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rcosmo: R Package for Analysis of
Spherical, HEALPix and Cosmological
Data
by Daniel Fryer, Ming Li, Andriy Olenko

Abstract The analysis of spatial observations on a sphere is important in areas such as geosciences,
physics and embryo research, just to name a few. The purpose of the package rcosmo is to conduct
efficient information processing, visualisation, manipulation and spatial statistical analysis of Cosmic
Microwave Background (CMB) radiation and other spherical data. The package was developed for
spherical data stored in the Hierarchical Equal Area isoLatitude Pixelation (Healpix) representation.
rcosmo has more than 100 different functions. Most of them initially were developed for CMB, but
also can be used for other spherical data as rcosmo contains tools for transforming spherical data in
cartesian and geographic coordinates into the HEALPix representation. We give a general description
of the package and illustrate some important functionalities and benchmarks.

Introduction

Directional statistics deals with data observed at a set of spatial directions, which are usually positioned
on the surface of the unit sphere or star-shaped random particles. Spherical methods are important
research tools in geospatial, biological, palaeomagnetic and astrostatistical analysis, just to name a few.
The books (Fisher et al., 1987; Mardia and Jupp, 2009) provide comprehensive overviews of classical
practical spherical statistical methods. Various stochastic and statistical inference modelling issues are
covered in (Yadrenko, 1983; Marinucci and Peccati, 2011).

The CRAN Task View Spatial shows several packages for Earth-referenced data mapping and
analysis. All currently available R packages for spherical data can be classified in three broad groups.

The first group provides various functions for working with geographic and spherical coordinate
systems and their visualizations. Probably the most commonly used R package to represent spatial
maps and data is sp (Bivand et al., 2013). It includes tools for spatial selection, referencing and
plotting spatial data as maps. It has comprehensive hierarchical classes and methods for spatial 2d
and 3d data. Another example, sphereplot (Robotham, 2013), uses rgl (Adler et al., 2018) to create
3d visualizations in the spherical coordinate system. The functions car2sph and sph2car implement
transformations between Cartesian and spherical coordinates. The package geosphere (Hijmans, 2017)
includes functions for computing distances, directions and areas for geographic coordinates.

The second group covers various numerical procedures that can be useful for spherical approxi-
mations and computations. For example, SpherWave (Fernández-Durán and Gregorio-Domíinguez,
2016) is developed to implement the spherical wavelets and conduct the multiresolution analysis on
the sphere. Functions for numerical integration over high-dimensional spheres and balls are provided
in the package SphericalCubature (Nolan and University, 2017).

The third group provides statistical tools for spherical data analysis. In this group, the most
commonly used packages are RandomFields (Schlather et al., 2015) and geoR (Ribeiro Jr and Diggle,
2018). These packages provide a number of tools for model estimation, spatial inference, simulation,
kriging, spectral and covariance analyses. Most of their underlying models are for 2d or 3d data, but
some additional spherical models are listed for future developments. The package Directional (Tsagris
et al., 2019) has functions for von Mises-Fisher kernel density estimation, discriminant and regression
analysis on the sphere. The package gensphere (Nolan, 2017) implements multivariate spherical
distributions. CircNNTSR (Fernández-Durán and Gregorio-Domíinguez, 2016) provides functions
for statistical analysis of spherical data by means of non-negative trigonometric sums. The package
VecStatGraphs3D (Felicísimo et al., 2014) conducts statistical analysis on 3d vectors. It includes
estimation of parameters and some spherical test. Another example is the package sm (Bowman and
Azzalini, 2018) for spherical regression analysis and non-parametric density estimation.

There are also several R packages developed for spherical data in astronomy1. For example,
cosmoFns (Harris, 2012) and CRAC (Liu, 2014) implement functions to compute spherical geometric
quantities useful for cosmological research. The package FITSio (Harris, 2016) reads and writes files
in one of standard astronomical formats, FITS (Flexible Image Transport System). spider (Brown
et al., 2012) includes functions for all-sky grid/scatter plots under various astronomical coordinate

1see the list in https://asaip.psu.edu/forums/software-forum/459833927
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systems (equatorial, ecliptic, galactic). The package astro (Kelvin, 2014) provides functions for basic
cosmological statistics and FITS file manipulations.

In recent years the spatial analysis and theory of spherical data have been strongly motivated
by the studies on the Cosmic Microwave Background (CMB) radiation data collected by NASA and
European Space Agency missions COBE, WMAP and Planck and usually stored in the Hierarchical
Equal Area isoLatitude Pixelation (HEALPix) format. Cosmologists have developed comprehensive
Python and MATLAB software packages2 to work with CMB and HEALPix data.

Although the mentioned before R packages can be used for geographic or spherical coordinate
referenced data, comprehensive and easy to use tools for CMB and HEALPix data are not available in
R, which motivated the authors to design the package rcosmo (Fryer et al., 2020).

The aims of the package rcosmo are

• to give convenient access and integrated in one package tools for analysis and visualisation of
CMB and HEALPix data to the R statistical community;

• to develop R functions for models and methods in spherical statistics that are not available in
the existing R packages;

• to extend familiar R classes to spherical HEALPix data making them cross-compatible and
intuitively interactable with many existing R statistical packages.

The HEALPix format has numerous advantages to classical geographic representations of spherical
data, see (Gorski et al., 2005). R implementation of computationally expensive statistical and geometri-
cal methods, such as nearest neighbour searches, empirical covariance function estimation, uniform
sampling, spectral density estimation, in a way that takes advantage of the HEALPix data structure,
could be useful for geostatistics and other applications. It can reduce algorithmic complexity and
computational time. Various data processing, manipulation, visualisation and statistical analysis tasks
are achieved efficiently in rcosmo , using optimised C++ code where necessary.

Basics of CMB data

In the Standard Cosmological Model, the Cosmic Microwave Background is redshifted microwave
frequency light that is believed to have originated around 14 billion years ago. CMB is the main source
of data about the early universe and seeds of future galaxies. Bell Labs physicists Arno Penzias and
Robert Wilson received the Nobel prize in physics in 1978 for their famously happenstance discovery
of CMB radiation as an inconvenient background “noise” during their experimentation with the
Holmdel Horn Antenna radio telescope (Durrer, 2015).

Over a decade later, NASA’s Cosmic Microwave Background Explorer (COBE) satellite mission
produced the first detailed full CMB sky map (Efstathiou et al., 1992). Referred to as the dawn of preci-
sion cosmology, COBE results provided fine constraints on many cosmological parameters. Particular
attention has been paid to the existence of CMB anisotropies and associated non-Gaussianity, usually
investigated through the CMB angular power spectrum (Durrer, 2015). The Wilkinson Microwave
Anisotropy Probe, was launched in 2001 by NASA and returned more precise measurements of CMB
(Bennett et al., 2003). Then, the third and most detailed space mission to date was conducted by the
European Space Agency, via the Planck Surveyor satellite (Adam et al., 2016). The radiation that
astronomers detect today forms an expanding spherical surface of radius approximately 46.5 billion
light years. The next generation of CMB experiments, CMB-S4, LiteBIRD, and CORE, will consist of
highly sensitive telescopes. It is expected that these experiments will provide enormous amount of
CMB measurements and maps to nearly the cosmic variance limit.

The term “CMB data” refers to a broad range of location tagged quantities describing properties of
the CMB. For example, the Infrared Science Archive by Caltech’s Infrared Processing and Analysis
Center (IPAC) hosts curated CMB products from the North American Space Agency (NASA)3.

To produce CMB maps (see Figure 5), the products of the Planck mission data (in the range of
frequencies from 30 to 857 GHz) are separated from foreground noise using one of the four detailed
methods named COMMANDER, NILC, SEVEM and SMICA4. These CMB maps are provided at either
low resolution (Nside = 1024, i.e., 10 arcmin resolution), or high resolution (Nside = 2048, i.e., 5 arcmin
resolution). The maps include temperature intensity and polarisation data, as well as common masks
for identifying regions where the reconstructed CMB is untrusted.

2https://healpix.sourceforge.io/, https://healpy.readthedocs.io, http://sufoo.c.ooco.jp/program/
healpix.html

3hosted at the link http://irsa.ipac.caltech.edu
4https://wiki.cosmos.esa.int/planckpla2015/index.php/Astrophysical_component_separation

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=astro
https://CRAN.R-project.org/package=rcosmo
https://healpix.sourceforge.io/
https://healpy.readthedocs.io
http://sufoo.c.ooco.jp/program/healpix.html
http://sufoo.c.ooco.jp/program/healpix.html
http://irsa.ipac.caltech.edu
https://wiki.cosmos.esa.int/planckpla2015/index.php/Astrophysical_component_separation


CONTRIBUTED RESEARCH ARTICLE 208

Our focus will mostly be on the CMB temperature intensity data. In Planck CMB products, these
data are stored as 4-byte floating point binary numbers in Kcmb defined as the unit in which a black
body spectrum at 2.725 Kelvin (K) is flat with respect to the frequency (Hurier et al., 2015).

The map of the CMB temperature is usually modelled as a realization of an isotropic Gaussian
random field on the unit sphere. The Appendix introduces a statistical model and basic notations of
spherical random fields. More details can be found, for example, in the monographs (Marinucci and
Peccati, 2011), (Yadrenko, 1983) and the paper (Leonenko et al., 2018).

rcosmo package

The current version of the rcosmo package can be installed from CRAN. A development release is
available from GitHub (https://github.com/frycast/rcosmo).

The package offers various tools for

• Handling and manipulating of CMB radiation and other spherical data,

• Working with Hierarchical Equal Area isoLatitude Pixelation of a sphere (Healpix),

• Spherical geometry,

• Various statistical analysis of CMB and spherical data,

• Visualisation of HEALPix data.

Most of rcosmo features were developed for CMB, but it can also be used for other spherical data.

The package has more than 100 different functions. Figure 1 shows the core functions available in
rcosmo and some typical data analysis flow sequences.
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Figure 1: The flowchart of rcosmo main structure and core functions for 3 typical inputs: "data.frame"
(general input), "downloadCMBMap" (conventional HEALPix format), and "downloadCMBPS" (power
spectrum data).

Rather than attempting a systematic description of each functions, the remainder of this paper
shows broad classes of methods implemented in rcosmo with particular examples of core functions.
A reproducible version of the code in this paper for the current version of rcosmo is available in the
folder "Research materials" from the website https://sites.google.com/site/olenkoandriy/.
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Visualisation tools

Interactive visualisations of spherical data are a focus point of rcosmo . Standard Python and MATLAB
tools for CMB and HEALPix visualization use the Mollweide projection of the unit sphere to the
2d plane. This is an equal-area projection, but it distorts spherical angles and distances. In contrast
rcosmo employs the ‘OpenGL’ powered 3d visualization device system rgl for R to allow 3d interactive
plots of data on the unit sphere.

The generic plot function produces interactive 3d vector graphics that may be easily exported
to a HTML document. Some examples of using different plot functions are provided later in the
paper. The results of plot.CMBDataFrame are given in Figures 5 and 6. For an example of using
plot.HPDataFrame see Figure 15 and examples of using plot.CMBWindow are shown in Figures 5 and 7.
For better visualization some figures produced by the R code in this paper were rotated and zoomed
in before including in the article.

By default, the Planck colour scale is applied to CMB intensity data for plotting5. Additional
features such as automatic plot legends, alternative colour scales, and greater configurability are
planned for future releases. In addition, rcosmo provides a variety of 2d plot functionality to support
visualisation of statistical analysis results and some additional 3d plot functionality for demonstrating
HEALPix pixel properties.

rcosmo classes

Four R classes have been developed to support HEALPix data representation and analysis in the
package rcosmo : "CMBDat", "CMBDataFrame", "HPDataFrame" and "CMBWindow". First three are main
parent classes of objects to store spherical data. The class "CMBWindow" is used to choose observation
windows.

• The function CMBDat creates objects of class "CMBDat". CMBDat objects are lists containing header
information, other metadata and a data slot. Data slots may include standard information about
CMB intensity (I), polarisation (Q, U), PMASK and TMASK. It also may contain a mmap object
that points to the CMB map data table in a FITS file. As for standard data frames new data slots
can be created to store other types of spherical data.

• The function CMBDataFrame creates objects of class "CMBDataFrame". These class is a special
modification of "data.frame" that also carries metadata about, e.g., the HEALPix ordering
scheme, coordinate system, and nside parameter (i.e., the resolution of the HEALPix grid that is
being used). Each row of a CMBDataFrame is associated with a unique HEALPix pixel index.

• The class "HPDataFrames" is a type of "data.frame" designed to carry data located on the unit
sphere. Unlike "CMBDataFrame", "HPDataFrames" may have repeated pixel indices. It allows to
store multiple data points falling within a given pixel in different rows of HPDataFrame objects.

• The function CMBWindow creates objects of class "CMBWindow". These objects are polygons, spheri-
cal discs, or their compliments, unions and intersections.

As the main rcosmo data classes are special modifications of "data.frame" it means that spatial
objects produced by rcosmo can be subsequently processed by other R packages/functions that work
with standard data frames. The rbind and cbind generics that work with the "data.frame" class have
been customised in rcosmo to preserve the validity of CMBDataFrame objects.

Getting data into rcosmo

In this section, we demonstrate how to import CMB data in the typical case of a full sky map stored as
a FITS file. Such maps can be sourced from the NASA/IPAC Infrared Science Archive6.

The function downloadCMBMap can be used to download Planck CMB maps. One can specify the
type of map (‘COMMANDER’, ‘NILC’, ‘SEVEM’ or ‘SMICA’), the resolution (Nside = 1024 or 2048), and save it
in a working directory with a specified file name.

The map ‘COM_CMB_IQU-smica_1024_R2.02_full.fits’ used in most of the examples in this paper is
a FITS file of approximate size 200 megabytes. This map has the resolution Nside = 1024, so it contains
Npix = 12× 10242 = 12582912 pixels, each having its own intensity I, polarisation Q, U, temperature
mask value Tmask ∈ {0, 1} and polarisation mask value Pmask ∈ {0, 1}.

5Colour scale is available here: https://github.com/zonca/paperplots/tree/master/data
6hosted by Caltech at the link http://irsa.ipac.caltech.edu/data/Planck/release_2/

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

http://irsa.ipac.caltech.edu/data/Planck/release_2/


CONTRIBUTED RESEARCH ARTICLE 210

After downloading the map with downloadCMBMap and applying the function CMBDataFrame, we
obtain an object of class "CMBDataFrame".

> library(rcosmo)
> filename <- "CMB_map_smica1024.fits"
> downloadCMBMap(foreground = "smica", nside = 1024, filename)
> sky<-CMBDataFrame(filename)
> str(sky)
Classes ‘CMBDataFrame’ and 'data.frame': 12582912 obs. of 1 variable:
$ I: num -9.20e-05 -8.04e-05 -8.99e-05 -7.71e-05 -7.01e-05 ...
- attr(*, "nside")= int 1024
- attr(*, "ordering")= chr "nested"
- attr(*, "resolution")= num 10
...

An alternative to the above act of reading the entire map into memory is to take a random sample
of points on the sphere. This is achieved without reading the entire map into R memory. Simple
random sampling in rcosmo will be discussed further under the section on statistical functions.

> set.seed(0); s <- 2e6;
> cmb_sample <- CMBDataFrame(filename, sample.size = s, include.m = T, include.p = T)
> cmb_sample
A CMBDataFrame
# A tibble: 2,000,000 x 5

I Q U TMASK PMASK
<dbl> <dbl> <dbl> <int> <int>

1 -0.0000771 5.45e-9 -0.000000718 0 0
2 -0.0000701 -7.10e-8 -0.000000730 0 0
...
10 -0.0000710 8.25e-8 -0.000000618 0 0
# ... with 1,999,990 more rows

Use of memory mapping

The standard library for reading data from FITS files is a collection of C and FORTRAN subroutines
called ‘CFITSIO’. In R, the package FITSio (Harris, 2016) is the only general FITS file reader that the
authors are aware of. However, importing a full sky CMB map with approximately 12 million intensity
samples from a FITS file using FITSio took too long when development of rcosmo began. We were
able to reduce the necessary run time to under 4 seconds with the rcosmo function CMBDat. rcosmo still
substantially outperforms the last version of FITSio. In the following example we used the CMB
map with ‘SMICA’ foreground separation and Nside = 2048 (having approximately 50 million intensity
samples) to test it on a modern laptop7.

> filename1 <- "CMB_map_smica2048.fits"
> downloadCMBMap(foreground = "smica", nside = 2048, filename1)
> system.time(sky <- CMBDataFrame(filename1))

user system elapsed
1.36 0.29 1.73

> system.time(fits <- FITSio::readFITS(filename1))
user system elapsed

822.28 90.05 942.14

The approach used in rcosmo is based on a novel application of the mmap package by Jeffrey
Ryan (Ryan, 2018). The package mmap is a highly optimised interface to ‘POSIX mmap’ and Windows
‘MapViewOfFile’. Using mmap in rcosmo required an update of mmap to support big-Endian byte
order. The current version of mmap allows us to import data from a FITS binary table very efficiently,
one row at a time, using a C struct data type. Ideally, for a typical rcosmo user, the details of using
mmap are abstracted away while the user constructs and interacts with "CMBDataFrame" objects.

Another use of mmap in rcosmo concerns the elimination of the need to read a large full sky CMB
map into R memory. Often it is unmanageable to read the entire contents of a FITS file. For example,
it may not be possible to obtain sufficiently large blocks of continguous memory from the operating

7Laptop specifications: Microsoft Surface Laptop with 7th Gen Intel Core m3 (i5) processor; 8GB LPDDR3
SDRAM (1866MHz)
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system when importing more than a few hundred megabytes of data as a numeric vector. In rcosmo ,
integration of mmap allows one to maintain a C-style pointer at a particular byte-offset to the target
binary file (e.g., the FITS file), so that data can be read into R memory on command from this offset. In
the following example, only rows 1, 2, 4, 7 and 11 are read into memory from the file.

> v <- c(1,2,4,7,11)
> sky <- CMBDataFrame(filename, spix = v, include.p = T, include.m = T,
coords = "spherical")
> sky
A CMBDataFrame
# A tibble: 5 x 7
theta phi I Q U TMASK PMASK
<dbl> <dbl> <dbl> <dbl> <dbl> <int> <int>

1 1.57 0.785 -0.0000920 6.47e-8 -0.000000657 0 0
2 1.57 0.786 -0.0000804 -9.19e-9 -0.000000694 0 0
3 1.57 0.785 -0.0000771 5.45e-9 -0.000000718 0 0
4 1.57 0.786 -0.0000663 -5.81e-8 -0.000000751 0 0
5 1.57 0.783 -0.0000836 7.60e-8 -0.000000697 0 0

> pix(sky)
[1] 1 2 4 7 11

The next section discusses the HEALPix data structure. HEALPix ordering schemes can be used to
map coordinates on the sphere to row indices in a FITS binary table. Combining this feature with the
technique in the above example allows rcosmo to efficiently import random samples of data from a
variety of geometric regions of the sphere without ever having to import the entire CMB map. This is
particularly useful on larger maps and will become increasingly important in future as advances in
cosmology allow for higher resolution CMB maps to be produced.

Introduction to HEALPix

Present generation Cosmic Microwave Background experiments produce data with up to 5 arcminutes
resolution on the sphere. For a full-sky map, this amounts to approximately 50 million pixels, each
describing distinct location, intensity, polarisation and other attributes. The statistical analysis of such
massive datasets, and associated discretisation of functions on the sphere, can involve prohibitive
computational complexity and non-adequate sampling in the absence of an appropriate data structure.
The Hierarchical Equal Area isoLatitude Pixelation is a geometric structure designed to meet this
demand using a self-similar refinable mesh. It is currently the most widely used pixelation for storing
and analysing CMB data (Gorski et al., 2005).

The package rcosmo provides various tools to visualize and work with the HEALPix structure.

HEALPix initially divides the sphere into 12 equiareal base pixels . To visualise these with rcosmo ,
we can first generate a CMBDataFrame at some low resolution (e.g, Nside = 64) and then take three
separate window subsets in the pixels that we intend to colour, as shown in Figure ??). Note that, while
all HEALPix pixels are 4-sided, their edges are not geodesics, i.e., they are not spherical quadrillaterals
(Calabretta and Roukema, 2007).

> ns <- 64; rand <- rnorm(12 * ns ^ 2)
> cmbdf <- CMBDataFrame(nside = ns, I = rand, ordering = "nested")
> w1 <- window(cmbdf, in.pixels = c(1,9))
> w2 <- window(cmbdf, in.pixels = c(2,10))
> w3 <- window(cmbdf, in.pixels = c(4,12))
> plot(w1, col = "blue", back.col = "white", xlab = '', ylab = '', zlab = '')
> plot(w2, col = "green", add = TRUE)
> plot(w3, col = "orange", add = TRUE)
> displayPixelBoundaries(nside = 1,ordering = "nested",incl.labels = 1:12,col ="red")

Each of the 12 base pixels can be further subdivided into 4 equiareal 4-sided pixels. For a demonstration,
we can create another window subset based on a higher resolution CMBDataFrame and display the
outputs in Figure ??.

> ns <- 256; rand <- rnorm(12 * ns ^ 2)
> w21 <- window(CMBDataFrame(nside = ns, I = rand, ordering ="nested"), in.pixels = 1)
> plot(w21, col = "light blue", back.col = "white", add = TRUE, size = 1.2)
> displayPixelBoundaries(nside=2,ordering="nested",incl.labels=c(1,2,3,4),col ="black")
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> plot(window(cmbdf,in.pixels = 2), col = "green", add = TRUE)
> plot(window(cmbdf,in.pixels = 4), col = "purple", add = TRUE)
> plot(window(cmbdf,in.pixels = 5), col = "orange", add = TRUE)
> plot(window(cmbdf,in.pixels = 6), col = "red", add = TRUE)

This process of subdivision can be repeated until a desired resolution is achieved. At the required
resolution, the number of edge segments per base pixel edge is referred to as the Nside parameter, and
satisfies Npix = 12N2

side, where we use Npix to denote the total number of pixels.

(a) HEALPix base pixel boundaries (b) HEALPix nested ordering

Figure 2: (a): HEALPix base pixel boundary visualisation. The 12 base pixels are labelled 1 to 12;
(b): HEALPix nested ordering visualisation at Nside = 2. Pixels 1, 2, 3 and 4 (labelled) all fall within
base pixel 1 (coloured solid).

At a given Nside, the HEALPix representation provides a bijection from the first 12N2
side natural

numbers P to a set of locations L on the unit sphere. We refer to P as the set of pixel indices and L as
the set of pixel centers . For assigning the pixel indices to the pixel centers there are two approaches,
known respectively as the "ring" and "nested" ordering schemes . The nested scheme is demonstrated
with the numbering in Figure ??. The ring scheme is demonstrated in Figure 3.

Figure 3: HEALPix ring ordering scheme visualisation. The black line traces in order through pixel
centers from 1 to Npix = 768. The locations of pixels 100 to 107 are labelled.

> cmbdf <- CMBDataFrame(nside = 8, ordering = "ring")
> plot(cmbdf, type = 'l', col = "black", back.col = "white")
> tolabel <- c(1,100:107,768)
> plot(cmbdf[tolabel,], labels = tolabel, col = "red", add = TRUE)
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Regardless of the choice of ordering scheme, all HEALPix pixel centers lie on 4Nside − 1 rings
of constant latitude. This feature facilitates fast discrete spherical harmonic transforms, since the
associated Legendre functions need only be evaluated once per isolatitude ring of pixel centers (Gorski
et al., 2005).

Many tasks gain or lose efficiency with the choice of ordering scheme. For example, nearest
neighbour searches are best conducted in the nested scheme (Gorski et al., 2005). As such, every object
of class "CMBDataFrame" or "HPDataFrame" has an attribute named ordering to indicate which of the
two schemes is being used. This allows rcosmo functions to choose the most efficient scheme for each
task, performing any necessary conversions with the internal functions nest2ring and ring2nest.

HEALPix functions

For working directly with HEALPix properties there are a number of rcosmo functions. Some core
functions are shown in Figure 1 in the yellow colour, other are internal and some were exported.
Broadly, there are the following categories:

• Working with ordering schemes,

• Navigating the nested ordering hierarchy,

• Geometric functions involving pixel indices,

• Visualising the HEALPix structure.

The main ordering functions include converting between two ordering schemes and getting
information about a type of ordering (ordering generic and internals nest2ring and ring2nest). For
example, the ordering generic function is useful for getting and setting the ordering attribute of a
CMBDataFrame or HPDataFrame.

> sky <- CMBDataFrame(nside = 2, ordering = "ring"); ordering(sky)
[1] "ring"
> ordering(sky) <- "nested"; ordering(sky)
[1] "nested"

rcosmo functions for navigating the HEALPix structure provide various tools to investigate local
neighbourhoods of specific pixels and relative positions of pixels at different levels of the nested order-
ing hierarchy, see, for example, ancestor, pixelWindow, neighbours, etc. Since the nested ordering is
self-similar, many of these functions are resolution independent.

For example, the kth ancestor of a pixel index p at resolution j := log2(Nside) is the pixel index pa
to which p belongs, k steps up the hierarchy (i.e., at resolution j− k). It turns out that pa is a function
pa = f (p, k) that is independent of j. The following example produces the ancestors of pixel p = 103,
for k = 1, 2, . . . , 5, using the internal function ancestor.

> ancestor(1e3, 1:5)
[1] 250 63 16 4 1

A function that is not resolution independent is pixelWindow. In the following code, pixelWindow
retrieves all pixels at resolution j2 = 5 that lie within pixel p = 1, specified at resolution j1 = 1. The
result is shown in Figure 4.

p <- 1; j1 <- 1; j2 <- 5
P <- pixelWindow(j1 = j1, j2 = j2, pix.j1 = p)
displayPixels(spix = P, j = j2, plot.j = j2)

The group of rcosmo functions that includes pix2coords, pixelArea, nestSearch, etc., computes
spherical geometric properties in relation to by pixel indices. For example, the nestSearch function
searches a pixel closest to a point in 3d space. It uses an algorithm that achieves a high level of
efficiency using the nested hierarchy. A comparison, via microbenchmark (Mersmann, 2018), with a
basic linear search algorithm which we call geoDistSearch reveals the following.

> library(microbenchmark)
> geoDistSearch <- function(target, nside, spix) {

xyz <- pix2coords(nside = nside, spix = spix)
dists <- geoDist(xyz, target)
return(xyz[which.min(dists),])}
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Figure 4: All pixel centers (at resolution 5), within pixel 1 (at resolution 1)

> t <- data.frame(x = 0.6, y = 0.8, z = 0)
> nside <- 16; p <- 1:(12*(nside)^2)
> mb <- microbenchmark::microbenchmark(

geoDistSearch(target = t, nside = nside, spix = p),
nestSearch(target = t, nside = nside))

> summary(mb)$median[1]/summary(mb)$median[2]
[1] 283.9834

From the above, it was observed that nestSearch was over 200 times faster than geoDistSearch at
finding the closest pixel center at Nside = 16 to the point (x, y, z) = (0.6, 0.8, 0). With nestSearch, the
closest pixel to a target point is found by checking only 12 + 4 log2(Nside) pixels rather than 12N2

side.
When Nside = 2048, only 12 + 4 log2(2048) = 56 pixels must be checked from over 50 million.

Subsetting and combining spherical regions

rcosmo functions for selecting and visualizing spherical regions can be broadly divided in the following
groups:

• Creating basic CMBWindow objects (polygons or spherical discs),

• Combining different sub-regions by using compliments, unions and intersections to create a
new CMBWindow object,

• Plotting a region with boundary and inside points,

• Extracting data from a given CMBDataFrame restricted to a CMBWindow region.

Class CMBWindow is designed to carry geometrical information describing the interior or exterior of
spherical figures (polygons, spherical discs (caps), and their complements, unions and intersections).
The polygons can be non-convex, though CMBWindow carries a boolean attribute assumedConvex that
should be set to TRUE, if the polygon is known in advance to be convex. In this case special methods
that decrease computation times are applied.

A CMBWindow object can be created using the CMBWindow function. The code below illustrates
the creation of two CMBWindows that correspond to the Dragon and Scorpion constellations. Files of
constellation boundaries8 include coordinates of spherical polygons vertices that correspond to each
constellation. The function hms2deg converts celestial coordinates (hours, minutes, seconds) to the
degrees format. Then "phi" and "theta" columns of the data.frame CB are used to create CMBWindow
objects. To inspect these CMBWindow objects using interactive 3D graphics, we can pass them to the
generic plot function. Below, we also plot the CMB map as a background. The resulting plot is
displayed in Figure 5.

> download.file("https://www.iau.org/static/public/constellations/txt/dra.txt",
"bound1.txt")

> x1 <- readLines("bound1.txt")
> x1 <- gsub("\\|", " ", x1)

8available at https://www.iau.org/public/themes/constellations/
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> Constellation_Boundary1 <- read.table(text = x1,col.names=c("H","M","S","D","Con_N"))
> download.file("https://www.iau.org/static/public/constellations/txt/sgr.txt",
"bound2.txt")

> x2 <- readLines("bound2.txt")
> x2 <- gsub("\\|", " ", x2)
> Constellation_Boundary2 <- read.table(text = x2,col.names=c("H","M","S","D","Con_N"))

> CB0 <- Constellation_Boundary1
> deg <- celestial::hms2deg(CB0[,1],CB0[,2],CB0[,3])
> CB1 <- data.frame(pi*deg/180, pi*CB0[,4]/90)
> colnames(CB1) <- c("phi","theta")
> polygon1 <- CMBWindow(phi = CB1$phi, theta = CB1$theta)
> plot(cmb_sample, back.col = "white")
> plot(polygon1, lwd=2)

After repeating the steps above for the Scorpion constellation we obtain and the second CMBWindow
object polygon2 in Figure 5.

(a) The Dragon (b) The Scorpion

Figure 5: Boundary visualisation of polygon CMBWindow objects, plotted against 105 CMB intensities.

Note that for the CMBWindow polygons defined above, entire polygons lie within any one hemisphere
of S2. To obtain CMBWindow objects that occupy more than one hemisphere, we can specify a polygon or
disc exterior (complement in S2) using the set.minus = TRUE parameter. For example, the following
command gives the exterior of a spherical cap with a base radius 0.5.

> d.exterior <- CMBWindow(theta = pi/2, phi = 0, r = 0.5, set.minus = TRUE)

To specify more complicated regions, we can combine multiple CMBWindow objects into a list. For
example, the following command results in the list containing d.exterior and the interior of a spherical
disc (cap) of base radius 1 (disc’s radius is computed on the sphere surface), which is a spherical
segment shown in Figure 6.

> wins <- list(d.exterior, CMBWindow(theta = pi/2, phi = 0, r = 1))

Figure 6: CMB intensity data extracted from an CMBDataFrame object by the window function.

By passing CMBWindow objects to the window function, one can extract data from a CMBDataFrame or
mmap object. Below, using the above spherical window wins the CMBDataFrame named sky.annulus is
created and plotted in Figure 6.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 216

> df <- CMBDataFrame(filename)
> sky.annulus <- window(df, new.window = wins)
> plot(sky.annulus, back.col = "white")
> plot(wins[[1]], lwd = 5, col="blue"); plot(wins[[2]], lwd = 5, col="blue")

Spherical geometry functions

Several basic tools for spherical geometry are implemented in rcosmo :

• Converting between different coordinate systems on the sphere,

• Computing geodesic distances between points and windows,

• Calculating spherical angles,

• Computing areas of spherical figures,

• Triangulating spherical polygons.

The currently implemented core geometric functions are shown in Figure 1 in the orange colour.
Some other spherical geometric tools are specified for the HEALPix representation or CMBWindows and
are shown in the green colour.

For example, the functions geoArea computes the area of a figure on the unit sphere that is
encompassed by its pixels.

> geoArea(sky.annulus)
[1] 2.11917

Another example is the function maxDist that computes the maximum geodesic distance either
between all points in a data.frame pairwise, or between all points in a data.frame and a target point.

> p <- c(0,0,1)
> maxDist(sky.annulus, p)
[1] 2.570114

Various geometric problems require triangulations of spherical polygons. For a polygonal
CMBWindow the function triangulate produces a set of spherical triangles with pairwise disjoint
interiors and the union equals to the original polygon. For example, Figure 7 shows a triangulation of
the Dragon constellation spherical polygon.

Figure 7: Triangulation of a spherical polygon.

> win1 <- triangulate(polygon2)
> for (i in 1:11) {plot(win1[[i]], col=i)}

Statistical functions

In this section we overview core statistical functions implemented in rcosmo . The package provides
various tools for statistical analysis of spherical data that can be broadly divided in the following
types:
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• Spherical random sampling,

• Univariate spherical statistics and plots,

• Multivariate statistics for data from different CMBWindows,

• Measures of spatial dependencies.

The main currently implemented statistical functions are shown in Figure 1 in the blue colour.
Below we provide few examples of functions for each type.

Random sampling

An immediate advantage of equiareal HEALPix pixel sizes is that simple random sampling is not
regionally dependent (Gorski et al., 2005). That is, a simple random sample of pixel indices produces
an approximately uniform sample of locations on the sphere.

To get a simple random sample from a CMBDataFrame one can use the function sampleCMB. This
function returns a CMBDataFrame which size equals to the function’s parameter sample.size. This new
object has rows that comprise a simple random sample of the rows from the input CMBDataFrame.

> set.seed(0)
> sampleCMB(df, sample.size = 3)
A CMBDataFrame
# A tibble: 3 x 1

I
<dbl>

1 -0.0000198
2 -0.000307
3 -0.0000915

Univariate spherical statistics and plots

There are several methods in rcosmo for statistical analysis and visualisation of CMB temperature
intensity data. For example, function summary produces a CMBDataFrame summary that includes
information about window’s type and area, total area covered by observations, and the main statistics
for the intensity data in the spherical window.

> summary(sky.annulus)
============================= CMBDataFrame Object ============================
Number of CMBWindows: 2
+-----------------------------+
| |
| Window type: minus.disc |
| Window area: 11.7972 |
| |
+-----------------------------+

+-------------------------+
| |
| Window type: disc |
| Window area: 2.8884 |
| |
+-------------------------+
METHOD = 'smica ' / Separation method
Total area covered by all pixels: 2.11917
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Intensity quartiles
Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.609e-04 -6.908e-05 -6.208e-07 -1.487e-06 6.737e-05 7.697e-04
================================================================================

The function entropyCMB returns an estimated entropy for specified column intensities and
CMBWindow.

> entropyCMB(cmbdf = df, win = d.exterior, intensities = "I")
[1] 2.13523
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The first Minkowski functional fmf returns an area of the spherical region, where the intensities
are above of the specified threshold level α.

> fmf(cmbdf = sky.annulus, alpha = 0, intensities = "I")
[1] 1.054269

fRen computes values of the sample fractal scaling exponent on the grid of N uniformly spaced
points in the interval [q.min, q.max]. The scaling exponent describes fractal properties of random
fields and can be used for testing departures from Gaussianity, see (Leonenko and Shieh, 2013). For
example, Figure 8 shows that the sample scaling exponent is an approximate strait line for for the data
in CMBWindow sky.annulus. Thus, there is not enough evidence for substantial multifractality of the
random field based on the data in this CMBWindow. More details can be found in the paper (Leonenko
et al., 2020).

> Tq <- fRen(cmbdf = sky.annulus, q.min = 1.01, q.max = 10, N = 20, intensities = "I")
> plot(Tq[,1], Tq[,2], ylab =expression(T[q]), xlab = "q", main = "Sample fractal
scaling exponent", pch = 20, col = "blue")

Figure 8: Sample fractal scaling exponent of sky.annulus on [1.01,10].

The function plotAngDis helps to visualise the marginal distributions of temperature intensities
versus θ and φ angles. It produces scatterplots and barplots of the corresponding means computed
over bins, see Figure 9.

Figure 9: Distributions of temperature versus θ and φ angles for the Scorpion constellation region.

> df1 <- sampleCMB(df, sample.size = 100000)
> cmbdf.win <- window(df1, new.window = polygon2)
> plotAngDis(cmbdf.win, intensities = "I")
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Multivariate statistics for data from different CMBWindows.

There are several rcosmo functions for comparison of data from two or more CMBWindows. For example,
the function qqplotWin is a modification of the standard qqplot to produces a QQ plot of quantiles of
observations in two CMBWindows against each other for a specified CMBDataFrame column.

The example below shows that the distributions of temperatures in the Dragon and Scorpion
constellations are similar.

> qqplotWin(df1, polygon1, polygon2)

Figure 10: QQ plot of observations in the Dragon vs Scorpion constellation regions.

The function qstatq can be used to measure spatial stratified heterogeneity in a list of CMBWindows.
It takes values in [0, 1], where 0 corresponds to no spatial stratified heterogeneity, 1 means a perfect
heterogeneity case. For example, the results below shows that there is not enough evidence for spatial
stratified heterogeneity, i.e. the value of the temperature intensities are not different in these two
CMBWindows.

> lw <- list(polygon1, polygon2)
> qstat(df1, lw)
[1] 0.01089514

Investigating spatial dependencies

This section presents some of rcosmo tools for the analysis of spatial dependencies in spherical data.

As the geodesic and Euclidean distances are different, covariance functions on R3 can not be used
directly for S2. The package implemented several parametric models of covariance functions (2) on the
sphere, see theoretical foundations in (Gneiting, 2013). rcosmo uses the package geoR and extends its
list of general spatial models and some functions to the spherical case. Currently available choices of
covariance models are matern,exponential,spherical,powered.exponential,cauchy, gencauchy,
pure.nugget,askey, c2wendland,c4wendland,sinepower, and multiquadric. The default option is
matern.

The function covmodelCMB computes values of theoretical covariance functions given the separation
distance of locations. The function returns the value of the covariance Γ(h) at the geodesic distance h.
The covariance model uses the general form Γ(h) = σ2 · ρ(h/ψ), where the variance σ2 and the range
ψ are vertical and horizontal scaling parameters respectively.

For example, the following command computes the value of the Askey covariance function with
the parameters σ2 = 1, ψ = π, and κ = 4 at the geodesic distance h = π/4.

> covmodelCMB(pi/4, cov.pars = c(1, pi), kappa = 4, cov.model = "askey" )
[1] 0.3164062

The command plotcovmodelCMBPlot is designed to produce quick plots of theoretical covariance
functions. The result for the Askey covariance function is shown in Figure 11.

> plotcovmodelCMB("askey", phi = pi/4, to = pi/2, kappa = 4)

If a random fields is isotropic its covariance function depends only on a geodesic distance between
locations. In this case the function covCMB can be used to compute an empirical covariance function for
intensity data in a CMBDataFrame or data.frame. Output is given up to a maximal geodesic distance
max.dist, which can be chosen between 0 and π (by default equals π).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=geoR


CONTRIBUTED RESEARCH ARTICLE 220

Figure 11: Plot of the Askey covariance function for the parameters σ2 = 1, ψ = π/4, and κ = 4.

> df1 <- sampleCMB(df, sample.size = 100000)
> Cov <- covCMB(df1, max.dist = 0.03, num.bins = 10)
> Cov$v
[1] 1.041607e-08 6.955709e-09 4.305906e-09 3.180806e-09
[5] 2.675364e-09 2.436718e-09 2.407982e-09 2.316794e-09
[9] 2.319271e-09 2.308250e-09 2.263268e-09

Obtained estimated covariance values can be visualised using the command

> plot(Cov)

Figure 12: Plot of the empirical covariance function for max.dist = 0.03.

The function variofitCMB estimates parameters of variogram models (see equation (3) for the link
between covariance and variogram functions) by fitting a parametric model from the list covmodelCMB
to a sample variogram estimated by the function variogramCMB. This function is built on and extends
variofit from the package geoR to specific rcosmo covariance models on the sphere.

In the example below the Matern variogram is fitted to the empirical variogram on the interval
[0, 0.1] using the ordinary least squares method, see Figure 13.

> varcmb <- variogramCMB(df1, max.dist = 0.1, num.bins = 30)
> ols <- variofitCMB(varcmb, fix.nug=FALSE, wei="equal", cov.model= "matern")
> plot(varcmb)
> lines(ols, lty=2)

The package also has tools to work with angular power spectra of spherical random fields. The
CMB power spectrum data are freely available from the section "Cosmology products" of the Planck
Legacy Archive9. They can be easily downloaded in a ready-to-use rcosmo format by the function
downloadCMBPS.

The function covPwSp uses values of an angular power spectra to provide a covariance estimate by
equation (2). As the argument of the covariance function in equation (2) is cos Θ the following code
uses the inverse transformation acos to plot the covariance estimate as a function of angular distances
in Figure 14.

9hosted at the link https://pla.esac.esa.int/pla/
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Figure 13: Plots of the empirical and fitted variograms.

> COM_PowerSpectra <- downloadCMBPS(link=1)
> Cov_est <- covPwSp(COM_PowerSpectra[,1:2], 2000)
> plot(acos(Cov_est[,1]), Cov_est[,2], type ="l", xlab ="angular distance",
ylab ="Estimated Covariance")

Figure 14: Plot the covariance estimate using CMB power spectrum.

Converting other spherical data to HEALPix format

While the HEALPix is the main representation in cosmological applications there are numerous
spherical data, for example, in geosciences, that use different coordinate systems and spherical formats.
This example shows how non-HEALPix spherical data can be converted to the HEALPix format for
rcosmo analysis.

A HPDataFrame is suitable for storing data that is located on a sphere, but has not been preprocessed
to suit HEALPix structured storage. There are various ways to assign HEALPix pixel indices to the
rows of a HPDataFrame. This example presents the way when a desired resolution is specified in
advance. Then the HPDataFrame constructor automatically assigns pixel indices based on coordinates
provided. A row is assigned the pixel index of its closest pixel center. rcosmo also has the option of
automatic computing of a required resolution for given data to assign data locations to unique pixels.

As an example we use the database with the latitude and longitude of over 13 thousand world’s
large cities and towns available from the World Cities Database10. First, cities latitudes and longitudes
in degrees are converted to spherical coordinates (θ, φ) in radians. Then , we create and visualize
HPDataFrame at the resolution nside = 1024, see Figure 15.

> worldcities <- read.csv("worldcities.csv")
> sph <- geo2sph(data.frame(lon = pi/180*worldcities$lng, lat = pi/180*worldcities$lat))
> df1 <- data.frame(phi = sph$phi, theta = sph$theta, I = rep(1,nrow(sph)))
> hp <- HPDataFrame(df1, auto.spix = TRUE, nside = 1024)
> plot(hp, size = 3, col = "darkgreen", back.col = "white")

10hosted at the link https://simplemaps.com/data/world-cities
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Figure 15: Plot of world’s large cities and towns at the resolution nside = 1024.

Some other examples of converting directional and star-shaped data into rcosmo formats are given in
(Fryer and Olenko, 2019).

Summary and future directions

This article introduces the package rcosmo for analysis of CMB, HEALPix and other spherical data.
The package integrates the HEALPix representation and various spherical geometric and statistical
methods in a convenient unified framework. It opens efficient handling and analysis of HEALPix
and CMB data to the R statistical community. rcosmo also introduces several new spherical statistical
models and methods that were not available in R before. The package can also be very useful for
researchers working in geosciences.

There are several possible extensions that would be useful to the package. Some of them include:

• integrating with available Python and C++ HEALPix software,

• including new spherical statistical models and methods,

• further development of spherical spectral and multifractal methods,

• adding new visualisation tools,

• improved use of memory mapping to use on extremely high resolution images.
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Appendix: Statistical model

Consider a sphere in the three-dimensional Euclidean space S2 =
{

x ∈ R3 : ‖x‖ = 1
}
⊂ R3.

A spherical random field on a probability space (Ω,F , P), denoted by

T = {T(θ, ϕ) = Tω(θ, ϕ) : 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, ω ∈ Ω} ,

or T̃ = {T̃(x) , x ∈ S2}, is a stochastic function defined on the sphere S2.

The field T̃(x) is called isotropic on the sphere S2 if its mean ET(θ, ϕ) = c = constant and the
covariance function ET(θ, ϕ)T(θ′, ϕ′) depends only on the angular distance Θ = ΘPQ between the
points P = (θ, ϕ) and Q = (θ′, ϕ′) on S2.

A real-valued second-order mean-square continuous spherical random field T can be expanded in
the series

T(θ, ϕ) =
∞

∑
l=0

l

∑
m=−l

almYlm(θ, ϕ), (1)

where {Ylm(θ, ϕ)} represents the complex spherical harmonics and alm are random variables.

If a random field is isotropic then

Ealma∗l′m′ = δl′
l δm′

m Cl , −l ≤ m ≤ l, −l′ ≤ m′ ≤ l′, l ≥ 0.

Thus, E|alm|2 = Cl , m = 0,±1, ...,±l. The series {C1, C2, ..., Cl , ...} is called the angular power spectrum
of the isotropic random field T(θ, ϕ).

The covariance function of the isotropic random fields T has the following representation

Γ(cos Θ) = ET(θ, ϕ)T(θ′, ϕ′) =
1

4π

∞

∑
l=0

(2l + 1)Cl Pl(cos Θ), (2)

where Pl(·) is the l-th Legendre polynomial and ∑∞
l=0(2l + 1)Cl < ∞.

The variogram (semivariogram) function is defined by

γ(h) = Γ(0)− Γ(h). (3)

The package uses observations of the field T at HEALPix points. There are two main approaches
in the statistical analysis of T that are realised in rcosmo . First approach directly uses the observations
for parameter estimation and hypothesis tests. For example, the classical estimator of the isotropic
variogram γ(h) takes the form of

γ̂(h) =
1

2Nh
∑

(x1,x2)∈Nh

(T(x1)− T(x2))
2 ,

where Nh is the set of the spherical location pairs at the geodesic distance h. The second approach is
spectrum-based. Initially, the estimates âlm are computed by inverting (1). Then, empirical covariance
functions and variograms can be obtained by substituting the estimated values of the angular power
spectrum

Ĉl =
1

2l + 1

l

∑
m=−l

|âlm|2

in equations 2 and 3.
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