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npordtests: An R Package of
Nonparametric Tests for Equality of
Location Against Ordered Alternatives
by Bulent Altunkaynak and Hamza Gamgam

Abstract Ordered alternatives are an important statistical problem in many situation such as increased
risk of congenital malformation caused by excessive alcohol consumption during pregnancy life test
experiments, drug-screening studies, dose-finding studies, the dose-response studies, age-related
response. There are numerous other examples of this nature. In this paper, we present the npordtests
package to test the equality of locations for ordered alternatives. The package includes the Jonckheere-
Terpstra, Beier and Buning’s Adaptive, Modified Jonckheere-Terpstra, Terpstra-Magel, Ferdhiana-
Terpstra-Magel, KTP, S and Gaur’s Gc tests. A simulation study is conducted to determine which test
is the most appropriate test for which scenario and to suggest it to the researchers.

Introduction

Ordered alternative tests are employed to evaluate if a quantitative feature is linked to an ordinal trait,
as in the association between ammonia levels and the severity of hepatic encephalopathy (Ong et al.,
2003), the association of abnormal MRI findings with bone-marrow-related disease (Bredella et al.,
2006), and the association between single nucleotide polymorphisms in human genes and quantitative
phenotypes (Hoffmeyer et al., 2000; Cheng et al., 2005; Kawaguchi et al., 2012; Uchiyama et al., 2012;
Tan et al., 2014; Yorifuji et al., 2018)

There are parametric and nonparametric methods to test ordered alternatives. Nevertheless, the
statistical validity of parametric methods depends upon distributional assumptions, such as normality
or equality of variances. However, nonparametric tests do not necessitate assumptions about the
distribution of the data and are robust to outliers and influential values (Lin et al., 2017b).

Several nonparametric tests were developed to test the equality of locations against ordered
alternatives. These tests can be grouped under three headings such as linear combination of two
sample statistics, linear rank statistics, and statistics based on k-tuplet.

The tests proposed by Terpstra (1952), Jonckheere (1954), Puri (1965), Govindarajulu and Haller
(1971), Tryon and Hettmansperger (1973), Cuzick (1985), Le (1988), Neuhäuser et al. (1998), Gaur
(2014), Shan et al. (2014), Gaur (2017) are based on a linear combination of two sample statistics with
pairs of samples of k(k − 1)/2. The problem of testing homogeneity against ordered alternatives
was considered for the first time by Terpstra (1952) and Jonckheere (1954). They suggested the
nonparametric test (JT) based on a sum of k(k− 1)/2 Mann-Whitney (MW) statistics for the ordered
alternatives.

Linear rank statistics consist of a combination of the rank scores obtained from the combined data
and the regression constants. These statistics were originally named as the Left Skewed (LS) and Right
Skewed (RS) scores as proposed by Hogg et al. (1975). Gastwirth (1965), Buning and Kossler (1996),
and Beier and Buning (1997) proposed Short-Tailed (ST), Long-Tailed (LT), and Wilcoxon (WS) scores,
respectively. Beier and Buning (1997) proposed a nonparametric Adaptive Test (AT) for the choice of
suitable scores based on the underlying distribution.

The k-tuplet tests are based on the information simultaneously obtained across all samples. These
tests are determined by adding N∗ = n1 × n2 × ...× nk functions. That is, k-tuplet includes one
observation from each group. Terpstra and Magel (2003) proposed a test k-tuplet statistic (TM), which
is based on the indicator function. Ferdhiana et al. (2008) proposed a test statistic (FTM), which can be
viewed as a generalization of the TM test. The FTM test uses Kendall correlation coefficient based on
the following data: (1, X1i1 ), (2, X2i2 ), ..., (k, Xkik

), where Xij i = 1, 2, ..., k, j = 1, 2, ..., ni is the sample
data. Here, k is the number of groups and ni denotes the number of observations in the ith group.
Similarly, Terpstra et al. (2011) proposed KTP test, which uses Spearman correlation coefficient instead
of Kendall correlation coefficient.

JT is the classical and the most common ordered test. It is included in some packages such as
clinfun (Venkatraman, 2018), jtGWAS (Lin et al., 2017a), fastJT (Lin et al., 2017b), kSamples (Scholz
and Zhu, 2018), StatCharrms (Swintek et al., 2018), PMCMRplus (Pohlert, 2018). However, the other
ordered alternative tests considered in this study are not included in any CRAN package other than
npordtests.

However, there may be more efficient tests than JT for different data scenarios; nonetheless, a
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perusal of literature does not yield a comprehensive simulation study in which ordered alternative
tests are compared for various scenarios. The nonparametric ordered alternative tests have recently
been adapted for such big data structures as gene data and machine learning (Lin et al., 2017b), which
clearly indicates the significance such a simulation study has.

Our study contributes significantly to the related literature in two ways: 1) This study includes most
of the ordered alternative tests in the literature, introduced as an R package, npordtests (Altunkaynak
and Gamgam, 2019) including the JT, Modified JT, LS, RS, ST, LT, WS, AT, TM, FTM, KTP, S, and Gaur’s
Gc tests, and presents open source codes. The npordtests package is publicly available on the CRAN.
2) This study presents a comprehensive simulation study that compares ordered alternative tests in
terms of power, which helps researchers choose the most appropriate test for a given scenario.

The organization of this paper is presented as follows. After the introduction, firstly, we give the
theoretical information about the nonparametric tests for ordered alternatives included in this study.
Secondly, we introduce the npordtests package and demonstrate the applicability of the package
using two benchmark datasets. Thirdly, a simulation study is conducted to determine which test is the
most appropriate test for which scenario and to give some advice to the researchers. The results of this
simulation study and general comments are given in the final section.

Ordered alternative tests

Let Xi1, Xi2, ..., Xini , i = 1, ..., k be random independent samples with size ni from k populations with
continuous cumulative distribution function Fi(x) = F((x − θi)/σi), where −∞ < θi < +∞ and
σi > 0 are location and scale parameters, respectively. The null hypothesis to identify whether the
populations have common continuous cumulative distribution function can be expressed as

H0 : F1(x) = F2(x) = ... = Fk(x) ∀x. (1)

A number of test statistics have been proposed to test the null hypothesis in (1) under certain
assumptions and for different forms of H1. The ordered alternative states that the distributions are
stochastically ordered, i.e.,

H1 : F1(x) ≥ F2(x) ≥ ... ≥ Fk(x) ∃x : F1(x) > Fk(x) . (2)

Under H1, Xi tends to be smaller than Xi+1, i = 1, 2, ..., k− 1, since Fi(x) ≥ Fi+1(x) implies that
P(Xi ≤ Xi+1) ≥ 1/2. For the special case of the location model, (2) is equivalent to (Terpstra et al.,
2011)

H1 : θ1 ≤ θ2 ≤ ... ≤ θk (θ1 < θk). (3)

Similarly, the ordered alternative hypothesis

H1 : F1(x) ≤ F2(x) ≤ ... ≤ Fk(x) ∃x : F1(x) < Fk(x) (4)

states that Xi tends to be larger than Xi+1, i = 1, 2, ..., k − 1, since Fi(x) ≤ Fi+1(x) implies that
P(Xi ≥ Xi+1) ≥ 1/2 under H1 given in (4). For the location model, (4) is equivalent to

H1 : θ1 ≥ θ2 ≥ ... ≥ θk (θ1 > θk). (5)

Jonckheere-Terpstra test

This classic nonparametric test is typically used for ordered alternatives and was proposed by Terpstra
(1952) and Jonckheere (1954). It is known that the Mann-Whitney statistic defines as

Uij =
ni

∑
l=1

nj

∑
m=1

I(Xil < Xjm);

where ni and nj are the sample sizes for the ith and jth populations, respectively, and I(ψ) = 1 if ψ is
true and 0 otherwise. The test statistic JT corresponds to the sum of the k(k− 1)/2 Mann-Whitney
statistics, i.e.,

JT =
k−1

∑
i=1

k

∑
j=i+1

Uij. (6)

The statistic JT is approximately normally distributed under H0. The mean and variance of this
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statistic are

E(JT) =
N2 −

k
∑

i=1
n2

i

4
and

V(JT) =
N2(2N + 3)−

k
∑

i=1
n2

i (2ni + 3)

72
,

where N = n1 + n2 + ... + nk.

Beier and Buning’s Adaptive test

This test is a two-step method based on the selection of the weight coefficients of the linear rank
statistics according to the shape of the distribution (Beier and Buning, 1997). A linear rank statistics
has the following form:

LN =
k

∑
i=1

ni

∑
j=1

cN(i)aN(Rij) (7)

where N is the combined sample size; cN(.) are the regression constants; aN(.) are the scores; Rij is the
rank of Xij in the combined data. For an ordered alternative, the following proposal is made:

cN(i) = i, i = 1, 2, ..., k.

Under H0, the mean and variance of linear rank statistics are

E(LN) = Nc̄N āN ,

and

V(LN) =
1

N − 1

k

∑
i=1

ni(cN(i)− c̄N)2
N

∑
r=1

(aN(r)− āN)2

where

c̄N =
1
N

k

∑
i=1

nicN(i)

and

āN =
1
N

N

∑
r=1

aN(r).

The distribution of a linear rank statistic converges to a normal distribution with mean E(LN) and
variance V(LN) (Hogg and Craig, 2013; Beier and Buning, 1997).

There are some suggestions for the score aN(.) according to the shape of the distribution in the
literature as follows

aLS(r) =

{
0 if r ≤ (N + 1)/2
r− (N + 1)/2 if r > (N + 1)/2

These scores are efficient for detecting shifts in distributions that are skewed to the left (Beier and
Buning, 1997).

aST(r) =


r− (N + 1)/4 if r ≤ (N + 1)/4
0 if (N + 1)/4 < r < 3(N + 1)/4
r− 3(N + 1)/4 if r ≥ 3(N + 1)/4

These scores are particularly good for detecting shifts in short-tailed distributions and were proposed
by Gastwirth (1965).

aWS(r) = r, r = 1, 2, ..., N

These scores are efficient for detecting shifts in symmetric distributions with medium to heavy tails
(Beier and Buning, 1997).

aLT(r) =


−((N/4) + 1) if r < (N/4) + 1
r− (N + 1)/2 if (N/4) + 1 ≤ r ≤ 3(N + 1)/4
(N/4) + 1 if r > 3(N + 1)/4

These scores are efficient for detecting shifts in long-tail distributions and were proposed by Buning
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and Kossler (1996).

aRS(r) =

{
r− (N + 1)/2 if r ≤ (N + 1)/2
0 if r > (N + 1)/2

These scores are efficient for detecting shifts in distributions that are skewed to the right (Hogg et al.,
1975).

The adaptive test proposed by Beier and Buning (1997) is denoted by the index of their scores. For
example, the distribution-free test based on the scores aST(.) of Gastwirth (1965), which is particularly
good for detecting a shift in short-tailed distributions, is denoted by ST. Now, the adaptive test AT is
defined by

AT =



LS if 0 ≤ Ŝ1 ≤ 0.6, Ŝ2 ≥ 1
ST if 0.6 < Ŝ1 ≤ 2, 1 ≤ Ŝ2 ≤ 1.5
WS if 0.6 < Ŝ1 ≤ 2, 1.5 < Ŝ2 ≤ 1.5
LT if 0.6 < Ŝ1 ≤ 2, Ŝ2 ≥ 2
RS if Ŝ1 ≥ 2, Ŝ2 ≥ 1

(8)

where xp is the quantile value of the combined data, and the estimation values of the skewness and
tailweight of the distribution are

Ŝ1 =
x0.975 − x0.5
x0.5 − x0.025

and
Ŝ2 =

x0.975 − x0.025
x0.875 − x0.125

.

Since the adaptive statistic is a linear rank statistic, the distribution of each of these statistics converges
to a normal distribution with mean E(LN) and variance V(LN).

Modified Jonckheere-Terpstra test

Tryon and Hettmansperger (1973) proposed the modified JT statistic to test H0 against the ordered
alternatives,

MJT =
k−1

∑
i=1

k

∑
j=i+1

(j− i)Uij, (9)

where Uij is the Mann-Whitney statistic computed for the samples from the ith and jth populations.
Neuhäuser et al. (1998) suggested that this test be used in place of the JT tests because it often has
larger powers.

This statistic has a normal distribution under H0, and its mean and variance are

E(Uij) =
1
2

ninj, ∀i 6= j

V(Uij) =
1

12
ninj(ni + nj + 1), ∀i 6= j

Cov(Uij, Uil) = Cov(Uji, Uli) =
1

12
ninjnl , if all i, j, l are different

Cov(Uij, Uli) = Cov(Uji, Uil) = −
1
12

ninjnl , if all i, j, l are different

Cov(Uij, Ulm) = 0, if all i, j, l, m are different

Terpstra-Magel test

Terpstra and Magel (2003) proposed a test statistic that does not focus on pairwise information. Instead,
they use the information present in the N∗ = n1 × n2 × ...× nk k-tuplets, where a k-tuplet includes
one observation from each treatment group. More specifically, the Terpstra–Magel (TM) test is based
on the following statistic:

TM =
n1

∑
i1=1

...
nk

∑
ik=1

I(X1i1 ≤ X2i2 ≤ ... ≤ Xkik
) (10)

where the indicator function is equal to one when X1i1 < Xkik
.

The statistic TM is approximately normally distributed under H0. The mean and variance of this
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statistic are

E(TM) =
N∗

k!
and

V(TM) = N∗
(

1
k!

)(
1− 1

k!

)
+

k−1

∑
i=1

v2
i

where

v2
i = ∑

1≤l1<...<li≤k
N∗
[

k

∏
s=1

(ns − 1)I(s 6=l1)...I(s 6=li)

]  (2(k−li)
k−li

)

2k− i

i

∏
s=1

(
2(ls − ls−1 − 1)

ls − ls−1 − 1

)
− 1

(k!)2


where l0 = 0.

Ferdhiana-Terpstra-Magel test

Ferdhiana et al. (2008) proposed FTM test statistic can be viewed as a generalization of the TM test.

FTM =
n1

∑
i1=1

...
nk

∑
ik=1

τ(X1i1 , X2i2 , ..., Xkik
) (11)

where τ(X1i1 , X2i2 , ..., Xkik
) denotes the Kendall correlation coefficient based on (1, X1i1 ), (2, X2i2 ), ...,

(k, Xkik
).

Under H0, the statistic FTM is approximately normally distributed with zero mean, and its variance
is

V(FTM) =

[
2N∗√

3k(k− 1)

]2 [ k−1

∑
r=1

k

∑
s=r+1

nr + ns + 1
nrns

+ 2
k−2

∑
r=1

1
nr

((
k
2

)
+

r2 − (2k− 1)r
2

)

− 2
k−2

∑
r=1

k−1

∑
s=r+1

k− s
ns

+ 2
k−2

∑
r=1

k−1

∑
s=r+1

k

∑
t=s+1

1
ni

]
.

KTP test

Terpstra et al. (2011) proposed the k-tuplet Terpstra-Page (KTP) test based on the statistic

KTP =
n1

∑
i1=1

...
nk

∑
ik=1

rs(X1i1 , X2i2 , ..., Xkik
) (12)

where rs(X1i1 , X2i2 , ..., Xkik
) denotes the Spearman rank correlation coefficient based on (1, X1i1 ),

(2, X2i2 ), ..., (k, Xkik
).

Under H0, the statistic KTP is approximately normally distributed, and its mean and variance are

E(KTP) = 0

, and

V(KTP) =
144(N∗)2

k2(k2 − 1)2 S,

where

S =
k−1

∑
i1=1

k

∑
i2=i1+1

[
(i2 − i1)

2(ni1 + ni2 + 1)
12ni1 ni2

]

+
k−2

∑
i1=1

k−1

∑
i2=i1+1

k

∑
i3=i2+1

[
(i2 − i1)(i3 − i1)

6ni1

+
(i3 − i2)(i1 − i2)

6ni2

+
(i1 − i3)(i2 − i3)

6ni3

]

In the KTP test, Spearman’s rank correlation coefficient rs is given by the following formula:
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rs = 1−
6

k
∑

i=1
d2

i

k(k2 − 1)

where di represents the difference between the rank given to the value of the variable for each item of
the particular data with yi. This formula is applied in cases when there are no tied observations. The
formula to use when there are tied observations is:

rs =

k
∑

i=1
(yi − ȳ)(xi − x̄)√

k
∑

i=1
(yi − ȳ)2

k
∑

i=1
(xi − x̄)2

where (y, x) = (1, X1i1 ), (2, X2i2 ), ..., (k, Xkik
) and xi is rank of Xi. Note that if all of xi values is equal,

then ∑(xi − x̄)2 is zero. This result is also similar for Kendall correlation coefficient. Therefore, FTM
and KTP tests cannot be applied to this type data. See Lehmann’s data used in the demonstration of
the npordtests package.

S test

Shan et al. (2014) proposed the new rank-based nonparametric test by incorporating the actual
differences as follows

S =
k−1

∑
i=1

k

∑
j=i+1

Dij (13)

where

Dij =
ni

∑
l=1

nj

∑
m=1

Zijlm, Zijlm = (Rjm − Ril)I(Xjm > Xil)

and Ril(Rjm) is the rank of observation Xil(Xjm) in the combined data.

Under H0, the statistic S has a normal distribution with the following mean and variance

E(S) =
N + 1

6

k−1

∑
i=1

k

∑
j=i+1

ninj

V(S) =
(

N2 + N
12

− (N + 1)2

36

) k−1

∑
i=1

k

∑
j=i+1

ninj

+ 2

k−1

∑
i=1

ni

( k
∑

j=i+1
nj

2

)
+

k

∑
i=2

ni

(i−1
∑

j=1
nj

2

)CovA + 2

k−2

∑
i=1

k−1

∑
j=i+1

k

∑
l=j+1

ninjnl

CovB

where CovA = 2N2+N−1
90 , and CovB = −7N2−11N−4

360 .

Gaur’s Gc test

Let (w1, w2, ..., wk−1) be suitably selected real positive constants. Gaur (2017) proposed the Gc statistic
to test H0 against the ordered alternatives,

Gc =
k−1

∑
g=1

wgVg,g+1 (14)

where

Vg,h =

[(
ng

c

)(
nh
c

)]−1

∑
0

φgh(Xgα1 , ..., Xgαc ; Xhβ1
, ..., Xhβc )
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for g < h; h = 1, 2..., k; ∑
0

is the sum over all combinations (α1, ..., αc) of c integers selected from

(1, ..., ng) and over all combinations (β1, ..., βc) of c integers selected from (1, ..., nh);

φgh(Xgα1 , ..., Xgαc ; Xhβ1
, ..., Xhβc ) =


1 if max(Xgα1 , ..., Xgαc ) ≤ min(Xhβ1

, ..., Xhβc )
−1 if max(Xhβ1

, ..., Xhβc ) ≤ min(Xgα1 , ..., Xgαc )
0 otherwise

.

The distribution of Gaur’s statistic Gc converges to a normal distribution with zero mean under
H0, and the variance of this statistic are obtained as follows

V(Gc) = w>∑ w

where w> = (w1, w2, ..., wk−1) and ∑ = [σgh] is the variance-covariance matrix, such as:

σgh =



(
(c−1)!c!
(2c−1)!

)2 ( 1
λg

+ 1
λg+1

)
δc for g = h = 1, 2, ..., k− 1

−
(
(c−1)!c!
(2c−1)!

)2
δc

λg+1
for h = g + 1; g = 1, 2, ..., k− 2

−
(
(c−1)!c!
(2c−1)!

)2
δc
λg

for h = g− 1; g = 2, ..., k− 1

0 otherwise

where

δc = −1 +
4

4c− 1

2c−1

∑
i=c

2c−1

∑
j=c

(
2c− 1

i

)(
2c− 1

j

)(
4c− 2
i + j

)−1
.

It is recommended to use Gc tests for light-tailed and moderate-tailed distributions with c = 2,
whereas for heavy-tailed and long-tailed distributions with large values of c. The optimum weights
wg’s in the Gc test are

wg =
g(k− g)

2k
, g = 1, 2, ..., k− 1.

Demonstration of the npordtests package

The npordtests package includes thirteen tests and six datasets for ordered alternatives. In this section,
firstly, we introduce the datasets included in the package. Then, we demonstrate the usage of the
package by using two of these datasets. All the examples in this section should run if you type them in
exactly as printed, provided that you have the npordtests package not only installed but also loaded
into your current search path. This is done by entering

R> library(npordtests)

at the command prompt.

Datasets

Jonckheere’s data: jdata

This hypothetic data given by Jonckheere (1954) are used to test the hypothesis that the four samples
have come from the same population against the alternative that the populations are such that the
values from the samples I, II, III, IV are in an expected order of increasing value.

Lehmann’s data: lehmann

This dataset was used by Lehmann (1975) to assess if it is possible for a particular diagnostic test to be
successfully interpreted without psychological training. This dataset later became one of the classical
datasets used to investigate sequential alternatives (Beier and Buning, 1997). The data included 72
evaluators’ (21 staff members, 23 trainees and 28 undergraduate psychology majors) assessment scores
for the diagnostic test. If training and experience have any effects, the staff members could be expected
to perform the most accurately, the trainees next, and the undergraduates the least.
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Chicks’ weight data: chicks

These data are given by Desu and Raghavarao (2004) to examine the hypothesis that the chicks’ mean
weight goes up with the increase in the amount of protein. Eighteen chicks were randomly assigned to
three treatments with six chicks in each for balanced data. Treatment 1 had the diet with the lowest
level of protein; treatment 2 had the diet with a medium level of protein; and treatment 3 had the
highest level of protein. After six weeks of feeding, the values of weight gain were recorded. We
wanted to test if the mean weight gain increased with the amount of protein (Chang and Yen, 2011).

Hepatic vein waveform index data: hvwi

These data were collected by Pedersen et al. (2008) through doppler waveforms corresponding to 66
patients scheduled for a percutaneous liver needle biopsy. The waveforms were characterized using a
hepatic vein waveform index (HVWI), whereas the biopsy specimens were grouped according to the
degree of fibrosis. The hypothesis of interest was that the HVWI values would tend to decrease as the
degree of fibrosis increases (Terpstra et al., 2011).

Hypertension data: hypertension

These data presented by Dmitrienko et al. (2006) examine the effect of different drug doses on diastolic
blood pressure. The patients with hypertension were randomized into four groups with different dose
levels, 0, 10, 20, and 40 mg/day, where the group with 0 mg/day was the placebo group. The number
of the patients in each group were 17, 17, 18, and 16, respectively. The complete data can be found at
the Dmitrienko et al. (2006) or Shan et al. (2014).

Neuhauser’s data: neuhauser

These synthetic data are reported by Neuhäuser et al. (1998). The data consist of 4 groups with 10
observations in each.

In order to compare the distributions of groups for each dataset, the boxplots are given in Figure 1.
As can be seen from the figure, there is a ordered alternative pattern in all datasets.

Figure 1: Boxplots for the datasets. Each box plot gives median (the bold line that divides the box into
two parts), lower and upper quartiles (start and end points of the box on the vertical axis) and min
and max value (the horizontal lines outside the box). The outliers appear as the circles.
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Tests

Using the datasets which are named jdata and lehmann, demonstration of the tests are given below,
respectively.

Jonkheere-Terpstra test: JtTest(...)

The JtTest function in the npordtests package is used to perform the Jonkheere-Terpstra test.

R> data(jdata)
R> JtTest(Y~X,jdata,alpha=0.05,na.rm=TRUE,verbose=TRUE)

---------------------------------------------------------
Test : Jonckheere-Terpstra Test
data : Y and X

Statistic = 71
Mean = 48
Variance = 114.6667
Z = 2.147876
Asymp. p-value = 0.0158618

Result : Null hypothesis is rejected.
---------------------------------------------------------

Here, the JT statistic is calculated from the Equation (6). Also, the Mean and Variance are
expected value and variance of the JT statistic, respectively. Z is calculated from (JT− E(JT))/

√
V(JT).

p-value is the significance value for the JT test. Because this p-value is smaller than α = 0.05, the
hypothesis of the equality of locations against the ordered alternative is rejected.

alpha is the level of significance to assess the statistical difference. Default is set to alpha = 0.05.
na.rm is a logical value indicating whether NA values should be stripped before the computation
proceeds. Default is na.rm = TRUE. verbose is a logical for printing output to R console. Default is set
to verbose = TRUE. These arguments are available in the functions for ordered alternatives. The users
who would like to use the statistics in the output in their programs can use the following codes.

R> res<-JtTest(Y~X,jdata,alpha=0.05,na.rm=TRUE,verbose=FALSE)

R> res$statistic
[1] 71

R> res$mean
[1] 48

R> res$variance
[1] 114.6667

R> res$Z
[1] 2.147876

R> res$p.value
[1] 0.0158618

Here, the codes for how to obtain the statistics from the Jonckheere-Terpstra test output are given.
Since all ordered alternative tests return similar outputs, similar codes are not repeated in the other
tests. For all tests, the level of significance is taken as 0.05.

Beier and Buning’s Adaptive test: AtTest(...)

The AtTest function in the npordtests package is used to perform the Adaptive test. The LS, RS, ST,
WS and LT tests are also available as functions in the package.

R> LsTest(Y~X,jdata)
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---------------------------------------------------------
Test : LS test
data : Y and X

Statistic = 68
Mean = 48
Variance = 141.3333
Z = 1.682316
Asymp. p-value = 0.04625375

Result : Null hypothesis is rejected.
---------------------------------------------------------

Here, the Statistic is calculated from the Equation (7) using the score aLS(r). Also, the Mean and
Variance are the expected value and variance of the this statistic, respectively. Z is calculated from
(LS− E(LS))/

√
V(LS). p-value is the significance value for the LS test. Since this p-value is smaller

than α = 0.05, the null hypothesis against the ordered alternative is rejected.

R> RsTest(Y~X,jdata)

---------------------------------------------------------
Test : RS test
data : Y and X

Statistic = -27
Mean = -48
Variance = 141.3333
Z = 1.766432
Asymp. p-value = 0.03866168

Result : Null hypothesis is rejected.
---------------------------------------------------------

In the output, similar to LsTest, the Statistic is calculated from the Equation (7) using the score
aRS(r). Z is calculated from (RS− E(RS))/

√
V(RS). p-value is the significance value for the RS test.

According to these results, because the p-value is smaller than α = 0.05, the hypothesis of the equality
of locations against the ordered alternative is rejected.

R> StTest(Y~X,jdata)

---------------------------------------------------------
Test : ST test
data : Y and X

Statistic = 17.25
Mean = 0
Variance = 46
Z = 2.543374
Asymp. p-value = 0.005489386

Result : Null hypothesis is rejected.
---------------------------------------------------------

In the output, the Statistic is calculated from the Equation (7) using the score aST(r). Z is
calculated from (ST − E(ST))/

√
V(ST). p-value is the significance value for the ST test. Here, the

Statistic is calculated value of the test statistic. The p-value for the TM test is 0.005489386. Thus, we
can conclude that the null hypothesis of the equality of locations is rejected under setting α = 0.05.

R> WsTest(Y~X,jdata)

---------------------------------------------------------
Test : WS test
data : Y and X

Statistic = 245
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Mean = 204
Variance = 453.3333
Z = 1.92564
Asymp. p-value = 0.02707469

Result : Null hypothesis is rejected.
---------------------------------------------------------

Here, the WS statistic is calculated from the Equation (7) using the score aWS(r). Z is calculated
from (WS− E(WS))/

√
V(WS). p-value is the significance value for the WS test. Because this p-value

is smaller than α = 0.05, the hypothesis of the equality of locations against the ordered alternative is
rejected.

R> LtTest(Y~X,jdata)

---------------------------------------------------------
Test : LT test
data : Y and X

Statistic = 27.5
Mean = 0
Variance = 322.6667
Z = 1.530931
Asymp. p-value = 0.06289321

Result : Null hypothesis is not rejected.
---------------------------------------------------------

The LT statistic is calculated from the Equation (7) using the score aLT(r). Z is calculated from
(LT − E(LT))/

√
V(LT). p-value is the significance value for the LT test. According to these results,

because the p-value is not smaller than α = 0.05, the hypothesis of the equality of locations (null
hypothesis) is not rejected.

R> AtTest(Y~X,jdata)

---------------------------------------------------------
Test : Adaptive Test
data : Y and X

Statistic = 17.25
Mean = 0
Variance = 46
Z = 2.543374
Asymp. p-value = 0.005489386

Result : Null hypothesis is rejected.
---------------------------------------------------------

Here, the Statistic is calculated from the Equation (8). Note that the AT Statistic is equal to
the ST Statistic for this example. Since this p-value is smaller than α = 0.05, the null hypothesis
against the ordered alternative is rejected.

Modified Jonkheere-Terpstra test: MjtTest(...)

The MjtTest function in the npordtests package is used to perform the MJT test.

R> MjtTest(Y~X,jdata)

---------------------------------------------------------
Test : Modified Jonckheere-Terpstra Test
data : Y and X

Statistic = 121
Mean = 80
Variance = 453.3333
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Z = 1.92564
Asymp. p-value = 0.02707469

Result : Null hypothesis is rejected.
---------------------------------------------------------

Here, the Statistic is calculated from the Equation (9). According to these results, because the
p-value is smaller than α = 0.05, the hypothesis of the equality of locations against the ordered
alternative is rejected.

Terpstra-Magel test: TmTest(...)

The TmTest function in the npordtests package is used to perform the TM test.

R> TmTest(Y~X,jdata)

---------------------------------------------------------
Test : Terpstra-Magel Test
data : Values and Group

Statistic = 78
Mean = 10.66667
Variance = 151.327
Z = 5.473586
Asymp. p-value = 2.205097e-08

Result : Null hypothesis is rejected.
---------------------------------------------------------

In the output, the Statistic is calculated from the Equation (10). Z is calculated from (TM −
E(TM))/

√
V(TM). p-value is the significance value for the TM test. The p-value for the TM test

is 0.00000002205097. Thus, we can conclude that the null hypothesis of the equality of locations is
rejected under setting α = 0.05.

Ferdhiana-Terpstra-Magel test: FtmTest(...)

The FtmTest function in the npordtests package is used to perform the FTM test.

R> FtmTest(Y~X,jdata)

---------------------------------------------------------
Test : Ferdhiana, Terpstra and Magel Test
data : Y and X

Statistic = 122.6667
Mean = 0
Variance = 3261.63
Z = 2.147876
Asymp. p-value = 0.0158618

Result : Null hypothesis is rejected.
---------------------------------------------------------

Here, the Statistic is calculated from the Equation (11). Z is calculated from FTM/
√

V(FTM).
p-value is the significance value for the FTM test. Because this p-value is smaller than α = 0.05, the
hypothesis of the equality of locations against the ordered alternative is rejected.

KTP test: KtpTest(...)

The KtpTest function in the npordtests package is used to perform the KTP test.

R> KtpTest(Y~X,jdata)
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---------------------------------------------------------
Test : KTP Test
data : Y and X

Statistic = 131.2
Mean = 0
Variance = 4642.133
Z = 1.92564
Asymp. p-value = 0.02707469

Result : Null hypothesis is rejected.
---------------------------------------------------------

Here, the Statistic is calculated from the Equation (12). Z is calculated from KTP/
√

V(KTP).
p-value is the significance value for the KTP test. Since this p-value is smaller than α = 0.05, the null
hypothesis against the ordered alternative is rejected.

S test: SsTest(...)

The SsTest function in the npordtests package is used to perform the S test.

R> SsTest(Y~X,jdata)

---------------------------------------------------------
Test : Shan's S test
data : Y and X

Statistic = 436
Mean = 272
Variance = 1973.511
Z = 3.69168
Asymp. p-value = 0.0001113888

Result : Null hypothesis is rejected.
---------------------------------------------------------

In the output, the Statistic is calculated from the Equation (13). Z is calculated from (S −
E(S))/

√
V(S). p-value is the significance value for the S test. According to these results, because

the p-value is smaller than α = 0.05, the hypothesis of the equality of locations against the ordered
alternative is rejected.

Gaur’s Gc test: GcTest(...)

The GcTest function in the npordtests package is used to perform the Gaur’s Gc test.

R> GcTest(Y~X,jdata)

---------------------------------------------------------
Test : Gaur's Gc Test
data : Values and Group

Statistic = 0.375
Mean = 0
Variance = 0.06746032
Z = 1.4438
Asymp. p-value = 0.0743976

Result : Null hypothesis is not rejected.
---------------------------------------------------------

Here, the Statistic is calculated from the Equation (14). Z is calculated from Gc/
√

V(Gc).
p-value is the significance value for the Gc test. Here, the Statistic is calculated value of the test
statistic. The p-value for the Gc test is 0.0743976. Thus, we can conclude that the null hypothesis of
the equality of locations is not rejected under setting α = 0.05.
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Jonkheere-Terpstra test: JtTest(...)

The JtTest function in the npordtests package is used to perform the JT test.

R> data(lehmann)
R> JtTest(Values~Group,lehmann)

---------------------------------------------------------
Test : Jonckheere-Terpstra Test
data : Values and Group

Statistic = 1159
Mean = 857.5
Variance = 9305.917
Z = 3.125415
Asymp. p-value = 0.0008877709

Result : Null hypothesis is rejected.
---------------------------------------------------------

Here, the Statistic is calculated value of the test statistic. p-value is the significance value for
this test. The p-value for the JT test is 0.0008877709. Thus, we can conclude that the null hypothesis of
the equality of locations is rejected under setting α = 0.05.

Beier and Buning’s Adaptive test: AtTest(...)

The AtTest function in the npordtests package is used to perform the AT test.

R> AtTest(Values~Group,lehmann)

---------------------------------------------------------
Test : Adaptive Test
data : Values and Group

Statistic = 851
Mean = 583.1944
Variance = 6570.726
Z = 3.303794
Asymp. p-value = 0.0004769302

Result : Null hypothesis is rejected.
---------------------------------------------------------

Here, the Statistic is calculated value of the test statistic. p-value is the significance value for
this test. The p-value for the AT test is 0.0004769302. Because this p-value is smaller than α = 0.05,
the hypothesis of the equality of locations against the ordered alternative is rejected.

Modified Jonkheere-Terpstra test: MjtTest(...)

The MjtTest function in the npordtests package is used to perform the MJT test.

R> MjtTest(Values~Group,lehmann)

---------------------------------------------------------
Test : Modified Jonckheere-Terpstra Test
data : Values and Group

Statistic = 1610
Mean = 1151.5
Variance = 20771.92
Z = 3.181274
Asymp. p-value = 0.0007331448

Result : Null hypothesis is rejected.
---------------------------------------------------------
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Here, the Statistic is calculated value of the test statistic. p-value is the significance value for
the MJT test. The p-value for the MJT test is 0.0007331448. Since this p-value is smaller than α = 0.05,
the null hypothesis against the ordered alternative is rejected.

Terpstra-Magel test: TmTest(...)

The TmTest function in the npordtests package is used to perform the TM test.

R> TmTest(Values~Group,lehmann)

---------------------------------------------------------
Test : Terpstra-Magel Test
data : Values and Group

Statistic = 5173
Mean = 2254
Variance = 405043.8
Z = 4.586518
Asymp. p-value = 2.253498e-06

Result : Null hypothesis is rejected.
---------------------------------------------------------

Here, the Statistic is calculated value of the test statistic. p-value is the significance value for this
test. The p-value for the TM test is 0.000002253498. Thus, we can conclude that the null hypothesis of
the equality of locations is rejected under setting α = 0.05.

Ferdhiana-Terpstra-Magel test: FtmTest(...)

The FtmTest function in the npordtests package is used to perform the FTM test.

R> FtmTest(Values~Group,lehmann)

---------------------------------------------------------
Test : Ferdhiana, Terpstra and Magel Test
data : Values and Group

Statistic = NA
Mean = 0
Variance = 2294071
Z = NA
Asymp. p-value = NA

Error in if (p-value > alpha) { : missing value where TRUE/FALSE needed
In addition: Warning message:
In cor(t(Xmat), Ymat, method = "kendall") : the standard deviation is zero

As seen in the output, the error standard deviation is zero is encountered. This error occurs
because the values of 68.5, 69.0, 70.5, 71.5, 73.0, 74.0, 74.5 are included in all groups.

KTP test: KtpTest(...)

The KtpTest function in the npordtests package is used to perform the KTP test.

R> KtpTest(Values~Group,lehmann)

---------------------------------------------------------
Test : KTP Test
data : Values and Group

Statistic = NA
Mean = 0
Variance = 2897517
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Z = NA
Asymp. p-value = NA

Error in if (p-value > alpha) { : missing value where TRUE/FALSE needed
In addition: Warning message:
In cor(t(Xmat), Ymat, method = "spearman") : the standard deviation is zero

In the output, similar to FtmTest, the error standard deviation is zero is encountered.

S test: SsTest(...)

The SsTest function in the npordtests package is used to perform the S test.

R> SsTest(Values~Group,lehmann)

---------------------------------------------------------
Test : Shan's S test
data : Values and Group

Statistic = 32234
Mean = 20865.83
Variance = 6929623
Z = 4.318527
Asymp. p-value = 7.853701e-06

Result : Null hypothesis is rejected.
---------------------------------------------------------

Here, the Statistic is calculated value of the test statistic. p-value is the significance value for
the S test. The p-value for the S test is 0.000007853701. According to these results, because the p-value
is smaller than α = 0.05, the hypothesis of the equality of locations against the ordered alternative is
rejected.

Gaur’s Gc test: GcTest(...)

The GcTest function in the npordtests package is used to perform the Gaur’s Gc test.

R> GcTest(Values~Group,lehmann)

---------------------------------------------------------
Test : Gaur's Gc Test
data : Values and Group

Statistic = 0.1506891
Mean = 0
Variance = 0.03597884
Z = 0.7944348
Asymp. p-value = 0.2134712

Result : Null hypothesis is not rejected.
---------------------------------------------------------

Here, the Statistic is calculated value of the test statistic. p-value is the significance value for
the Gc test. The p-value for the Gc test is 0.2134712. Because this p-value is not smaller than α = 0.05,
the hypothesis of the equality of locations against the ordered alternative is not rejected.

Simulation study

In this section, we compared the JT, AT, Modified JT, TM, FTM, KTP, S and Gaur’s Gc tests in terms of
power and Type I error under some selected scenarios. Since the AT test includes the LS, RS, ST, LT,
WS tests, these tests do not need to be compared. The number of iterations and nominal type I error
are 10000 and .05, respectively. The five design factors manipulated in this simulation study are:
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• number of samples (k = 3 and 4),

• average number of observations per group (n = 5, 10, 20, 30, and 50),

• sample size patterns (progressive, equal, and one extreme),

• distribution shapes (symmetric, left skewed, and right skewed),

• ordered alternatives shapes (linear, convex, and concave).

The sample size patterns in this simulation study are shown in Table 1. We used log -F(v1, v2)
distributions to generate the random variable Xij = θi + εij, where εij is the iid log-F distribution, and
θi is the location parameter; which is symmetric when v1 = v2, right skewed when v1 > v2, and left
skewed when v1 < v2 (Terpstra et al., 2011).

Table 1: Simulation study sample size patterns. k is number of samples and n is average number of
observations per group. The values in the table are sample sizes. For example, in case of k = 3, n = 5
and progressive pattern, the sample sizes of groups are 4, 5 and 6, respectively.

Sample size patterns
Progressive Equal One extreme

k = 3
1 4 9 19 29 49 5 10 20 30 50 2 4 8 12 20
2 5 10 20 30 50 5 10 20 30 50 2 4 8 12 20
3 6 11 21 31 51 5 10 20 30 50 11 22 44 66 110

Average n 5 10 20 30 50 5 10 20 30 50 5 10 20 30 50

k = 4
1 2 7 14 21 35 5 10 20 30 50 3 6 12 18 30
2 4 9 18 27 45 5 10 20 30 50 3 6 12 18 30
3 6 11 22 33 55 5 10 20 30 50 3 6 12 18 30
4 8 13 26 39 65 5 10 20 30 50 11 22 44 66 110

Average n 5 10 20 30 50 5 10 20 30 50 5 10 20 30 50

In order to evaluate the performances of the tests, we consider the cases of (v1, v2) = (5, 5), (1, 10)
and (10, 1) for the symmetric, left skewed and right skewed populations, respectively.

While the location parameters of populations are equal, simulated type I error rates are calculated.
Otherwise, in case the location parameters of the populations are not equal, the simulated powers of
the tests are computed. In order to assess the robustness of the tests in terms of Type I error rate, we
used the robustness criterion recommended by Bradley (1978). This liberal criterion for the robustness
is set at ±.5α around the nominal alpha level. For instance, using the alpha level of .05, a test is
considered robust when the simulated Type I error rates fall between .025 and .075.

Results

Figure 2 presents a set of boxplots based on the simulated Type I error rates for all scenarios considered
while the nominal alpha level is .05. As shown in Figure 2, although all of the tests ensure the Bradley’s
liberal criterion, the JT, MJT, and FTM tests are the three best performing approaches that controlled
nominal Type I error in all simulation scenarios. On the other hand, the TM test has a wider range
than the others for the simulated type I error rates.

The simulated power values of the tests for the simulation scenarios above are given in Table 2-4.
The results in these tables can be interpreted as follows:

• As seen in Table 2, when the data is generated from the symmetric distribution (log -F(5, 5)),
the most powerful test changes according to the shape of ordered alternative. When the shape
of ordered alternative is linear, the MJT test are more powerful test than the other tests for all
sample size patterns. On the other hand, when the shape of ordered alternative is convex, the S
test has the highest power among all tests considered for all sample size patterns. Beside these,
the simulated power values of KTP test for ordered alternative with concave shape are higher
than those of the other tests when sample size patterns are progressive or one extreme. But, the
S test is better than the other tests in terms of power when the sample size pattern is equal. On
the other hand, when the average sample size for all distributions was quite large such as 50,
the simulated power values for all tests were found to be quite close to 1.
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Table 2: Simulated power values (1− β) of the test for log-F(5,5) distribution.

Sample size pattern
Progressive Equal One Extreme
Average n Average n Average n

k Test 5 10 20 30 50 5 10 20 30 50 5 10 20 30 50
ordered alternatives shape=linear

3 JT .422 .706 .932 .979 1.00 .424 .701 .930 .980 1.00 .364 .586 .846 .945 .992
AT .372 .666 .922 .977 .998 .373 .661 .917 .967 1.00 .264 .549 .838 .952 .992
MJT .442 .709 .934 .993 1.00 .449 .722 .930 .984 1.00 .383 .606 .872 .999 1.00
TM .431 .665 .904 .948 .991 .434 .678 .907 .950 .994 .348 .512 .751 .888 .972
FTM .431 .696 .933 .978 .999 .415 .700 .929 .974 .997 .316 .542 .816 .979 .988
KTP .435 .704 .934 .978 .999 .436 .715 .930 .971 .996 .339 .552 .823 .900 .990
S .440 .702 .926 .990 1.00 .448 .699 .926 .967 1.00 .375 .595 .847 .973 .995
Gc .359 .674 .915 .924 .990 .388 .656 .914 .958 .990 .233 .439 .757 .841 .902

4 JT .672 .960 .999 1.00 1.00 .766 .963 .999 1.00 1.00 .769 .962 .999 1.00 1.00
AT .616 .939 .999 1.00 1.00 .708 .952 .999 1.00 1.00 .700 .953 .999 1.00 1.00
MJT .678 .961 .999 1.00 1.00 .784 .978 .999 1.00 1.00 .782 .967 .999 1.00 1.00
TM .597 .894 .993 .999 1.00 .684 .919 .999 1.00 1.00 .586 .815 .999 1.00 1.00
FTM .621 .955 .999 1.00 1.00 .778 .972 .999 1.00 1.00 .719 .924 .999 1.00 1.00
KTP .592 .958 .999 1.00 1.00 .775 .965 .999 1.00 1.00 .731 .951 .999 1.00 1.00
S .667 .951 .999 1.00 1.00 .763 .961 .999 1.00 1.00 .768 .961 .999 1.00 1.00
Gc .485 .916 .999 1.00 1.00 .630 .948 .999 1.00 1.00 .455 .869 .992 .999 1.00

ordered alternatives shape=convex
3 JT .477 .716 .937 .988 1.00 .405 .682 .920 .977 .999 .486 .756 .955 .985 .999

AT .387 .674 .925 .981 1.00 .365 .662 .912 .980 .999 .311 .659 .920 .977 .998
MJT .476 .715 .936 .990 1.00 .411 .705 .926 .990 .999 .448 .708 .932 .984 .999
TM .388 .577 .827 .972 1.00 .395 .599 .813 .967 .984 .332 .448 .661 .969 .988
FTM .391 .672 .922 .980 1.00 .392 .679 .907 .978 .998 .284 .509 .789 .970 .995
KTP .421 .686 .921 .979 1.00 .410 .698 .930 .978 .992 .316 .530 .813 .972 .990
S .510 .742 .943 .992 1.00 .439 .716 .932 .992 1.00 .519 .765 .958 .988 .999
Gc .348 .648 .903 .974 .999 .371 .644 .905 .975 .992 .189 .440 .734 .945 .989

4 JT .586 .771 .966 .999 1.00 .389 .623 .887 .996 1.00 .655 .894 .994 1.00 1.00
AT .468 .702 .938 .997 1.00 .360 .627 .887 .996 1.00 .527 .829 .980 1.00 1.00
MJT .525 .732 .950 .999 1.00 .399 .635 .887 .997 1.00 .585 .847 .986 1.00 1.00
TM .328 .476 .871 .989 1.00 .329 .473 .812 .990 1.00 .284 .421 .798 .985 1.00
FTM .286 .602 .940 .999 1.00 .380 .620 .893 .997 1.00 .333 .569 .914 1.00 1.00
KTP .279 .620 .941 .999 1.00 .384 .638 .880 .998 1.00 .320 .594 .838 .990 1.00
S .595 .780 .971 1.00 1.00 .401 .642 .899 .999 1.00 .659 .899 .995 1.00 1.00
Gc .222 .519 .827 .980 1.00 .309 .597 .833 .977 1.00 .219 .487 .765 .952 1.00

ordered alternatives shape=concave
3 JT .341 .633 .914 .984 1.00 .386 .688 .922 .992 1.00 .227 .363 .591 .704 .812

AT .305 .612 .897 .978 .998 .350 .642 .905 .987 1.00 .200 .418 .694 .816 .929
MJT .384 .661 .923 .993 1.00 .421 .689 .926 .994 1.00 .256 .453 .729 .837 .943
TM .381 .605 .839 .919 .952 .375 .595 .850 .919 1.00 .270 .426 .691 .801 .942
FTM .399 .678 .930 .998 1.00 .380 .679 .919 .999 1.00 .269 .515 .805 .925 .999
KTP .422 .683 .931 .999 1.00 .413 .690 .927 .999 1.00 .302 .538 .819 .931 .999
S .371 .663 .920 .990 1.00 .453 .714 .933 1.00 1.00 .245 .392 .639 .738 .846
Gc .361 .633 .904 .974 .995 .378 .626 .912 .980 1.00 .234 .433 .755 .863 .983

4 JT .154 .449 .704 .782 .815 .376 .630 .893 .784 .816 .252 .401 .652 .583 .715
AT .158 .468 .755 .835 .862 .342 .604 .887 .842 .862 .250 .459 .757 .752 .872
MJT .176 .511 .777 .858 .878 .391 .643 .895 .860 .878 .300 .484 .766 .771 .889
TM .290 .484 .720 .810 .830 .332 .468 .821 .811 .842 .275 .405 .744 .774 .905
FTM .278 .611 .814 .884 .904 .376 .636 .877 .883 .934 .339 .575 .842 .888 .998
KTP .296 .619 .882 .952 .992 .388 .639 .902 .950 1.00 .359 .577 .860 .948 .999
S .145 .452 .719 .789 .809 .395 .658 .903 .961 1.00 .247 .417 .666 .614 .724
Gc .241 .535 .840 .912 .942 .363 .589 .838 .921 .962 .245 .496 .767 .890 .999
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Table 3: Simulated power values (1− β) of the test for log-F(1,10) distribution.

Sample size pattern
Progressive Equal One Extreme
Average n Average n Average n

k Test 5 10 20 30 50 5 10 20 30 50 5 10 20 30 50
ordered alternatives shape=linear

3 JT .179 .309 .495 .718 .941 .174 .296 .492 .688 .884 .145 .230 .383 .537 .694
AT .181 .318 .544 .815 1.00 .203 .316 .535 .765 .995 .146 .230 .411 .592 .813
MJT .198 .307 .496 .723 .950 .187 .304 .494 .684 .882 .145 .243 .398 .553 .708
TM .214 .319 .474 .684 .894 .217 .322 .457 .592 .727 .177 .250 .366 .482 .598
FTM .187 .313 .484 .689 .894 .185 .295 .475 .655 .835 .137 .209 .369 .529 .689
KTP .193 .303 .499 .734 .969 .197 .314 .500 .686 .872 .134 .220 .371 .522 .673
S .188 .303 .481 .695 .908 .199 .297 .483 .669 .855 .146 .225 .367 .509 .651
Gc .156 .284 .451 .651 .852 .178 .267 .467 .667 .867 .112 .188 .324 .460 .596

4 JT .293 .538 .801 1.00 1.00 .333 .549 .816 1.00 1.00 .347 .549 .828 1.00 1.00
AT .282 .578 .851 1.00 1.00 .353 .599 .863 1.00 1.00 .312 .596 .875 1.00 1.00
MJT .285 .545 .802 1.00 1.00 .346 .560 .816 1.00 1.00 .328 .569 .836 1.00 1.00
TM .302 .473 .761 1.00 1.00 .328 .491 .742 .993 1.00 .284 .444 .661 .878 1.00
FTM .231 .533 .772 1.00 1.00 .335 .562 .720 .878 1.00 .305 .522 .669 .816 .963
KTP .247 .530 .770 1.00 1.00 .359 .553 .815 1.00 1.00 .302 .517 .801 1.00 1.00
S .267 .510 .769 1.00 1.00 .338 .534 .801 1.00 1.00 .327 .521 .774 1.00 1.00
Gc .173 .446 .710 .994 1.00 .298 .493 .749 1.00 1.00 .204 .424 .670 .916 1.00

ordered alternatives shape=convex
3 JT .212 .323 .500 .697 .910 .181 .309 .478 .649 .826 .208 .303 .540 .779 1.00

AT .227 .352 .566 .794 1.00 .220 .342 .559 .790 1.00 .215 .316 .543 .782 1.00
MJT .209 .317 .499 .687 .893 .190 .306 .489 .674 .877 .180 .292 .493 .704 .927
TM .220 .330 .502 .676 .866 .219 .330 .506 .688 .890 .199 .265 .420 .577 .738
FTM .191 .295 .485 .685 .899 .176 .298 .495 .702 .927 .144 .220 .392 .570 .766
KTP .187 .299 .481 .673 .881 .190 .316 .486 .668 .858 .142 .213 .364 .521 .688
S .217 .324 .501 .680 .863 .204 .305 .484 .681 .898 .206 .313 .490 .687 .902
Gc .164 .288 .442 .602 .768 .186 .280 .462 .660 .874 .117 .192 .322 .462 .620

4 JT .264 .349 .555 .769 .989 .186 .283 .450 .631 .824 .275 .440 .701 .978 1.00
AT .244 .371 .614 .861 1.00 .209 .324 .521 .738 .957 .244 .442 .705 .980 1.00
MJT .223 .331 .521 .713 .911 .184 .283 .447 .629 .827 .237 .389 .641 .897 1.00
TM .224 .287 .560 .839 1.00 .203 .282 .468 .656 .860 .191 .258 .567 .894 1.00
FTM .140 .257 .546 .841 1.00 .180 .277 .457 .647 .851 .156 .258 .544 .848 1.00
KTP .142 .285 .509 .749 .993 .193 .300 .468 .644 .824 .160 .240 .412 .592 .776
S .251 .335 .538 .753 .984 .182 .275 .439 .609 .795 .259 .407 .658 .919 1.00
Gc .127 .226 .372 .522 .686 .167 .289 .369 .457 .551 .116 .209 .377 .559 .747

ordered alternatives shape=concave
3 JT .150 .274 .467 .670 .891 .165 .285 .481 .679 .887 .118 .163 .245 .331 .429

AT .140 .270 .485 .716 .955 .179 .294 .511 .736 .977 .135 .149 .284 .437 .596
MJT .172 .278 .470 .678 .904 .178 .294 .485 .696 .909 .119 .182 .296 .422 .552
TM .181 .256 .375 .508 .655 .194 .256 .386 .526 .678 .154 .190 .293 .404 .525
FTM .166 .285 .476 .679 .896 .176 .288 .492 .712 .948 .119 .203 .360 .527 .710
KTP .175 .288 .490 .722 .966 .179 .315 .516 .743 .982 .118 .212 .369 .542 .725
S .162 .268 .461 .666 .889 .190 .300 .484 .688 .900 .127 .157 .245 .343 .457
Gc .163 .274 .436 .610 .796 .141 .242 .406 .572 .752 .130 .167 .294 .433 .582

4 JT .093 .195 .305 .433 .567 .167 .269 .445 .641 .839 .123 .181 .286 .405 .528
AT .082 .205 .332 .479 .636 .160 .271 .459 .649 .843 .105 .190 .325 .462 .617
MJT .101 .208 .350 .504 .668 .172 .277 .448 .633 .830 .126 .201 .337 .485 .647
TM .166 .197 .288 .389 .508 .175 .181 .351 .529 .709 .153 .177 .330 .495 .668
FTM .119 .247 .356 .473 .598 .162 .248 .458 .686 .930 .139 .219 .391 .583 .791
KTP .117 .279 .452 .639 .836 .169 .298 .462 .696 .932 .141 .225 .396 .585 .794
S .087 .178 .294 .428 .576 .168 .255 .433 .617 .807 .125 .173 .266 .371 .490
Gc .114 .203 .333 .473 .619 .124 .260 .381 .514 .659 .107 .216 .311 .426 .547
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Table 4: Simulated power values (1− β) of the test for log-F(10,1) distribution.

Sample size pattern
Progressive Equal One Extreme
Average n Average n Average n

k Test 5 10 20 30 50 5 10 20 30 50 5 10 20 30 50
ordered alternatives shape=linear

3 JT .190 .310 .491 .682 .893 .179 .298 .491 .690 .909 .180 .256 .404 .566 .742
AT .182 .315 .526 .747 .976 .203 .323 .527 .741 .967 .204 .302 .473 .654 .847
MJT .208 .304 .490 .690 .896 .191 .318 .491 .676 .863 .176 .266 .415 .574 .753
TM .215 .293 .465 .645 .845 .221 .298 .438 .590 .750 .213 .251 .350 .455 .564
FTM .187 .280 .482 .700 .924 .186 .290 .463 .642 .827 .158 .242 .390 .540 .698
KTP .184 .304 .484 .682 .888 .185 .305 .493 .689 .897 .178 .249 .393 .553 .721
S .199 .305 .477 .663 .863 .195 .304 .487 .688 .907 .208 .291 .433 .593 .773
Gc .153 .279 .454 .649 .856 .168 .263 .458 .655 .862 .127 .195 .324 .461 .614

4 JT .305 .537 .796 1.00 1.00 .340 .554 .819 1.00 1.00 .350 .555 .806 1.00 1.00
AT .319 .570 .834 1.00 1.00 .344 .581 .851 1.00 1.00 .379 .594 .848 1.00 1.00
MJT .304 .544 .801 1.00 1.00 .342 .550 .819 1.00 1.00 .360 .558 .816 1.00 1.00
TM .313 .485 .800 1.00 1.00 .319 .478 .812 1.00 1.00 .297 .428 .788 1.00 1.00
FTM .262 .535 .812 1.00 1.00 .337 .557 .822 1.00 1.00 .323 .510 .797 1.00 1.00
KTP .269 .505 .785 1.00 1.00 .339 .566 .835 1.00 1.00 .334 .511 .782 1.00 1.00
S .295 .518 .804 1.00 1.00 .332 .532 .805 1.00 1.00 .364 .576 .823 1.00 1.00
Gc .193 .442 .697 .960 1.00 .266 .533 .760 .999 1.00 .207 .430 .670 .916 1.00

ordered alternatives shape=convex
3 JT .206 .310 .505 .714 .933 .167 .286 .474 .670 .880 .232 .337 .533 .741 .963

AT .176 .307 .510 .757 1.00 .175 .289 .501 .725 .953 .228 .349 .530 .729 .948
MJT .210 .310 .497 .696 .913 .177 .302 .487 .690 .895 .214 .320 .482 .646 .816
TM .182 .235 .406 .587 .788 .186 .271 .394 .527 .678 .193 .216 .300 .396 .510
FTM .174 .253 .503 .723 .956 .167 .304 .499 .708 .935 .162 .228 .354 .492 .646
KTP .178 .297 .481 .673 .873 .174 .303 .484 .683 .890 .175 .245 .379 .533 .695
S .219 .320 .501 .692 .897 .189 .311 .484 .661 .852 .261 .381 .573 .767 .973
Gc .135 .263 .443 .629 .821 .154 .253 .446 .657 .882 .113 .187 .315 .463 .621

4 JT .254 .344 .566 .806 1.00 .161 .260 .447 .648 .855 .284 .455 .697 .941 1.00
AT .227 .326 .546 .782 1.00 .156 .262 .451 .642 .837 .263 .425 .670 .929 1.00
MJT .221 .317 .522 .747 .992 .171 .276 .452 .662 .882 .247 .397 .626 .857 1.00
TM .198 .208 .540 .892 1.00 .164 .211 .365 .521 .679 .158 .202 .324 .464 .620
FTM .149 .280 .556 .834 1.00 .172 .272 .444 .636 .842 .169 .259 .432 .617 .818
KTP .155 .250 .515 .800 1.00 .195 .268 .450 .652 .870 .167 .279 .462 .649 .850
S .257 .354 .572 .898 1.00 .162 .257 .437 .629 .841 .304 .479 .728 .995 1.00
Gc .109 .213 .331 .461 .601 .145 .242 .383 .526 .675 .113 .226 .332 .452 .580

ordered alternatives shape=concave
3 JT .165 .286 .467 .654 .857 .179 .299 .485 .675 .877 .139 .178 .265 .354 .445

AT .179 .316 .505 .696 .903 .216 .331 .524 .737 .952 .176 .249 .375 .521 .673
MJT .192 .286 .475 .670 .883 .184 .306 .480 .670 .862 .153 .218 .329 .458 .605
TM .226 .341 .508 .700 .916 .223 .339 .528 .741 .960 .187 .265 .398 .593 .782
FTM .196 .306 .474 .662 .868 .180 .300 .498 .710 .930 .160 .211 .385 .573 .771
KTP .194 .313 .486 .663 .842 .184 .310 .471 .644 .825 .183 .250 .393 .548 .707
S .177 .290 .477 .674 .877 .204 .306 .486 .682 .894 .157 .208 .304 .412 .532
Gc .150 .288 .453 .638 .831 .162 .272 .420 .588 .760 .152 .181 .353 .541 .731

4 JT .104 .213 .324 .447 .576 .180 .280 .456 .638 .822 .138 .191 .295 .405 .535
AT .131 .257 .416 .589 .778 .188 .318 .480 .644 .810 .167 .263 .406 .561 .720
MJT .117 .232 .365 .518 .679 .179 .281 .455 .637 .839 .156 .232 .356 .500 .662
TM .208 .280 .433 .602 .779 .210 .332 .491 .652 .855 .186 .287 .441 .613 .795
FTM .160 .276 .425 .576 .737 .181 .271 .445 .635 .841 .171 .269 .410 .561 .724
KTP .160 .271 .426 .585 .746 .192 .301 .466 .641 .826 .172 .283 .432 .601 .778
S .103 .207 .322 .455 .600 .184 .273 .440 .609 .798 .140 .200 .302 .424 .554
Gc .144 .246 .345 .446 .557 .174 .289 .398 .523 .654 .141 .213 .329 .455 .583
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Figure 2: Distributions of simulated Type I error rates across all simulation scenarios when nominal
alpha is .05. Each box plot gives median (the bold line that divides the box into two parts), lower
and upper quartiles (start and end points of the box on the vertical axis) and min and max value (the
horizontal lines outside the box). The outliers appear as the circles.

• For the data generated from the log -F(1, 10) distribution which is a skewed to the left, when the
shape of ordered alternative is linear, and average sample size is 5 or 10, the TM test for k = 3
gives better results, however, the AT test has the highest powers among the whole tests when
average sample size is 20, 30, and 50. On the other hand, when k = 4 and average sample size is
10, the AT test has the highest powers among the whole tests. For the data generated from this
distribution, the AT test, generally, is the most powerful test for ordered alternative with convex
shape as seen in Table 3. For the data generated from the log -F(1, 10) distribution which is a
skewed to the left, the TM test has the highest powers among the whole tests when the shape
of ordered alternative is concave and average sample size is 5, but the KTP test for ordered
alternative with concave shape is the most powerful among the whole tests when average
sample size is 10, 20, 30, and 50. On the other hand, when the average sample size increased in
all scenarios considered, the power values of all tests increased as expected.

• When the data is generated from the log -F(10, 1) distribution which is a skewed to the right,
Table 4 shows that the AT test for ordered alternatives with linear shape, generally, gives better
results. On the other hand, when average sample size is 5 and k = 3 the TM test for this
situation is the most powerful test. As seen in Table 4, when the shape of ordered alternative is
a convex, it is observed that the S test generally yields the highest power values. In addition,
while the sample size patterns are progressive and equal, and average sample size is 20, 30, and
50, the power values of the AT test for this situation are greater than those of the others. By the
examination of the results in Table 6, when ordered alternative has a concave shape, it is seen
that the TM test is the most powerful test among the whole tests.

Table 5 gives decision rules indicating which test is more appropriate for which design.

When the ordered alternative has a linear shape and the distribution is symmetric, the MJT test
should be preferred. However, when the ordered alternative has a linear shape and the distribution is
skewed to left and average sample size is 5 or 10, it can be stated that the TM test has a more significant
power advantage than the others. On the other hand, average sample size is 20, 30, or 50, it can be said
that the AT test has a more significant power advantage than the others.

On the other hand, when the ordered alternative has a convex shape, the AT test is recommended
for the distributions skewed to left. However, if these distributions are symmetric, the S test is
proposed. Besides this, if the distributions are skewed to right and the sample size pattern is equal,
then the MJT test is recommended. Further, if the distributions are skewed to right and the sample
size pattern is progressive or one extreme, then S test is used.

When the ordered alternative has a concave shape and the sample size pattern is equal, then the
S test is used for symmetric distribution. In addition, when the ordered alternative has a concave
shape and the sample size pattern is progressive or one extreme, then the KTP test is recommended for
symmetric distribution. Moreover, if the distributions are skewed to left and the sample size is 5, TM
test is recommended, but in the case of 10, 20, 30, 50 for the sample size, the KTP test is recommended.
Finally, if the distributions are skewed to right, the TM test is recommended.
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Table 5: The rules based on the simulation results for choice the test. For example, when the ordered
alternative has a linear shape and the distribution is symmetric, the MJT test should be preferred.

Alternative Distribution Sample Average
hypothesis shape size pattern sample size Test
Linear symmetric - - MJT

skewed to left - 5, 10 TM
skewed to left - 20, 30, 50 AT
skewed to right - - AT

Convex symmetric - - S
skewed to left - - AT
skewed to right - - S

Concave symmetric Equal - S
symmetric Progressive or One Extreme - KTP
skewed to left - 5 TM
skewed to left - 10, 20, 30, 50 KTP
skewed to right - TM

Summary

Tests for ordered alternative are the most frequently used nonparametric methods in a wide range
of statistical and medical applications. For example, the evaluation of preclinical studies, clinical
dose-finding trials, typical toxicity studies, education studies, agricultural studies and etc. We present
the npordtests package to test the equality hypothesis of the locations against ordered alternative.

In this paper, we compared the tests included in the npordtests package in terms of Type I error
rate and power. With the results of the simulation study, when the data is generated from a symmetric
distribution, we propose that the use of the MJT test for ordered alternatives with linear shape and the
S test for ordered alternatives with convex shape. On the other hand, when ordered alternative has a
concave shape, the S test for equal sample size patterns is suggested, but the KTP test is recommended
when sample size pattens are progressive and one extreme. For the data generated from a left skewed
distribution, when k = 3 and shape of ordered alternative is linear, we recommend that the use of
the TM test for small sample sizes such as n = 5 and 10, and the AT test for sample size 20, 30, and
50. However, when k = 4 and sample sizes are 10, 20, 30, and 50, we propose to prefer the AT test.
For this kind of data, we propose the use of the AT test when the ordered alternative has a convex
shape. On the other hand, if ordered altenative has a concave shape, we propose that the use of the
KTP test for sample sizes such as n = 10, 20, 30, and 50 and the TM test for small sample size such as
n = 5. For the data generated from a right skewed distribution, when k = 4, we recommend that the
use of the AT test for ordered alternative with linear shape. However, when k = 3, and the shape of
ordered alternative is linear, we propose to choose the AT test for sample sizes n = 10, 20, 30, and 50
and the TM test for sample size 5. On the other hand, when ordered alternative has a concave shape,
the TM test is the most powerful test in all simulation scenarios. Besides these, for this kind of data, it
is understood that it is appropriate to prefer the S test for ordered alternative with convex shape.

To test the equality hypothesis of locations parameters against ordered alternatives, the npordtests
package covers the prominent nonparametric tests such as Jonckheere-Terpstra test, Beier and Buning’s
Adaptive test, Modified Jonckheere-Terpstra test, Terpstra-Magel test, Ferdhiana-Terpstra-Magel test,
KTP test, S test and Gaur’s Gc test. According to the authors knowledge, the tests which are present in
the npordtests package, except the JT test, are not available in any other R tool. The package will be
updated at regular intervals.
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