interpreted as the experiments
probing different phase-spaces. Back-transforming the principal components to the original variables
can be done for a more detailed interpretation.

When PC4 is removed from the projection (Figure 5) the difference between the two groups is
removed, indicating that it is important for distinguishing experiments. However, removing PC3 from
the projection (Figure 6) does not affect the structure, indicating it is not important for distinguishing
experiments. Animations for the remaining PCs can be viewed at the following links: PC1, PC2, PC3,
and PC4. It can be seen that only PC4 is important for viewing the difference in these two experiments.

DIS cluster

Following Cook et al. (2018), to explore the DIS cluster, PCA is recomputed and the first six principal
components, explaining 48% of the full sample variation, are used. The contributions of PC6 and PC2
are explored in Figures 7 and 8, respectively. Three experiments are examined: DIS HERA1+2 (green),
dimuon SIDIS (purple), and charm SIDIS (orange).

Both PC2 and PC6 contribute to the projection similarly. When PC6 is rotated into the projection,
variation in the DIS HERA1+2 is greatly reduced. When PC2 is removed from the projection, dimuon
SIDIS becomes more clearly distinct. Even though both variables contribute similarly to the original
projection, their contributions have quite different effects on the structure of each cluster, and the
distinction between clusters. Animations of all of the principal components can be viewed from the
links: PC1, PC2, PC3, PC4, PC5, and PCé.

Discussion

Dynamic linear projections of numeric multivariate data, tours, play an important role in data visual-
ization; they extend the dimensionality of visuals to peek into high-dimensional data and parameter
spaces. This research has taken the manual tour algorithm, specifically the radial rotation, used in
GGobi (Swayne et al., 2003-08-28) to interactively rotate a variable into or out of a 2D projection, and
modified it to create an animation that performs the same task. It is most useful for examining the
importance of variables, and how the structure in the projection is sensitive or not to specific variables.
This functionality available in package spinifex. The work complements the methods available in the
tourr package.

This work was motivated by problems in physics, and thus the usage was illustrated on data
comparing experiments of hadronic collisions, to explore the sensitivity of cluster structure to different
principal components. These tools can be applied quite broadly to many multivariate data analysis
problems.

The manual tour is constrained in the sense that the effect of one variable is dependent on the
contributions of other variables in the manip space. However, this can be useful to simplify a projection
by removing variables without affecting the visible structure. Defining a manual rotation in high
dimensions is possible using Givens rotations and Householder reflections as outlined in Buja et al.
(2005). This would provide more flexible manual rotation, but more difficult for a user because they
have the choice (too much choice) of which directions to move.

Another future research topic could be to extend the algorithm for use on 3D projections. With
the current popularity and availability of 3D virtual displays, this may benefit the detection and
understanding of the higher dimensional structure, or enable the examination of functions.

Having a graphical user interface would be useful for making it easier and more accessible to
a general audience. This is possible to implement using shiny (Chang et al.,, 2020). The primary
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Figure 5: Snapshots of a radial manual tour of PC4 within the jet cluster, with color indicating
experiment type: ATLAS7new (green) and ATLAS7old (orange). When PC4 is removed from the
projection (frame 10) there is little difference between the groups, suggesting that PC4 is important for
distinguishing the experiments.
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Figure 6: Snapshots of a radial manual tour of PC3 within the jet cluster, with color indicating

experiment type: ATLAS7new (green) and ATLAS70ld (orange). When the contribution from PC3 is
changed there is little change to the structure of the two groups, suggesting that PC3 is not important
for distinguishing the experiments.
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Figure 7: Snapshots of a radial manual tour exploring the sensitivity PC6 has on the structure of the
DIS cluster, with color indicating experiment type: DIS HERA1+2 (green), dimuon SIDIS (purple), and
charm SIDIS (orange). DIS HERA1+2 is distributed in a cross-shaped plane, charm SIDIS occupies the
center of this cross, and dimuon SIDIS is a linear cluster crossing DIS HERA1+2. As the contribution
of PC6 is increased, DIS HERA1+2 becomes almost singular in one direction (frame 5), indicating that
this experiment has very little variability in the direction of PCé.
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Figure 8: Snapshots of a radial manual tour exploring the sensitivity PC2 to the structure of the
DIS cluster, with color indicating experiment type: DIS HERA1+2 (green), dimuon SIDIS (purple),
and charm SIDIS (orange). As contribution from PC2 is decreased, dimuon SIDIS becomes more
distinguishable from the other two clusters (frames 10-14), indicating that in its absence PC2 is
important.
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purposes of the interface would be to allow the user to interactively change the manip variable easily,
and the interpolation step for more or less detailed views.
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