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Skew-t Expected Information Matrix
Evaluation and Use for Standard Error
Calculations
by R. Douglas Martin, Chindhanai Uthaisaad and Daniel Z. Xia

Abstract Skew-t distributions derived from skew-normal distributions, as developed by Azzalini
and several co-workers, are popular because of their theoretical foundation and the availability of
computational methods in the R package sn. One difficulty with this skew-t family is that the elements
of the expected information matrix do not have closed form analytic formulas. Thus, we developed
a numerical integration method of computing the expected information matrix in the R package
skewtInfo. The accuracy of our expected information matrix calculation method was confirmed
by comparing the result with that obtained using an observed information matrix for a very large
sample size. A Monte Carlo study to evaluate the accuracy of the standard errors obtained with
our expected information matrix calculation method, for the case of three realistic skew-t parameter
vectors, indicates that use of the expected information matrix results in standard errors as accurate as,
and sometimes a little more accurate than, use of an observed information matrix.

Introduction

The primary motivation for this paper was our desire to use a flexible family of skew-t distributions for
quantitative finance research, and in particular for empirical studies of the tail fatness and skewness
of returns distributions of various classes of assets, e.g., stock returns and hedge fund returns. That
said, we hasten to add that skew-t distributions have extensive application uses in the broad areas
of physical and social sciences, and in engineering and computer science. We believe that the main
results of this paper will be of interest to this broader audience as well as to those interested in finance
applications.

We chose to focus on the family of skew-t distributions based on skew-normal distribution,
henceforth “skew-t” distributions, for two main reasons. The first reason is the existence of extensive
research results on the family, as reflected for example in Azzalini and Capitanio (2003) and Azzalini
and Arellano-Valle (2013), along with the extensive coverage of both univariate and multivariate
skew-t distributions in the Azzalini and Capitanio (2014) (AZC) monograph. The second reason is
that research using skew-t distributions based on the skew-normal distribution is greatly facilitated by
the existence of the comprehensive and well-supported R package sn.

The expected information matrix for skew-t distributions is a key quantity for a number of
purposes, including: (a) computing approximate standard errors of skew-t parameter estimates from
the asymptotic covariance matrix evaluated at maximum-likelihood estimates (MLEs); (b) evaluating
the large-sample inefficiencies of skew-t MLEs when the distribution is normal; (c) comparing the
large-sample performances of non-parametric versus skew-t MLE expected shortfall estimators. See
for example Martin and Zhang (2017) for (b) and (c) in the case of symmetric-t distributions, where a
closed-form expression exists for the expected information matrix.

Unfortunately, there does not exist a closed form analytic matrix expression for the skew-t infor-
mation matrix. Therefore, we have developed a numerical integration method for computing the
elements of a skew-t information matrix at specified skew-t parameter values, and have implemented
the resulting algorithm in the R function stInfoMat() in the R package skewtInfo. Users can install
the package with RStudio via the following commands:

install.packages("devtools")
devtools::install_github("chindhanai/skewtInfo")

Although our particular interest in using the skewtInfo package is focused on applications in
quantitative finance, we anticipate that it will be of interest to researchers across many fields of study,
e.g., physical and social sciences and engineering and computer science, where skew-t distribution
have important applications.

For the purpose of analyzing the resulting expected information matrix (henceforth simply "the
information matrix") and evaluating its use for computing standard errors, we used the sn package
maximum penalized-likelihood estimator (MPLE) function st.mple() to compute three sets of skew-t
parameter values for three sets of returns, labeled D1, D2, D3 obtained from a single stock with ticker
D on three different time segments between December 1991 and September 2015.
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The remainder of this paper is organized as follows. The "Skew-t Distribution" section introduces
the skew-t distribution family, and provides the relationship between the skew-t distribution direct
parameters "dp" and the usual moment-based "cp" parameters, i.e., the mean, standard deviation,
skewness and excess kurtosis. The "Maximum Penalized Likelihood Estimation Method" section
briefly describes the sn package MPLE method used to fit skew-t distributions, and uses the method to
compute skew-t parameters for each of the three sets of returns D1, D2, D3, compares the parameters
to those obtained with symmetric-t distribution maximum-likelihood estimates (MLEs), and computes
the values of the cp parameters from the skew-t dp parameters. The "Skew-t Information Matrix"
section discusses our numerical method for computing the information matrix, as implemented in
the package skewtInfo, and describes how we verified by examples the accuracy of our method. That
section also examines the ill-conditioning of the information matrix for the three sets of skew-t MPLEs
and computes and discusses the corresponding asymptotic correlations of the skew-t parameter
MPLEs for D1, D2, D3. The "Standard Errors of Skew-t Parameter MPLEs" section uses Monte Carlo to
evaluate the use of an expected information matrix to compute standard errors of skew-t MPLEs, in
comparison with the use of an observed information matrix, and in comparison with Monte Carlo
"true" standard errors, which are used as true skew-t parameters the MPLEs for stock returns D1, D2,
D3. As a preliminary to this Monte Carlo, the first part of the "Standard Errors of Skew-t Parameter
MPLEs" section discusses a problem that arises when using skew-t MPLEs to compute them for a
large number of replicates, and shows how to deal with the problem. Finally, the last section discusses
related future research that needs to be done.

Skew-t distributions

It is well-known that a random variable X with a standard t-distribution, i.e., with location parameter
of value zero, scale parameter of value one, and ν degrees of freedom has the stochastic representation

X =
Z√

χ2
ν/ν

(1)

where Z follows a standard normal distribution and the independent random variable χ2
ν follows a chi-

squared distribution with ν degrees of freedom. The following results and related details concerning
skew-t random variables and their distributions are provided in Azzalini and Capitanio (2014).

A standard skew-t random variable Y0,1, α, ν ∼ ST(0, 1, α, ν) with slant (skewness) parameter α
and degrees of freedom parameter ν, can be obtained by replacing Z with an independent standard
skew-normal random variable Z0,1,α ∼ SN(0, 1, α), whose probability density function is

fSN(x; α) = 2 φ(x) ·Φ(αx) (2)

where φ(x) is the standard normal density function and Φ(x) is the standard normal (cumulative)
distribution function. The resulting standard skew-t random variable

Y0,1,α,ν =
Z0,1,α√

χ2
ν/ν

(3)

has the standard skew-t probability density

fST,std(x; α, ν) = 2 tν(x) · Tν+1

(
αx ·

√
ν + 1
ν + x2

)
(4)

where tν(x) is the density function of a standard t-distribution random variable with ν degrees of
freedom, and Tν(x) is the corresponding cumulative distribution function.

A general skew-t random variable Yξ,ω,α,ν with location parameter ξ and scale parameter ω, whose
distribution we denote as ST(ξ, ω, α, ν), has the stochastic representation

Yξ, ω, α, ν = ξ + ωY0,1, α, ν (5)

with the transformations

z =
y− ξ

ω
, τ(z) =

√
ν + 1
ν + z2 (6)

A general skew-t probability density function of Yξ, ω, α, ν is then given by

fST(y; ξ, ω, α, ν) =
2
ω
· t(z) · Tν+1 (αzτ(z)) (7)
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with the transformations

δα =
α√

1 + α2
, bν =

√
ν

π
· Γ((ν− 1)/2)

Γ(ν/2)
(8)

one would find that the variance of the standardized skew-t random variable z is:

σ2
z = var(z) =

ν

ν− 2
− (bνδα)

2 (9)

Note that as the slant parameter α ranges over (−∞,+∞), the parameter δα ranges over the interval
(−1, 1) , and when there is no skewness, i.e., when α = δα = 0, the variance of z is that of a standard
symmetric-t random variable.

It will sometimes be of interest to transform a skew-t distribution parameter vector (ξ, ω, α, ν) to
the usual mean, standard deviation, skewness, and excess kurtosis vector (µ, σ, γ, κ). 1 This can be
done with the following transformations, provided on pages 103-104 of AZC:

µ = ξ + ωbνδα

σ2 = ω2σ2
z for ν > 2 (10)

γ =
bνδα

σ3
z

[
ν(3− δ2

α)

ν− 3
− 3ν

ν− 2
+ 2(bνδα)

2
]

for ν > 3

κ =
1

σ4
z

[
3ν2

(ν− 2)(ν− 4)
− 4(bνδα)2ν(3− δ2

α)

ν− 3
+

6ν(bνδα)2

ν− 2
− 3(bνδα)

4
]
− 3 for ν > 4.

The maximum penalized likelihood estimation method

The log-likelihood for a single observation y with density f (y; θ) is

`(θ; y) = log f (y; θ)

where θ is a parameter vector. With θ = (ξ, ω, α, ν) and z = (y− ξ)/ω, it follows from (7) that for a
skew-t distribution the log-likelihood function for a single observation y is

`ST(θ; y) = constant− 1
2

log ν + log Γ(
1
2
(ν + 1))− log Γ(

ν

2
)

− 1
2
(ν + 1) log

(
1 +

z2

ν

)
+ log Tν+1 (αzτ(z)) (11)

For n independently and identically distributed skew-t observations y = (y1, y2, . . . , yn) the log-
likelihood is

`n(θ) = `n(θ; y) =
n

∑
i=1

`ST(θ; yi) (12)

Let θ̂n = (ξ̂n, ω̂n, α̂n, ν̂n) denote a maximum-likelihood estimate (MLE) for sample size n.
Azzalini and Arellano-Valle (2013) showed that with non-negligible probability the MLE α̂n of the
skewness parameter α diverges. Consequently, they proposed a maximum penalized likelihood
estimator (MPLE) to solve this problem, based on a penalized likelihood of the form

˜̀n(θ) = `n(θ)−Q(θ) (13)

where Q(θ) = Q(α, ν) is a non-negative quantity that penalizes the divergence of α by virtue of
tending to infinity as α → ±∞ for each fixed ν. Details may be found in Section 3 of Azzalini and
Arellano-Valle (2013).

Application to stock returns data

We illustrate the use of the sn package function st.mple() to compute skew-t distribution MPLE fits
to three disjoint time segments of the returns of a large-cap stock with ticker D and company name
The Dominion Resources, INC2. The code shown below creates the plot of monthly returns of this

1The skewness and excess kurtosis are given by γ = E
[(

Y−µ
σ

)3
]

and κ = E
[(

Y−µ
σ

)4
]
− 3, respectively.

2See https://www.sec.gov/Archives/edgar/data/715957/000119312505038704/d10k.htm#toc55089_2 for
more information.
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stock from December 1991 to September 2015 in Figure 1.

tsDRet = ts(as.numeric(Dreturns[,2]), start = c(1991, 12), frequency = 12)
plot(tsDRet*100, main = "", col = 4, ylab = "RETURNS(%)")
abline(h = 0, lty = 3)
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Figure 1: Stock D monthly returns.

The entire time history of the D returns is longer than one would normally use for portfolio
construction, and we note that this time interval contains several major market crises, e.g., the Russian
default in 1998, the dot-com bubble collapse in 2000, and the financial markets crises of 2007-2008.
Thus we will fit skew-t distributions, and also symmetric-t distributions, to the stock with ticker D
for the sub-intervals 1991-1996, 1998-2009, and 2010-2015. The first interval, consisting of 61 months,
contains no market crises, and the same is true of the third interval that consists of 72 months. The
second interval, consisting of 156 months, contains all three crises. For convenience, we refer to the
stock D returns on the first, second and third time intervals as D1, D2, and D3. Based on this fact that
D2 contains three market crises, along with the visual character of the D2 returns, we expected that we
would obtain a skew-t fit with negative slant parameter and rather small degrees of freedom for D2.
But for D1 and D3 we were not sure what to expect.

The code below extracts the three segments of returns D1, D2 and D3, then uses st.mple() with
the optional argument symmetr = T to obtain symmetric-t MLE values θ̂Di, sym, i = 1, 2, 3, and finally
uses st.mple() without that optional argument to compute skew-t MPLE estimates θ̂Di, i = 1, 2, 3.

# Define returns in each time period
Dreturns <- as.numeric(Dreturns[, 2])
returns1 <- Dreturns[1:61]
returns2 <- Dreturns[62:217]
returns3 <- Dreturns[218:289]

# Symmetric-t fit
tFitD1 <- st.mple(y = returns1, symmetr = TRUE)$dp
tFitD2 <- st.mple(y = returns2, symmetr = TRUE)$dp
tFitD3 <- st.mple(y = returns3, symmetr = TRUE)$dp
tFit <- rbind(tFitD1, tFitD2, tFitD3)

# Skew-t fit
stFitD1 <- st.mple(y = returns1, penalty = "Qpenalty")$dp
stFitD2 <- st.mple(y = returns2, penalty = "Qpenalty")$dp
stFitD3 <- st.mple(y = returns3, penalty = "Qpenalty")$dp
stFit <- rbind(stFitD1, stFitD2, stFitD3)
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Symmetric-t Skew-t

location scale dof location scale slant dof

D1 returns 0.006 0.035 2764147.496 0.049 0.053 -3.735 32.102
D2 returns 0.013 0.044 4.209 0.046 0.054 -1.064 4.416
D3 returns 0.014 0.031 8.562 0.036 0.035 -1.021 6.638

Table 1: Symmetric-t and skew-t parameter estimates for D1, D2 and D3.

The results are shown in Table 1.

The results show that in the first time interval 1991-1996, before the dot-com bubble collapse,
θ̂D1, sym implies very normally distributed D1 returns, but θ̂D1 indicates that the D1 returns distribution
in that time interval is better approximated by a skew-normal distribution with strong negative
skewness reflected by the negative slant parameter estimate of −3.73. In the second period 1998-2009,
that contains three financial crises, both θD2, sym and θD2 imply that the D2 returns are quite fat-tailed
with degrees-of-freedom estimates of 4.21 and 4.42 respectively, θD2 indicates that the returns are
negatively skewed, but less so than for D1, as indicated by skew-t slant parameter estimate of −1.06.
Finally, for the third interval both θD3, sym and θD3 imply that that the D3 returns distribution is
fat-tailed, but a little less so than in the second period, and θD3 indicate that the D3 returns distribution
is negatively skewed by about the same amount as the D2 returns.

Skew-t information matrix

There are two equivalent forms of an information matrix, one of which involves the products of
score functions that are derivatives with respect to each parameter of the log-likelihood for a single
observation, and the other of which involves the partial derivatives of the score functions (second
partial derivatives of the log-likelihood for a single observation) with respect to each parameter.3 In
our case here, where θ = (ξ, ω, α, ν) and the skew-t log-likelihood for a single observation is

`ST(θ; y) = `ST(ξ, ω, α, ν; z), z = (y− ξ)/ω (14)

We also have the scalar score functions

Sξ(y) =
∂`ST(ξ, ω, α, ν; z)

∂ξ

Sω(y) =
∂`ST(ξ, ω, α, ν; z)

∂ω
(15)

Sα(y) =
∂`ST(ξ, ω, α, ν; z)

∂α

Sν(y) =
∂`ST(ξ, ω, α, ν; z)

∂ν

and the score vector is the gradient of the log-likelihood:

S(y; ξ, ω, α, ν) = ∇`ST(θ; y) = [Sξ(y) Sω(y) Sα(y) Sν(y)]′ (16)

The two equivalent forms of the information matrix are:

I(θ) =


E[Sξ(y)Sξ(y)] E[Sξ(y)Sω(y)] E[Sξ(y)Sα(y)] E[Sξ(y)Sν(y)]
E[Sω(y)Sξ(y)] E[Sω(y)Sω(y)] E[Sω(y)Sα(y)] E[Sω(y)Sν(y)]
E[Sα(y)Sξ(y)] E[Sα(y)Sω(y)] E[Sα(y)Sα(y)] E[Sα(y)Sν(y)]
E[Sν(y)Sξ(y)] E[Sν(y)Sω(y)] E[Sν(y)Sα(y)] E[Sν(y)Sν(y)]

 (17)

= −


E[Sξξ(y)] E[Sξω(y)] E[Sξα(y)] E[Sξν(y)]
E[Sωξ(y)] E[Sωω(y)] E[Sωα(y)] E[Sων(y)]
E[Sαξ(y)] E[Sαω(y)] E[Sαα(y)] E[Sαν(y)]
E[Sνξ(y)] E[Sνω(y)] E[Sνα(y)] E[Sνν(y)]

 (18)

3See for example Casella and Berger (2001).
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The importance of the information matrix I(θ) is that V(θ) = I(θ)−1 is the asymptotic covariance
matrix of a consistent and asymptotically normal MPLE θ̃n = (ξ̃n, ω̃n, α̃n, ν̃n). Consequently V(θ̃n)
can be used to compute approximate standard errors in the usual way, i.e., by extracting the diagonal
elements of V(θ̃n), taking the square root of the result and then dividing by

√
n. In the remainder of

this section, we focus on a numerical integration method of evaluating I(θ), verifying the accuracy of
the method, and analyzing the character of the resulting I(θ) for the MPLE parameters for the stock
returns D1, D2, and D3.

Numerical evaluation of the skew-t information matrix

The skew-t information matrix in (17)-(18) does not admit of closed-form analytic expressions for its
elements, and one must resort to numerical integration. It turns out that information matrix form (17)
is considerably simpler than that of (18) for purposes of numerical integration, and so we focus on
the former. For this purpose we need the following analytic expressions for the score functions (15)
derived by DiCiccio and Monti (2011). Let

w(z) =
tν+1(αz · τ(z))
Tν+1(αz · τ(z)) , ψ(x) =

∂

∂x
log(Γ(x))

where ψ(x) is the digamma function. Then the score functions are

Sξ(y) =
z · τ(z)2

ω
− αν · τ(z)

ω(ν + z2)
· w(z) (19)

Sω(y) = −
1
ω

+
z2 · τ(z)2

ω
− αzν · τ(z)

ω(ν + z2)
· w(z) (20)

Sα(y) = z · w(z) · τ(z) (21)

Sν(y) = ϕ(ν)− log
(

1 +
z2

ν

)
+

z2 · τ(z)2

ν
+

αz(z2 − 1)
(ν + z2)2τ(z)

· w(z) +
ζ(z)

Tν+1(αz · τ(z)) (22)

where

ϕ(ν) =
1
2

[
ψ
( ν

2
+ 1
)
− ψ

( ν

2

)]
− 2ν + 1

ν(ν + 1)
(23)

ζ(z) =
∫ αz·τ(z)

−∞

{
(ν + 1)u2

(ν + 1)(ν + 1 + u2)
− log

(
1 +

u2

ν + 1

)}
t(u; ν + 1) du (24)

We have developed the R package skewtInfo at https://github.com/chindhanai/skewtInfo for
numerically evaluating Equation (17). The main function in this package is stInfoMat(), which has
an argument type that controls the type of information matrix to be computed, with the choice type =
"expected" resulting in computing an expected information matrix, and the choice type = "observed"
resulting in computing an observed information matrix. We note that the computation of an observed
information matrix for skew-t distributions is already available using the functions st.infoUv() in
the sn package. But for the sake of stand-alone completeness of the skewtInfo package we included
the capability to compute an observed information matrix.

The stInfoMat() function, with about 400 lines of R code, uses numerical quadrature as imple-
mented in the function integrate() from the R base package, with the choice of tolerance of 10−9. The
integrate() function maps the infinite range of parameters onto finite sub-intervals, and then uses
globally adaptive interval subdivision in conjunction with Wynn’s Epsilon algorithm extrapolation,
with the basic step being Gauss-Kronrod quadrature. See Piessens et al. (1983) and the documentation
of the function integrate for more information.

Note that the expectations in the bottom row of the information matrix involve a double integration
due to the presence of ζ(z) in the last term of Sν(y), and hence the presence of ζ(z) in the pairwise
products of (22) with (19)-(21). For example, as a part of computing the expected value of the score
functions product Sα · Sν, we need to evaluate4

E
(

zwτζ

Tν+1(αzτ)

)
=
∫ ( zwτζ

Tν+1(αzτ)

)
fST(y) dy

=
∫

R

(∫ αzτz

−∞

{
(ν + 1)u2

(ν + 1)(ν + 1 + u2)
− log

(
1 +

u2

ν + 1

)}
t(u; ν + 1) du

)
zwτ · fST(y)
Tν+1(αzτ)

dy

To compute such an integral in R, we do the following

1. Define the innermost integrand of (24) as a function of u and ν

4We suppress the variable z dependency for w, τ and ζ for a more compact expression of the integrals.
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2. Integrate the inner integrand with respect to u and define this inner integral as a function of z

3. Define the outer integrand to be the product of integral from Step 2 and the function

z · w(z) · τ(z) · fST(y)
Tν+1(αz · τ(z))

4. Integrate the vectorized integrand in Step 3 with respect to y by using sapply() on the y range
over the real line.

Usage example

The function stInfoMat() has three arguments:

1. y, a vector of skew-t random variables used to compute an observed information matrix. Its
default is NULL.

2. dp, the skew-t direct parameter used to compute an expected information matrix, or an observed
information matrix.

3. type = c("expected","observed"), the type of output information matrix, with default
"expected".

The object returned by a call to stInfoMat() is a list having four objects:

1. dp, the skew-t direct parameter used to compute an expected information matrix or an observed
information matrix.

2. stInfoMat, an expected information matrix when type = "expected", and an observed infor-
mation matrix when type = "observed".

3. type, the type of output information matrix.

4. SEMat, the asymptotic standard errors of the skew-t parameters when type = "expected",
and the element-wise standard error of the observed information matrix in the case of type =
"observed".
Here the asymptotic standard errors of the skew-t MPLEs are the square roots of the diagonal
elements of the inverse of the expected information matrix, and the element-wise standard
errors of the observed information matrix are the standard errors of the element-wise sample
means defined in equation (27) in the next subsection.

The following code illustrates the use of stInfoMat() to compute the expected information matrix
I(θD2) for the case of the skew-t parameter values θD2 = (0.0461, 0.0536, −1.06, 4.42), previously
obtained as MPLE for D2 returns.

expInfo_D2 <- stInfoMat(dp = stFitD2, type = "expected")$stInfoMat

392.994 -133.197 6.697 0.111
-133.197 459.792 2.931 -1.005

6.697 2.931 0.205 -0.007
0.111 -1.005 -0.007 0.005

Expected information matrix accuracy verification

Recall the expression for a skew-t log-likelihood `n(θ) in (12) for a sample of size n, where `ST(θ; yi)
is the log-likelihood for a single observation, and the gradient of the log-likelihood is given by (16). It
follows that the Hessian of `n(θ) is

∇2`n(θ; y) =


∑n

i=1 Sξξ(yi) ∑n
i=1 Sξω(yi) ∑n

i=1 Sξα(yi) ∑n
i=1 Sξν(yi)

∑n
i=1 Sξω(yi) ∑n

i=1 Sωω(yi) ∑n
i=1 Sωα(yi) ∑n

i=1 Sων(yi)

∑n
i=1 Sξα(yi) ∑n

i=1 Sωα(yi) ∑n
i=1 Sαα(yi) ∑n

i=1 Sαν(yi)

∑n
i=1 Sξν(yi) ∑n

i=1 Sων(yi) ∑n
i=1 Sαν(yi) ∑n

i=1 Sνν(yi)

 (25)

where the expressions for the second partial derivatives above were derived by DiCiccio and Monti
(2011). The observed information matrix Iobs,n(θ) for a sample of size n is :

Iobs,n(θ) = −∇2`n(θ; y) (26)
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It is a general result that the observed information matrix converges in probability to the expected
information matrix:

− 1
n
∇2`n(θ; y)→P I(θ) (27)

We shall confirm the accuracy of our numerical evaluation of I(θ) by evaluating the observed
information matrix on the left-hand side of the above convergence result for very large n.

We could use either stInfoMat() with type = "observed" or the sn package function st.infoUv()
to compute the observed information matrix. These two functions give virtually identical results,
and since our skewtInfo package contains stInfoMat(), we use that function to compute both
observed and expected information matrices for the case of the skew-t parameter vector θD2 =
(0.0461, 0.0536, −1.06, 4.42) with n = 100, 000, and compare the results. Table 2 shows the following
results: the absolute differences (AD) and relative differences (RD) between the expected and observed
information matrix, along with the standard errors (SE) of the observed information matrix estimates,
and the t-statistics (AD/SE) for testing whether or not the observed information matrix values are
equal to those of the expected information matrix.

Diagonal Expected Observed AD RD SE tstat.AD

I_11 392.994 393.048 0.054 0.000 0.825 0.065
I_22 459.792 459.621 -0.170 0.000 2.249 -0.076
I_33 0.205 0.206 0.000 0.002 0.000 0.812
I_44 0.005 0.005 0.000 0.002 0.000 0.334

Off.diagonal Expected Observed AD RD SE tstat.AD

I_12 -133.197 -136.135 -2.938 0.022 1.582 -1.857
I_13 6.697 6.643 -0.054 -0.008 0.030 -1.807
I_14 2.931 2.904 -0.027 -0.009 0.020 -1.386
I_23 0.111 0.111 0.000 0.000 0.003 -0.017
I_24 -1.005 -1.004 0.002 -0.002 0.008 0.213
I_34 -0.007 -0.007 0.000 -0.007 0.000 0.485

Table 2: Absolute differences (AD), relative differences (RD), standard errors (SE), and t-statistics
(tstat.AD) of diagonal elements (Top) and off-diagonal elements (Bottom) of the expected information
matrix and the observed information matrix based on n = 100, 000 for the skew-t parameter θD2.

The accuracy of the results in this table indicate that the observed information matrix with a very
large sample size n is sufficiently close to the expected information matrix for us to conclude that our
expected information matrix computation is sufficiently accurate.

Information matrices condition numbers and parameters correlations

One obtains an MPLE asymptotic covariance matrix by computing the inverse of an expected informa-
tion matrix, and the stability of such inversion depends on the condition number of the latter matrix.5

In order to get a feeling for the extent of ill-conditioning of expected information matrices for the three
skew-t MPLEs of the previous section, we computed the eigenvalues and condition numbers for the
corresponding expected information matrices, and show the results in Table 3.

We see that the expected information matrix for θD1 is very badly ill-conditioned, and the expected
information matrices of θD2 and θD3 are also quite ill-conditioned, but less so than the information
matrix for θD1. Nonetheless all three of these information matrices are positive definite and their
inverses exist.

5The condition number of a positive definite real matrix A is given by

κ(A) =
λmax

λmin
=

λ−1
min

λ−1
max

= κ(A−1)

where λmin and λmax are the smallest eigenvalue and the largest eigenvalue of A.
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lambda1 lambda2 lambda3 lambda4 condition numbers

D1 returns 1381.5806 534.8326 0.0055 0.0000 1201125125
D2 returns 563.7201 289.2469 0.0262 0.0024 232597
D3 returns 1466.7779 716.4898 0.0222 0.0005 2734502

Table 3: Eigenvalues and condition numbers corresponding to the information matrices in the three
time periods.

Asymptotic correlations of the four parameter MPLEs

The correlation matrix obtained from such an MPLE asymptotic covariance matrix indicates how
correlated the skew-t MPLEs will be in large samples. In order to see what these correlations look like,
we display below the MPLE asymptotic correlation matrices for the returns D1, D2 and D3.

1.000 0.734 -0.802 0.443
0.734 1.000 -0.706 0.769
-0.802 -0.706 1.000 -0.411
0.443 0.769 -0.411 1.000

1.000 0.850 -0.938 0.394
0.850 1.000 -0.836 0.641
-0.938 -0.836 1.000 -0.359
0.394 0.641 -0.359 1.000

1.000 0.885 -0.954 0.434
0.885 1.000 -0.874 0.661
-0.954 -0.874 1.000 -0.407
0.434 0.661 -0.407 1.000

The six pairwise asymptotic correlations are rather similar across the three skew-t parameter
values as follows. The correlations between location and scale parameters tend to be quite positive
(ranging from 0.734 to 0.885), the correlations between location are slant parameters are strongly
negative (ranging from -.954 to -.802), and the correlations between location and DoF tend to be
small and positive (ranging from 0.394 to 0.443). The scale and slant parameters are substantially
negatively correlated (ranging from -.874 to -.706), and the scale and DoF parameters are rather
positively correlated (ranging from 0.641 to 0.769). Finally, the slant and DoF parameters are somewhat
negatively correlated (ranging from -.411 to -.359).

Standard errors of skew-t parameter MPLEs

Since our expected information matrix computation is highly accurate, we will use the inverse of
the expected information matrix to compute standard errors in the usual way, i.e., by taking the
square root of the variance estimates obtained as the diagonal elements of the estimated asymptotic
covariance matrix (the inverse of the estimated expected information matrix) divided by n:

SEθ =
(
SEξ , SEω , SEα, SEν

)
=
√

diag
(
I−1(θ̂n)

)
We evaluate the performance of these standard errors in the following two ways: (a) we compare

them with the "true" standard errors obtained via Monte Carlo, and (b) we compare them with the
standard errors based on an observed information matrix computed in the sn package. These results
will reveal whether or not there are any meaningful differences in the accuracy of the standard errors
obtained using the expected information matrix versus using the observed information matrix.
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Before we make such comparisons, the next subsection first discusses a basic problem that occurs
in carrying out Monte Carlo studies with many replicates of st.mple() fits, and how to deal with the
problem.

A Monte Carlo skew-t fitting difficulty and a solution

When carrying out our Monte Carlo studies involving generating a large number of random sample
replicates from a skew-t distribution, and fitting a skew-t distribution with st.mple() to each replicate,
we would often run into a problem that st.mple() sometimes results in a huge value for the degrees
of freedom estimate and simultaneously an essentially zero estimate for the slant parameter. This
problem is associated with a well-known singularity problem with a skewed normal distribution
when the slant (skewness) parameter is zero, and a near singularity when the slant parameter is close
to zero. The problem occurs when a randomly generated replicate of a skew-t random variable is close
to normality, which happens the more so for small sample sizes.

We illustrate the behavior using M = 1, 000 replicates of samples of size n = 50, 100, 200, 400
from a skew-t distribution with parameter value θD2 = (0.0461, 0.0536,
− 1.06, 4.42) that we obtained as an st.mple() estimate in Table 1.6 The code below implements this
for the case n = 50, with the replicates stored in the matrix retReps, and the fits stored in the matrix
skewtFits.

set.seed(123)
# Skew-t parameters corresponding to D2 returns
dp <- stFitD2
M <- 1000
n <- 50
retReps <- matrix(NA, ncol = n, nrow = M)
skewtFits <- matrix(NA, ncol = 4, nrow = M)
for (m in 1:M) {
retReps[m, ] <- rst(n = n, dp = dp)

}
for (m in 1:M) {
skewtFits[m, ] <- st.mple(y = retReps[m,], penalty = "Qpenalty")$dp

}

Now for each sample size 50, 100, 200, and 400, we identify a sub-matrix skewtFitsHugeDof of
skewtFits for which the degrees of freedom estimate is larger than each of thresholds 20, 40, 100, 500
and 1,000, and print the number of rows of skewtFitsHugeDof for which this occurs for each of those
thresholds, along with the parameter estimates of the first such row. The code below accomplishes
this for the threshold value 1,000.

skewtFitsHugeDof <- skewtFits[(skewtFits[, 4] > 1000), ]
nrow(skewtFitsHugeDof)
## [1] 123
skewtFitsHugeDof[1, ]
## [1] 5.777610e-03 6.016062e-02 -9.752894e-07 4.897225e+06

Table 4 displays the number and percent of replicates for which the st.mple() fit for the parameters
choice θD2 = (0.046, 0.054, −1.064, 4.416), has degrees of freedom larger than the threshold of 20,
40, 100, 500 and 1, 000, for each of the sample sizes 50, 100, 200, 400. The percentages of replicates
whose DoF estimates are larger than the above thresholds indicate that the fits are quite unreliable for
n = 50 and n = 100, but are much more reliable for sample size 200, where the percent of huge DoF
estimates is less than 1% for all thresholds greater than 40, and at the sample size 400 it is only 0.3%
for a threshold of 20, and 0.1% for larger thresholds.7

In order to carry out our Monte Carlo studies with 1,000 replicates, whose results we discuss in
the remainder of this subsection, we need to obtain that many replicates after deleting any replicates
for which the DoF estimate is sufficiently large. For purposes of our study, we will use a threshold
of 20, noting that any replicate with a DoF estimate larger than 20 is rather close to normality, and if

6We note that following ? "How to sample from the SN and related distributions when we want to fix skewness
and other cumulants", we always use the DP parameterization when generating random samples from a skew-t
distribution.

7On page 63 of Azzalini and Capitanio (2014) the authors suggest that for fitting their skew distributions the
usual assumption that "sample sizes less than 30" should be considered "small sample", should be replaced with
"sample sizes less than 50". But they also say that setting such a threshold is difficult because it depends on the
slant parameter α. For the case of the α values for the three skew-t parameter vectors we focus on here, it seems
like the threshold may be more like 200.
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50 100 200 400

Fit DoF > 20 170 ( 17 %) 80 ( 8 %) 16 ( 1.6 %) 3 ( 0.3 %)
Fit DoF > 40 148 ( 14.8 %) 58 ( 5.8 %) 10 ( 1 %) 1 ( 0.1 %)
Fit DoF > 100 136 ( 13.6 %) 45 ( 4.5 %) 6 ( 0.6 %) 1 ( 0.1 %)
Fit DoF > 500 126 ( 12.6 %) 39 ( 3.9 %) 5 ( 0.5 %) 1 ( 0.1 %)
Fit DoF > 1000 123 ( 12.3 %) 36 ( 3.6 %) 5 ( 0.5 %) 1 ( 0.1 %)

Table 4: Numbers and percentages of replicates for θD2 whose MPLE fit has DoF greater than
20, 40, 100, 500, 1000.

significant skewness is indicated by the slant parameter estimate then one should fit a skew-normal
distribution. Thus we carry out our Monte Carlo study to obtain 1,000 clean replicates, with no DoF
estimate larger than 20, by first generating 1,300 replicates to clean, which will leave more than 1,000
replicates remaining for all cases considered, and take the first 1,000 of those remaining replicates for
Monte Carlo calculations.

Our main goal here is to do a simple Monte Carlo comparison of the MPLE values with true
parameter values, where we take the true parameter values to be the three sets of values θDi, i = 1, 2, 3
in Table 1 for the skew-t distribution. So we compute the sample mean values MCDi, n of the MPLEs
across the 1,000 replicates, along with their Monte Carlo standard errors, and their percent relative
biases:

RBDi, n = 100×
MCDi, n − θDi

θDi
, i = 1, 2, 3.

However, before we show the results of deleting MPLEs whose DoF estimate is larger than 20,
we first show the results obtained without doing such deleting. These results, shown in Table 5 for
sample sizes n = 100, 200, 400, with standard errors of the MC values in parentheses, reveal that for all
three parameter sets considered, the average values of the DoF estimates are hugely positively biased.
This is because a fraction of the st.mple() estimates of the DoF are huge outliers that very adversely
distort the DoF Monte Carlo average value.8

Table 6 then shows the results of deleting any MPLEs whose DoF estimate is greater than 20. In
Table 6a where the true DoF parameter has a value close to 32 and a rejection threshold of 20 is used, it
is not surprising that the DoF values are very negatively biased. However in Tables 6b and 6c, where
the true DoF values are about 4.4 and 6.6 respectively, the DoF values are positively biased, and the
relative bias is considerably smaller than in Table 6a where the true DoF parameter value is close to 32.

8We deleted the standard error estimates for the DoF average values for display reasons, and that they are pretty
irrelevant.
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(a)

D1 n = 100 n = 200 n = 400

Theta MC RB% MC RB% MC RB%

0.049 0.044 (2e-04) -10.1 0.047 (1e-04) -3.9 0.048 (1e-04) -1.9
0.053 0.047 (2e-04) -12 0.05 (2e-04) -6.4 0.052 (1e-04) -2.7
-3.735 -3.145 (0.0617) -15.8 -3.394 (0.0295) -9.1 -3.522 (0.022) -5.7
32.102 5.81e+05 2.e+06 6e+05 2.e+06 6e+05 2.e+06

(b)

D2 n = 100 n = 200 n = 400

Theta MC RB% MC RB% MC RB%

0.046 0.04 (5e-04) -13.2 0.043 (4e-04) -6.7 0.045 (3e-04) -2.3
0.054 0.053 (3e-04) -1.1 0.053 (2e-04) -1.1 0.054 (2e-04) 0.8
-1.064 -0.974 (0.0227) -8.5 -1.015 (0.0158) -4.6 -1.066 (0.0115) 0.2
4.416 1.77e+05 4.e+06 4.27e+03 1.e+05 4.82e+00 9.e+00

(c)

D3 n = 100 n = 200 n = 400

Theta MC RB% MC RB% MC RB%

0.036 0.0296 (4e-04) -16.9 0.0324 (3e-04) -9.1 0.0343 (2e-04) -3.7
0.035 0.0342 (2e-04) -3.2 0.0347 (2e-04) -1.8 0.0352 (1e-04) -0.4
-1.021 -0.8279 (0.0236) -18.9 -0.9188 (0.0175) -10 -0.9973 (0.0128) -2.3
6.638 4.61e+05 7.e+06 7.58e+04 1.e+06 1.15e+01 7.e+01

Table 5: Means MC and percent relative biases RB% of the Monte Carlo skew-t MPLEs corresponding
to (a) θD1 (b) θD2 (c) θD3 with M = 1000. The four rows of values in each table are for the location,
scale, slant and DoF parameters, respectively, and MC standard errors are shown in parentheses.
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(a)

D1 n = 100 n = 200 n = 400

Theta MC RB% MC RB% MC RB%

0.049 0.045 (0.00019) -8.0 0.046 (0.00012) -6.0 0.047 (9e-05) -3.9
0.053 0.046 (2e-04) -13.9 0.048 (0.00015) -10.2 0.049 (1e-04) -8.3
-3.735 -3.143 (0.06056) -15.8 -3.25 (0.02883) -13.0 -3.324 (0.02108) -11.0
32.102 9.923 (0.13035) -69.1 11.547 (0.12452) -64.0 13.132 (0.10893) -59.1

(b)

D2 n = 100 n = 200 n = 400

Theta MC RB% MC RB% MC RB%

0.046 0.04 (0.00051) -13.2 0.043 (0.00037) -6.7 0.045 (0.00027) -2.3
0.054 0.052 (0.00031) -3.0 0.053 (0.00024) -1.1 0.054 (0.00019) 0.8
-1.064 -0.981 (0.02195) -7.8 -1.013 (0.01548) -4.8 -1.065 (0.01151) 0.1
4.416 5.314 (0.09363) 20.3 5.099 (0.0715) 15.5 4.782 (0.04686) 8.3

(c)

D3 n = 100 n = 200 n = 400

Theta MC RB% MC RB% MC RB%

0.036 0.031 (0.00036) -13.0 0.032 (0.00027) -10.2 0.034 (2e-04) -4.6
0.035 0.033 (0.00019) -6.6 0.034 (0.00015) -3.8 0.035 (0.00012) -1.0
-1.021 -0.863 (0.022) -15.5 -0.892 (0.01635) -12.7 -0.988 (0.01233) -3.3
6.638 7.229 (0.11885) 8.9 7.341 (0.1022) 10.6 7.505 (0.08947) 13.1

Table 6: Means MC and percent relative biases RB% of the Monte Carlo skew-t MPLEs corresponding
to (a) θD1 (b) θD2 (c) θD3 with a DoF threshold of 20 for eliminating an estimate with M = 1000. The
four rows of values in each table are for the location, scale, slant and DoF parameters, respectively,
and MC standard errors are shown in parentheses.

Further comparison of the Monte Carlo average values and relative biases of the location, scale and
slant parameter estimates in Tables 5 and 6 reveal that for the stock returns data under consideration:
(a) These parameter estimates are not much affected by whether or not MPLEs are rejected because
their DoF estimate is larger than 20; (b) These parameter estimates all have relative bias percentages
that decrease with increasing sample size, with small single digit relative bias percentages at sample
size 400 for stocks D2 and D3. emphasize that this is a very narrow conclusion based on the returns
subsets of a particular stock, and a much more extensive study is needed of large cross-sections of
stock to explore this issue thoroughly.

Standard errors of skew-t MPLEs

A reason for studying the accuracy of the standard errors obtained from our skew-t expected informa-
tion matrices is that in general one does not know whether or not the use of an expected information
matrix yields standard errors that are more accurate, less accurate, or as accurate as those obtained
using an observed information matrix. The statistical literature concerning this question includes,
among other, an early paper by Efron and Hinkley (1978) that argues in favor of the observed informa-
tion, and the more recent papers by Cao and Spall (2010) and Cao (2013) arguing that the use of the
expected information matrix is preferred.
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For our Monte Carlo study of the relative performance of standard errors obtained using our
expected information matrix versus an observed information matrix, we focus on the two skew-
t parameter vectors θD2, n and θD3, n of the "Maximum Penalized Likelihood Estimation Method"
section, and skip θD1, n since its DoF parameter value calls for using a skew-normal or a normal
distribution model. Noting that the Monte Carlo standard error of a standard error estimate under
normality, relative to the standard deviation of the observations, is approximately 1/

√
2 · (M− 1)

where M is the number of Monte Carlo replicates, we use M = 4000 to obtain a standard error of
about 1%. The detailed steps of our Monte Carlo are as follows.

For i = 2, 3 and for each of the sample sizes n = 50, 100, 200, 400 and 800, we do the following:

1. Generate a first random sample of size n of skew-t random random variables with parameter
θDi, n. 9

2. Use the random sample to fit a skew-t distribution with the sn package function st.mple(),
thereby obtaining the set of skew-t parameter estimates ξ̂n, 1, ω̂n, 1, α̂n, 1,
ν̂n, 1.

3. Redo Step 1 and 2 for 5000 times so that we have
(
ξ̂n, m, ω̂n, m, α̂n, m, ν̂n, m

)
, m = 1, 2, . . . , 5000.

4. Remove the parameter estimate vectors for which the DoF estimate ν̂n, m is larger than 20, and
take the first 4000 of the resulting skew-t parameter estimate vectors.

5. Compute the Monte Carlo standard error SEMC of each of the four parameters as their sample
standard deviations for the 4000 replicates.

Table 7 shows the SEMC results in the columns labeled MC for each of θD2, n and θD3, n. The columns
labeled OBS contain the standard errors SEobs obtained using the observed information matrix as
computed by st.infoUv() in sn, and the columns labeled EXP contain the standard errors SEexp as
computed with the function stInfomat() in our new package skewtInfo.

9For the sake of reproducibility, we use set.seed(123) for the simulation results in this section
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D2 D3

MC OBS EXP MC OBS EXP

n = 50
0.0201 0.0214 0.0220 0.0141 0.0170 0.0164
0.0118 0.0175 0.0170 0.0073 0.0144 0.0121
1.7353 0.9236 0.9424 1.9118 1.0860 1.0409
3.3251 3.1274 2.8506 3.8040 8.2432 6.0912

n = 100
0.0157 0.0151 0.0155 0.0109 0.0120 0.0116
0.0096 0.0124 0.0120 0.0058 0.0102 0.0086
0.6744 0.6531 0.6663 0.6734 0.7679 0.7361
2.9386 2.2114 2.0157 3.6845 5.8288 4.3071

n = 200
0.0112 0.0107 0.0110 0.0086 0.0085 0.0082
0.0075 0.0087 0.0085 0.0048 0.0072 0.0061
0.4794 0.4618 0.4712 0.5121 0.5430 0.5205
2.1900 1.5637 1.4253 3.3139 4.1216 3.0456

n = 400
0.0079 0.0076 0.0078 0.0060 0.0060 0.0058
0.0059 0.0062 0.0060 0.0039 0.0051 0.0043
0.3379 0.3265 0.3332 0.3693 0.3840 0.3680
1.4120 1.1057 1.0078 2.7228 2.9144 2.1535

n = 800
0.0056 0.0054 0.0055 0.0042 0.0043 0.0041
0.0042 0.0044 0.0042 0.0029 0.0036 0.0030
0.2405 0.2309 0.2356 0.2625 0.2715 0.2602
0.8146 0.7818 0.7126 1.9839 2.0608 1.5228

Table 7: Standard errors of skew-t MPLEs for θD2 and θD3 with M = 4000.

The results in Table 7 are displayed graphically in the two Lattice plots of Figure 2. Each panel
of the plots contains the three standard errors SEMC, SEobs, SEexp for one of the parameters, versus
sample size. corresponding to columns in Table 7.
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Figure 2: Standard errors plot for θD2 = (0.046, 0.054, −1.064, 4.416) (top) and θD3 =
(0.036, 0.035, −1.021, 6.638) (bottom) with M = 4000.

The figure results indicate that there is often little difference between the standard errors computed
with the expected information matrix versus those of the observed information matrix, and when
there are significant differences, such as for the scale and DoF estimates for D3 at small sample sizes,
the expected information matrix typically results in somewhat more accurate standard errors than
the observed information matrix. While sample size 100 seems to be adequate for obtaining accurate
standard errors for the location and slant parameter MPLEs, it appears that one needs sample size
at least 200 to obtain accurate standard errors for scale parameter MPLEs. Furthermore, while the
expected information matrix standard error of the DoF skew-t MPLE for D3 is quite accurate for
sample sizes 100 and larger, this is not the case for D2, which indicates that quite large sample sizes
are likely needed in order to obtain accurate standard errors for DoF skew-t MPLEs.

Concluding comments

Since there is no analytic formula for the Azzalini skew-t expected information matrix, we developed
a numerical integration method of evaluation and implemented it in the function stInfoMat() in
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the R package skewtInfo. We made an initial exploration of the properties of the resulting expected
information matrix for three skew-t parameter vectors obtained using on the sn package function
st.mple() for three sets of monthly returns D1, D2, D3 of a single stock with ticker D, on three
disjoint time intervals from December 1991 to September 2015. We confirmed the accuracy of our
expected information matrix evaluation method for one of these skew-t parameter vectors by using
the well-known fact that an observed information matrix converges in probability to the negative of
the expected information matrix, and showing that for n = 100, 000 the observed information matrix
values differ by a negligible amount from those of our expected information matrix. We examined the
condition number of the expected information matrices for those three skew-t parameter vectors and
found that although the matrices are positive definite, they are quite poorly conditioned to various
extents. The asymptotic correlation patterns of the three skew-t parameter MPLEs was examined, and
we found that they are fairly consistent in sign and magnitude across those thee parameter vectors, as
described at the end of the "Information Matrices Condition Numbers and Paramters Correlation"
subsection.

For the two of the three skew-t MPLE parameter vectors with single digit DoF values, we carried
out a Monte Carlo study of the standard errors obtained with the expected information matrix, as
compared with the observed information matrix, and comparing both with Monte Carlo reference
standard errors. The results indicate that accurate standard errors for location and slant parameters
can be obtained using both expected and observed information matrices for sample sizes of at last 100,
but not for smaller sample sizes. For the scale and DoF parameters, it appears that sample sizes as
large as 200 or 400 may be needed to obtain accurate standard errors, and in some cases the expected
information matrix gives better results.

The Reviewer’s suggestion to consider the methods for model reduction presented by DiCiccio
and Monti (2018) is quite interesting. However, we feel that it is rather outside the focus and scope of
the current paper, and could be the basis of a separate study, that would also include the hypothesis
that the distribution is a symmetric-t distribution. In fact, it would be great to see this capability in the
sn package at some point in the future.
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