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Mapping Smoothed Spatial Effect
Estimates from Individual-Level Data:
MapGAM

by Lu Bai, Daniel L. Gillen, Scott M. Bartell, Verénica M. Vieira

Abstract We introduce and illustrate the utility of MapGAM, a user-friendly R package that provides
a unified framework for estimating, predicting and drawing inference on covariate-adjusted spatial
effects using individual-level data. The package also facilitates visualization of spatial effects via
automated mapping procedures. MapGAM estimates covariate-adjusted spatial associations with
a univariate or survival outcome using generalized additive models that include a non-parametric
bivariate smooth term of geolocation parameters. Estimation and mapping methods are implemented
for continuous, discrete, and right-censored survival data. In the current manuscript, we summarize
the methodology implemented in MapGAM and illustrate the package using two example simulated
datasets: the first considering a case-control study design from the state of Massachusetts and the
second considering right-censored survival data from California.

Introduction

In spatial epidemiology studies, mapping crude and adjusted spatial distributions of disease risk
is a useful tool for identifying risk factors of public health concern (Elliott and Wartenberg, 2004).
The underlying (or crude) geographic pattern of disease is often what is observed by public health
practitioners, but these patterns may be due to important spatially-varying predictors such as so-
cioeconomic status, race/ethnicity, or environmental exposures. Individual-level spatial analyses
can provide insight regarding disease risk by adjusting for these variables without aggregation bias
(also known as ecological bias). Disease risks often have complex spatial patterns that are subject to
high variability due to sparsity. Smoothing provides an efficient method to deal with these issues by
borrowing strength from adjacent observations to reduce variability while allowing for non-parametric
flexibility when estimating the spatial distribution of risk. Generalized additive models (GAMs), origi-
nally proposed by Hastie and Tibshirani (1986), are common model-based approaches for mapping
point-based epidemiologic data(Webster et al., 2006; Vieira et al., 2008; Baker et al., 2011; Akullian
et al., 2014; Bristow et al., 2014; Hoffman et al., 2015). GAMs provide a unified statistical framework
that allows for the adjustment of individual-level risk factors when evaluating spatial variability in a
flexible way. The flexibility provided by GAMs, together with the intuitive nature of many smoothing
techniques, make them an ideal choice for modeling complex spatial associations.

There are a number of R packages implementing GAMs and related models (R Core Team, 2015).
The gam package (IHastie, 2004) provides an implementation of the GAM framework of Hastie and
Tibshirani (1986) by providing two types of commonly used smoothing methods: cubic loess smooth-
ing splines for univariate variables and local kernel smoothing (LOESS) for multivariate variables.
The mgcv(Wood, 2009; Breslow and Clayton, 1993) package implements cubic smoothing splines and
tensor product smooths, an extension of cubic splines to multi-dimentions. mgcv also provides various
criterion to aid in the selection of model complexity via the choice of effective degrees of freedom
and provides functions to fit generalized additive mixed effects models (GAMMs) for correlated
data. Package gamlss (Rigby and Stasinopoulos, 2005; Stasinopoulos and Rigby, 2007) implements an
extension of the GAM that incorporates selected distributions outside of the exponential family. With
respect to censored survival data, parametric additive models can be fit using both the gamlss.cens
package (Stasinopoulos et al., 2015) and the VGAM package (W., 2007). Bayesian inferences for the
spatial analysis of survival data based on the parametric proportional hazards model are implemented
in package spatsurv(Taylor et al., 2016; Taylor and Rowlingson, 2014). However, parametric models
assume a full distribution of the survival times, and misspecifying the distribution may yield bias for
estimates. Cox proportional hazards models, which are semi-parametric without specifying a form
for underlying hazard function, are more robust for survival analysis including mulitple adjusted
variables.

A variety of R packages incorporate Cox proportional hazards models and spatial smoothing term.
The R interface to BayesX(Umlauf et al., 2015; Belitz et al., 2016; Kneib et al., 2014), R2BayesX(Umlauf
et al., 2016), provides survival spatial analysis based on structured additive models (STAR) without
specifying the baseline hazard. mboost(Hothorn et al., 2016) implements boosting for optimizing
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penalized likehood function, and as an extention of mboost, gamboostMSM(Reulen, 2014) provides
estimates for multistate models. mgcv also incorporates 'coxph' family in the model fitting. However
these packages use cubic, B- and/or P- splines as smoothing methods; none offer LOESS. LOESS
adapts to varying data densities by defining a local neighborhood based on a fixed proportion ("span”)
of the observations; this is especially useful for spatial analyses as population densities typically vary
within any study region.

Therefore, none of the above packages provide an implementation of the Cox proportional hazards
additive model for censored survival data that allows for multivariate loess smoothing of covariates
such as geolocation parameters, despite the fact that spatial effect estimation in the context of survival
outcomes is of great interest in epidemiology studies (Henderson et al., 2002; Bristow et al., 2014).
Moreover, displaying spatial predictions on a map with irregular geographic boundaries is a non-
trivial effort, often handled by exporting statistical predictions to separate specialized geographic
information system (GIS) software such as ArcGIS that requires a paid user license (Webster et al.,
2006; Vieira et al., 2008) or by omitting geographic boundaries altogether(Akullian et al., 2014). At best,
these limitations and complexities pose a significant barrier to researchers not already well versed in
both GAMs and GIS methods and at worst may lead to reporting errors due to the inefficient transfer
of estimates between separate software packages.

To address the above deficiencies of current software, MapGAM was built to provide a single
R package that allows for estimating, predicting, and visualizing covariate-adjusted spatial effects
using individual-level data. The package estimates covariate-adjusted spatial associations with a
univariate or survival outcome via GAMs that include a non-parametric bivariate smooth term of
geolocation parameters. Estimation and mapping methods are implemented for continuous, discrete,
and right-censored survival data. In addition, support functions for efficient control sampling in
case-control studies and inferential procedures for testing global and pointwise spatial effects are
implemented. We have found that a unified system for estimating and visualizing covariate-adjusted
spatial effects on outcomes arising from the most commonly encountered epidemiologic study designs
greatly facilitates efficient and reproducible analyses in these settings.

This article serves as an introduction and illustration of the MapGAM package. The remainder
of the manuscript is organized as follows: Section 2.2 provides an overview of the methodology
implemented in MapGAM for estimating and visualizing spatial effects in the context of a generalized
additive model for continuous, binary or count outcome data. An illustrative example using MapGAM
to analyze hypothetical case-control data from the state of Massachusetts is also provided. Section 2.3
considers estimating spatial effects on right-censored survival times via a Cox proportional hazards
additive model. The estimation procedures implemented in MapGAM are provided and a brief
simulation study considers the performance of the proposed fitting methods in various settings. In
Section 2.4 we consider inference procedures associated with spatial modeling and illustrate how
to use the package to perform a global test of a spatial effect and calculate confidence intervals for
predictions at each spatial prediction point. Section 2.5 concludes with discussion of the utility of the
MapGAM package and considers possible extensions of the package in future research.

Spatial effect on a univariate outcome

We consider estimating and visualizing covariate-adjusted spatial effects in the context of a GAM
for continuous, binary or count outcome data. The spatial effect can be estimated by fitting a GAM
model with a bivariate smoothing term for the two geolocation parameters. Typical models will also
include additional adjustment for demographic characteristics and other risk factors that may serve as
potential confounding factors in the association between location and the outcome of interest.

Generalized additive model

We consider modeling observations that are distributed on a map with u; and v; denoting the geo-
graphical parameters for the ith observation,i =1,...,n. Let Y; denote the outcome and X; denote a
vector of adjustment covariates. Further suppose that the distribution of the outcome belongs to the
exponential family. The GAM then assumes that

g(ui) =i = Bo+ X' B+ flu;,v;), 1)

where g(+) is the link function for mean of the outcome y; = E[Y;] and the variance of the outcome
is defined by the assumed probability model and denoted as V; = Var(Y;) = V(y;, ¢); a function of
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the mean and nuisance parameter ¢.  denotes a vector of coefficients associated with adjustment
covariate X; and f(u;, v;) represents the spatial effects, which is a nonlinear function of location.

When fitting the model, we separate the spatial effect into parametric and nonparametric portions:
fu;,v;) = 1u; + v20; + s;, and the model becomes

g(ui) =1 = Po+ X/ B+si, )

where X; = [X;,u;,v;] and B = [B",71,72]". The parametric part of the spatial effect is fit jointly
with other adjustment variables using least squares, while the nonparametric term is fit using a
nonparametric smoother. To ensure identifiability, we constrain the model so that ) ; s; = 0.

A local scoring procedure (Hastie and Tibshirani, 1986) is used to fit the model. Let [ denote
the log-likelihood function based upon one observations Y = [Yy,..., Yn]T, which is a function of
7 = [n1,...,mn] . To estimate the parameters of the model we seek to maximize the expected log
likelihood:

E(I(71,Y7)) = maxE(L(;, Yi)), fori =1, ,n 3)

where the expectation is taken over the joint distribution of X and Y. This has intuitive appeal since

it seeks to choose a model that maximizes the likelihood of all possible future observations. Under

standard regularity conditions (namely the ability to interchange integration and differentiation), we
obtain

E[dl/dily, =0, @)

While there is no general closed for solution to Eq.(4), a first-order Taylor series expansion leads to an
iterative estimating procedure given by

e = pold g [dl/dy,)| ot/ E[d*1/dy?] |yt (5)
which is equivalent to
dl/dy;
i i ]E[dzl/dﬂiz o ©

In the exponential family case, we can compute the first and second derivatives of the expected log
likelihood as

A o e 1
o= mmv (5, @)
and ) 5

ﬂ — (Y, — 4 V1 i -1 % _ % -1

dn? i =)V (dm> {V" <d77i ani) Vi ®)

Then taking the expectation (conditional on X) of Eq.(8) we obtain

[ ()
()=

Hence #; is updated in the GLM case by

d .
n =E [’71 + (Y — pi) (TZZ,)

} ) (10)
g ug

Further, letting Y94 = [Y°ld ... y9l4]T denote the working response computed in terms of 74 and
& fw wl wn g resp P Ul

1°'% and given by

dn:
YO = i+ (Y; — i) (di‘) , (11)
Wi 7o ol
we obtain from Eq.(2), Eq.(10), and Eq.(11),
E[Yg;lid] — ‘Bgew + XiT‘Bnew Jrslnew. (12)

The coefficients Bgew , B”ew and nonparametric term, s, must be estimated in order to obtain an updated
value of #% in Eq.(10). If no parametric linear predictor term is included in the model (beyond the
spatial smoothing term), the updated s"¢® can be estimated by regressing the working response Y2/
on a bivariate smoother for u and v. However, with the parametric linear predictor term included in

the model, the backfitting algorithm can be used to update By ,8 and s, as is done in the gam package.
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Specifically, we begin by defining W = [Wy, -, W,]T as

Wi = i/ )2V s i 13)

and initializing s = 0. The backfitting procedure then loops through the following three steps until the
mean squared error does not further decrease relative to a defined convergence criteria:

1. Update By and B by fitting a linear regression model with Y34 — s as the response and corre-

sponding weight W;
2. Update § by regressing response Y34 — By — Xj on a bivariate smoother for u and v with weight
W;

3. Calculates =§—1T734.
Thus, the general algorithm for fitting a generalized additive model within the MapGAM package is:

1. Initialize s = 0. Initialize By and by fitting a generalized linear regression model with all the
adjusted covariates and geolocation parameters included in the model (ie. omitting s).

2. Loop:

old

(a) With the current estimated By, 8 and s, calculate 7°/ as well as working response Y2/ and

W using Eq.(2), Eq.(11) and Eq.(13) respectively.
(b) Update Bo, B and s via the backfitting algorithm.

3. Repeat 2. until convergence.

A locally weighted scatterplot smoother (LOESS) (Cleveland, 1979, 1981; Cleveland and Devlin,
1988) is utilized as the bivariate smoothing function for the two geolocation parameters u and v in the
MapGAM package. The smoothing parameter defining the neighborhood used to select the K nearest
observations points for smoothing may be user specified or automatically chosen by minimizing AIC
(Webster et al., 2006).

Estimating and mapping a spatial effect

In the MapGAM package, typical spatial applications will start with the predgrid() function to create
a regular grid of points within the study area, potentially restricted to points within optional map
boundaries (e.g., a country, state, or regional map obtained from the maps package or imported from
a shapefile). Crude or covariate-adjusted odds ratios, hazard ratios, or other effect estimates are then
obtained for each grid point using the modgam() function to smooth by geolocation. modgam() provides
compatible and flexible interfaces, acting as a wrapper function to the gam() function in the gam
package. Specifically, the model can be specified via a formula statement, or for users less familiar
with writing model formulas in R, the formula can be omitted in which case the model is specified
implicitly by structuring the data so that the first column of the data represents the outcome to be
modeled (or the first two columns for survival objects), the next two columns represent the parameters
for geolocation, and the remaining columns represent the adjustment covariates to be included in
the model. With the model specified, modgam() proceeds by calling the gam() function to estimate
model parameters, then calls mypredict.gam() to generate predictions for the specified grid. The
optspan() function can be used to find an optimal span size (proportion of data size included in
the neighborhood) for the LOESS smoother. Optionally, the modgam() function can call optspan() to
choose the optimal span for fitting the model in an automated fashion.

Considering the estimated spatial effect f(u;, v;) for the it location, researchers are often interested
in the spatial effect difference (or ratio, log-ratio) comparing each location to a defined reference.
To obtain spatial effect estimates, one can specify type="spatial”, then modgam() provides three
options for the choice of reference: the median of f(u;,v;),i = 1,...,n, the mean of f(u;,v;), i =
1,...,n, or an estimated spatial effect value at a user-specified geolocation. Alternatively, specifying
reference="none" will produce prediction estimates based upon the linear predictor for each covariate
combination in the prediction dataset (including the model intercept). To produce estimates of effects
for all adjustment covariates, the option type="all” may be specified. The result of modgam() is
an object of class modgam() that can be summarized by class-defined printing, summarizing and
plotting methods. Specifically, a heatmap of the predicted values from a fitted model can be generated
using either the colormap() or plot() functions. For tailored plots, the trimdata() and sampcont()
functions can be used to restrict data to those areas within a specified set of map boundaries and
to conduct simple or spatiotemporal stratified sampling from eligible controls—a useful feature for
analysis of data from large cohorts.
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Application to case-control data from Massachusetts

In this section we present an illustrative example using MapGAM to analyze hypothetical case-
control data from Massachusetts. MAdata is a simulated case-control study dataset available in the
MapGAM package. Contained in the dataset are 90 cases and 910 controls with randomly generated
geolocations across Massachusetts, geocoded on a Lambert projection (in meters). MAmap provides a
map of Massachusetts using the same projection. The dataset also contains three randomly generated
potential adjustment covariates: smoking, mercury exposure and selenium exposure. A summary of
the dataset follows:

R> data("MAdata")
R> data("MAmap")
R> summary(MAdata)

Case Xcoord Ycoord Smoking
Min. :0.00  Min. : 35354  Min. 1778430  Min. :0.000
1st Qu.:0.00 1st Qu.:111465 1st Qu.:869089 1st Qu.:0.000
Median :0.00 Median :183100 Median :891067 Median :0.000
Mean :0.09  Mean 1175054  Mean : 889081 Mean :0.177
3rd Qu.:0.00  3rd Qu.:236826  3rd Qu.:919684 3rd Qu.:0.000
Max. :1.00  Max. 1327861 Max. 1954253 Max. :1.000
Mercury Selenium
Min. :0.1418  Min. :0.2049

1st Qu.:0.7206 1st Qu.:0.8573
Median :1.0010 Median :1.1836
Mean :1.147 Mean :1.3590
3rd Qu.:1.4017  3rd Qu.:1.6844
Max. :5.6298  Max. 5.8963

The geolocations of the observations are shown in Figure 1, which can be generated with the
following code:

R> plot(MAmap)
R> points(MAdata$Xcoord, MAdata$Ycoord, col = MAdata$Case + 1)
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Figure 1: Map of Massachusetts that indicates the location of cases and controls. Data are contained in
the MAdata dataset. Depicted are controls (black, ‘0’) and cases (red, ‘x).
We first start with generating a prediction grid for the map using predgrid().

library("PBSmapping")
R> gamgrid <- predgrid(MAdata, map = MAmap)

After defining a prediction grid, modgam() is used to fita GAM model based on the MAdata and generate
predictions on the defined grid. A formula expression indicates that the indicator Case is specified
as the response, and two spatial parameters Xcoord and Ycoord are included in lo() to specify a
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geospatial smoothing term. In addition, potential confounders Smoking, Mercury and Selenium are
also adjusted for in the model as linear terms. Argument sp is used to specify the span size for the
spatial smoothing term. A specification of sp = null (the default) implies that an optimal span will
be selected. Note that if the model formula is not supplied, the data must be structuring so that the
outcome is in the first column, the two spatial parameters are in the second and third columns and
the adjustment variables are in other columns. In that case, specifying m="adjusted"” will include all
other columns of the data as linear terms in the model and m="crude"” will fit only the two spatial
parameters (the m argument is ignored if a model formula is supplied). For this particular example,
the resulting call to modgam() using the formula statement is given as follows:

R> fit1 <- modgam(Case ~ lo(Xcoord, Ycoord) + Smoking + Mercury +
+ Selenium, data = MAdata, rgrid = gamgrid, sp = NULL,

type = "spatial”, verbose = FALSE)
R> fit1

Call:

modgam(formula = Case ~ lo(Xcoord, Ycoord) + Smoking + Mercury +
Selenium, data = MAdata, rgrid = gamgrid, sp = NULL, type = "spatial”,
verbose = FALSE)

Model:

Case ~ lo(Xcoord, Ycoord, span = 0.3, degree = 1) + Smoking +
Mercury + Selenium

Family: binomial Link: logit

Coefficients:
(Intercept)
-6.911648e+00
lo(Xcoord, Ycoord, span = 0.3, degree = 1)Xcoord
2.363118e-06
lo(Xcoord, Ycoord, span = 0.3, degree = 1)Ycoord
4.376156e-06
Smoking
1.533433e+00
Mercury
5.729589e-01
Selenium
-6.431932e-01

Coefficients in the above output represent log-odds ratios. The interpretation of parametric terms
remain the same as the usual logistic regression model. For example, we estimate the odds of disease
is estimated to be ¢! = 4.63-fold higher when comparing smokers to non-smokers with similar
location and exposure to mercury and selenium.

The interpretation of the smoothed spatial terms is best done graphically. A heatmap of the
estimated spatial effect predictions (representing the odds ratio comparing the odds at each location to
the median odds across all locations) can be generated using the modgam plotting routine via a call to
the plot () function. This in turn relies upon the colormap() function defined within MapGAM. The
resulting heatmap is displayed in Figure 2. The exp argument is used to specify whether the heatmap
is drawn on the scale of the odds ratio (exp=TRUE) or the log odds ratio (exp=FALSE).

R> plot(fitl, exp = TRUE, MAmap, contours = "response")

Estimating spatial effects for right-censored survival data

To quantify spatial effects on censored survival outcomes, MapGAM implements a Cox propor-
tional hazards additive model with a bivariate (two geolocation parameters) smoothing term. The
incorporation of a bivariate smoother within the Cox model is not, to the best of our knowledge,
currently implemented within R. In this section, we briefly introduce the methodology implemented
in MapGAM as an extension of the GAM methods previously discussed for GLMs, provide a limited
simulation study to illustrate the validity of the methodology in selected settings and provide an
example of applying the MapGAM package to estimate spatial effects on censored survival data using
hypothetical survival times derived from the state of California.
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Figure 2: Heatmap of the estimated odds ratio of spatial effect predictions compared to the median

estimated odds over all locations. Red colors indicate areas with an increased odds of being a case.

Blue colors represent a decreased odds of being a case.

Fitting the Cox proportional hazards additive model

Suppose we observe right-censored survival data that is distributed on a map with u; and v; as the
geographical parameters for the i observation, i = 1,...,n. Let T; denote the observed followup

time and J; denote the indicator of whether or not T; represents the true failure time for observation i.

Further, let X; be a vector including adjustment covariates X and geolocations (1, v) corresponding
to observation i. The Cox proportional hazards additive model used in the MapGAM package
incorporates a bivariate smoother into the Cox proportional hazards model (Kelsall and Diggle, 1998)
as

Ai(t) = Ao(t) exp{ X B+ 5}, (14)
where A;(t) represents the hazard function for observation i evaluated at time ¢ and Ag(t) denotes the
baseline hazard (ie. the hazard of an observation with all covariate values equal to 0 and location with
s = 0, where again s is a smooth function of spatial coordinates # and v). Define the linear predictor

ni =X B+s;. (15)

For ease of exposition, consider the case of no tied failure times. Then the partial likelihood and

log-partial likelihood are given by

elli
PL=T]=-——, (16)
g ZkeR, el

1=3 [m—log(Ze”")], 17)
j€D keR;

respectively, where D represents the set of indices of all unique failures and R; = {k|Ty > T;} denotes
the risk set just prior to time T] In the event of tied failure times, MapGAM defaults to the use of the
Efron approximation (Efron, 1977) for the partial likelihood:

[ker, ™

[1—5 :
JeD T, [Tier, e — Tier, e (k= 1)/|F|

and

(18)
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where F; is the set of indices of the failures occurring at time T}, and |F;| is the number of indices in the
set F;.
]

Letting | denote the log-partial likelihood in Eq.(17), we again seek to solve the maximization
problem provided in Eq.(3). The solution can be found iteratively using Eq.(6). We can compute the
first and second derivatives of the log-partial likelihood with respect to 7; for observation i as

dl e'li
— =0; — = (19)
dn; ]-:;‘;j Lker; €
and ) )
d-l e'li e
dTZ:_.-Z » R,e'7k+.Z 5 (20)
i JiER; “KER; JiER; (ZkeR/ e'?k)

The Cox model is a semi-parametric model without any specification for the distribution of the survival
times, so it is not possible to calculate a close form for the expectation of the second derivatives for the
log partial likelihood as required in Eq.(9). So before updating #, a GAM model can be fitted using the
second derivatives as responses to estimate the expectation of the second derivatives of log-partial
likelihood.

To this end, we modify the local scoring procedure presented in Section 2.2.1 by noting that in
Eq.(6), with an estimate 77°/, the new estimate for 77 can be obtained using the following two steps:

1. Estimate IE[d?]/ d}yiz} by fitting a generalized additive model using [d?]/ d;yl-z}, i=1,---,n
as responses, including the linear predictor of X and a bivariate smoother of geolocation
parameters;

2. Estimate 17" using the backfitting algorithm described in Section 2.2.1 with W; = —1/IE[d?/dy?]
as weights and Y2/ = 914 — [dl/dy;] |yota/ IE[d%1/dy?] as working responses.

i

Simulation examples

In this section we assess the performance of our proposed method for fitting the Cox proportional haz-
ards additive model using two simulation studies. In both simulation settings, two spatial parameters
(u, v) and adjustment covariate x are generated from a uniform distribution with range from —1 to 1.
Survival times were then simulated from an exponential distribution with a hazard function. The first
simulation example assumes a linear effect of all covariates on the log-hazard and that the effect of
adjustment covariate x does not interact with the effect of the spatial parameters u and v.

A = 0.03exp {log(0.7)x 4+ log(1.2)u + log(1.5)v} . (21)

In the second simulation example, the spatial parameters have a nonlinear effect on the log-hazard,
while the adjustment covariate x has a linear effect that does not interact with the spatial coordinates.
The hazard function used in the second simulation example is

A = 0.03exp {10g(0.7)x + log(1.2)u + log(1.5)v + log(0.8)u? + log(1.8)uv | . 22)

The true data-generating heatmaps of the two examples are shown in Figures 3a and 3¢, respectively.
When we set a seed of 269, with N = 5000 sampled data points. The survival times under the first (sec-
ond) simulation setting range from 0.0011(0.0011) to 316.5(396.8), and have a median of 22.66(24.16).
In both settings, censoring times were randomly sampled from a Uniform(0,70) distribution and
observed times were taken to be the minimum of the true failure time and censoring time for each
observation, yielding approximately 41.6% and 43.9% censoring in scenario 1 and 2, respectively. Code
for this simulation is provided in the Appendix. Cox proportional hazards additive models were fit
and the spatial effect of the points on an equally-spaced grid (201 x 201) extended across u € [—1,1]
and v € [—1,1] were predicted using the modgam function from the MapGAM package. Smoothing
span sizes of 0.4 and 0.2 were utilized for scenario 1 and 2, respectively. In each case, these values
roughly correspond to the automated span size chosen when optimizing AIC.

Figure 3b and 3d display the estimated spatial effects for example data sets using the first (linear
relationship) and second (nonlinear relationship) simulation settings, respectively. Comparing the
estimated values in Figures 3b and 3d to the corresponding true data generating values displayed
in Figures 3a and 3d, we can see that the additive proportional hazards model implemented in
MapGAM accurately recreates the true spatial effects (either linear or nonlinear) giving rise to the
data. In addition, two scatterplots of the estimated versus true spatial effect are provided in Figure

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE

40

4a and 4b, again illustrating that the additive proportional hazards method outlined above is able to
correctly identify the spatial effects present in the data with minimal bias.
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(c) Truths for nonlinear spatial effect
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(b) Estimates for linear spatial effect
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(d) Estimates for nonlinear spatial effect

Figure 3: Heatmaps of the the log-hazard ratio comparing the hazard of the location to the median
hazard for two simulation examples with 5000 simulated observations. For the first simulation example
with linear spatial effect on log-hazards: (a) estimated log-hazard ratio; (b) true log-hazard ratio; For
the second simulation example with nonlinear spatial effect on log-hazards: (c) true log-hazard ratio;
(d) estimated log-hazard ratio.
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Figure 4: Comparisons of the true log-hazard ratio and the estimated log-hazard ratio for two simula-
tion examples with 5000 simulated observations: (a) result for the first simulation example with linear
spatial effect; (b) result for the second simulation example with nonlinear spatial effect.
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Application to right-censored California data

In this section we use the MapGAM package to estimate and visualize spatial effects for a dataset
simulated from information on censored survival times of California ovarian cancer patients. These
are data contained in the object CAdata within the MapGAM package. The original source is the
California advanced-stage invasive epithelial ovarian cancer patients reported to the California Cancer
Registry from 1996 to 2006 (Bristow et al., 2014). After removing patients with age <25 and >80 for
identifiability reasons, and adding random noise to the geolocation parameters, CAdata represents a
random draw of size N = 5,000 observations from the original dataset. Observed times and failure
status were simulated based upon the observed distribution found in the original dataset. Potential
covariates available in the dataset include age and insurance type (6 categories in total: Managed
Care, Medicare, Medicaid, Other Insurance, Not Insured and Unknown). A summary of CAdata is as
follows:

R> data("CAdata")
R> summary(CAdata)

time event X Y
Min. : 0.004068 Min. :0.0000 Min. :1811375  Min. :-241999
1st Qu.: 1.931247 1st Qu.:0.0000 1st Qu.:2018363 1st Qu.: -94700
Median : 4.749980 Median :1.0000 Median :2325084 Median : -60387
Mean 6.496130 Mean :0.6062  Mean 12230219 Mean ;87591
3rd Qu.: 9.609031 3rd Qu.:1.0000 3rd Qu.:2380230  3rd Qu.: 318280
Max. :24.997764  Max. :1.0000 Max. 12705633  Max. : 770658
AGE INS
Min. :25.00  Mcd: 431

1st Qu.:53.00 Mcr:1419
Median :62.00 Mng:2304
Mean :61.28 Oth: 526
3rd Qu.:71.00 Uni: 168
Max. :80.00  Unk: 152

CAmap is the map file for California State. The geolocations of the observations are plotted in Figure 5.

Figure 5: Map of California displaying the geolocations of the observations in CAdata. Depicted in
the plot are censored observations (black, ‘0”) and observed event observations (red, ‘x").
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R> data("CAmap")
R> plot(CAmap)
R> points(CAdata$X,CAdatasy)

Below we generate the object CAgrid for the state of California using the predgrid() function and
estimate spatial effects on the relative risk of death from a Cox proportional hazards additive model
using the modgam() function. As with the previous example, coeficients for parametric terms in the
model are interpretable as the would be in a standard (non-GAM) fit of the data. In this case, the
coefficients for these terms represent log-hazard ratios. For example, we estimate that the hazard
ratio comparing two subpopulations differing in age by 1 year but having similar insurance status
is approximately e!"2® = 1.03. The smoothed spatial terms are again best intepreted graphically. A
heatmap of the hazard ratio comparing the estimated hazard at each location to the median hazard
across all locations is plotted using the plotting routines defined for modgam objects via plot(). The
resulting heatmap is displayed in Figure 6.

R> CAgrid = predgrid(CAdatal, c("X","Y")], map = CAmap,

+ nrow = 186, ncol = 179)

R> fit2 <- modgam(Surv(time, event) ~ AGE + factor(INS) + lo(X, Y),
+ data = CAdata, rgrid = CAgrid, sp = 0.3, verbose = FALSE)

R> plot(fit2, CAmap, exp = T, border.gray = 0.5)

R> fit2

Call:
modgam(formula = Surv(time, event) ~ AGE + factor(INS) + lo(X,
Y), data = CAdata, rgrid = CAgrid, sp = 0.3, verbose = FALSE)

Model:
Surv(time, event) ~ lo(X, Y) + AGE + factor(INS)
span: 0.3

Coefficients:
AGE factor(INS)Mcr factor(INS)Mng factor (INS)Oth factor (INS)Uni
0.02657848 0.03657777 0.05251440 0.16770033 0.26790051
factor (INS)Unk
0.07594159

Inference for spatial effects

Making inferences

In addition to providing point estimates associated with each spatial location, MapGAM provides
pointwise standard errors as well confidence intervals. This inference is returned by the modgam
function when the option se.fit=TRUE is specified. The estimated pointwise standard errors for
spatial effects are derived from the sum of two variance curves: one from the parametric terms
associated with location, yju; + 20;, and the other from the non parametric term, s;(Chambers and
Hastie, 1992). Briefly, variance estimation requires computation of the operation matrix G; for each
smooth term s;, such that s; = G;z, where z is the working response from the last iteration of the
fitting algorithm described in Section 2.1 and is asymptotically distributed as a Gaussian random
variable. From this, the covariance matrix for the estimated s; is given by G,-COU(Z)GZ-T, which can be
estimated by (fJGiW_lG;r , where W is a diagonal matrix with elements defined by the weights used
in the last iteration of the fitting algorithm and ¢ is an overdispersion parameter estimated using
Pearson’s Chi square statistic. The operation matrix, G;, tends to be computationally expensive to
obtain for non-parametric or semi-parametric smoothing procedures, and hence approximations are
often used when estimating G,-Cov(z)(}iT . One approach is to approximate $G;W~! Gl-T by $G;W~1,
which is generally conservative for non-projection smoothers (Chambers and Hastie, 1992). In this
case, G; can be orthogonally decomposed into G; = H; 4+ N;, where H; can be obtained as the design
matrix corresponding to the parametric portion of the linear predictor, and Nj; corresponds to the
non-parametric portion. Thus, the variance of the estimated smooth term can be approximated via
a decomposition of two variance components: (i) the variance from the parametric portion of the
linear predictor which captures the correlation all parametric terms that are fitted together, and (ii)
the variance from the non-parametric portion of linear predictor reflecting the marginal information
obtained in the smoothing terms.
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Figure 6: Heatmap of the estimated hazard ratio compared to the median hazard over all locations
using the CAdata. Red areas indicate on increased hazard and blue areas indicate a decreased hazard.

modgam conducts a global test for spatial effects via a likelihood ratio test by comparing the de-
viance between a full model (including the spatial smoother) and a reduced model (omitting the
spatial smoother). For the full model, the degrees of freedom of the non-parametric term are computed
as tr(S) — 1, where S denotes the smoothing matrix, and the degrees of freedom of the paramet-
ric portion are p + 3 (p + 2 for survival data). Thus, the degrees of freedom of the full model are
tr(S) 4+ p + 2 (tr(S)+p+1), and the degrees of freedom for the likelihood ratio test statistic are t7(S) + 1.
The function modgam will return the p-value for the likelihood ratio test automatically. In addition,
modgam also performs a permutation test of the global spatial effect and pointwise significance (Kelsall
and Diggle, 1998; Webster et al., 2006) . The function will return the results of the permutation test
when permute=N.permt is specified in the function call, where N. permt denotes the desired number of
permutations used to generate the permutation distribution.

For visualizing inference for spatial effects, the plot function will plot all point estimates along
with the associated lower and higher band of confidence intervals provided that se.fit=TRUE is
specified in the original modgam call. By setting "contours = intervals", areas with confidence intervals
excluding 0 (on the log estimated effect scale) will be indicated on the map by plotting the contours of
an indicator vector created to indicate whether 0 is below, between or above the confidence intervals
at the grid points. By setting "contours = permrank", contours will be added to indicate significant
areas that had a pointwise permutation based p value less than a specified threshold (default of .05).

An example

Returning to the CAdata example presented in Section 2.3.3, we consider visualizing spatial inference.
Setting se. fit=TRUE, modgam function returns pointwise standard errors and confidence intervals. In
fit3 below, the resulting standard errors can be obtained via the call fit3$se. The resulting confidence
intervals can be plotted via the plot function, and are shown in Figure 7.
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R> fit3 <- modgam(Surv(time, event) ~ AGE + factor(INS) + lo(X, Y),
+ data = CAdata, rgrid = CAgrid, sp = 0.3, verbose = FALSE,

+ se.fit = TRUE)

R> plot(fit3, CAmap, exp = True, mapmin = @.2, mapmax = 5,

+ border.gray = 0.7, contours = "interval")

R> fit3

Call:

modgam(formula = Surv(time, event) ~ AGE + factor(INS) + lo(X,
Y), data = CAdata, rgrid = CAgrid, sp = 0.3, se.fit = TRUE,
verbose = FALSE)

Model:
Surv(time, event) ~ lo(X, Y) + AGE + factor(INS)
span: 0.3

Coefficients:
AGE factor(INS)Mcr factor(INS)Mng factor (INS)Oth factor (INS)Uni
0.02657848 0.03657777 0.05251440 0.16770033 0.26790051
factor (INS)Unk
0.07594159

95 % CI (lower) Point Estimate 95 % CI (higher)
l#r

7 o o

7\ 7\ Y

log hazard ratio N log hazard ratio N log hazard ratio l;l
% ¢ s 200k % ¢ 74 200k ] % ¢ 7 7200 km ]

Figure 7: Heatmap of the hazard ratio as well as confidence intervals compared to the median hazard
with significant areas circled which were identified by confidence intervals. The left plot illustrates
the lower bound of a 95% confidence interval for the hazard ratio at each location. The center plot
depicts the estimated hazard ratio at each location. The right plot indicates the upper bound of a 95%
confidence interval for the hazard ratio at each location.

Concluding remarks

GAMs provide a unified statistical framework that allows for the adjustment of individual-level risk
factors when evaluating spatial variability in a flexible way. Given the complex nature of spatial
patterns, GAMs provide an improved framework over traditional parametric modeling of spatial
patterns. The MapGAM package introduced here provides a fairly comprehensive and user-friendly set of
tools for both fitting GAMs to a variety of outcomes and visualizing complex spatial effects. Of course,
one must be careful of overfitting observed data given the flexibility afforded by the GAM framework.
As such, care is needed when choosing the degree of flexibility utilized in model specifications and
honest assessments of out-of-sample predictive performance should be considered.

Bivariate LOESS smoothing with standard error estimation is computationally intensive, especially
in the context of GAMs and proportional hazards models. For example, with 5000 observations, a span
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size of 0.2, and a binomial outcome modgam took about 1 second to provide estimates without standard
errors but about 50 seconds with standard error estimates (se. fit=TRUE) on recent personal computers.
For the same span size and number of observations but with a proportional hazards model, modgam
took about 40 seconds without standard errors and about 70 seconds with standard errors. Although
slower than we might like, the run times for se. fit=TRUE are much faster than the pointwise permuta-
tion test we previously employed which required a 1000-fold increase in run times (Webster et al., 2006).

Estimating and mapping spatial distributions of disease risk is extremely useful for identifying
health disparities, and mapping risk surfaces that are adjusted for individual-level confounding
variables is of great interest to epidemiologists. By developing and actively maintaining a convenient
R package, MapGAM, we intend to facilitate mapping crude and covariate-adjusted spatial effects for
the most common probability models used to characterize the relationship of disease risk to spatial
location and other factors. In the future we hope to improve the flexibility of the package by expanding
the incorporated smoothing methods, including the addition of basis expansion and tensor product
methods, allowing for smoothing over more than two dimensions, and expanding the sampcont func-
tion to include additional sampling methods such as matching. Further research on the development
and implementation of adaptive smoothing methods that allow for the amount of smoothing to
vary depending on the local extent of a spatial effect is currently in progress, and may be added to
the package in a future update. In addition, while spatial correlation is accounted for via the fixed
effects smoothed spatial term in the models we have presented, correlation may also arise if repeated
measures on sampling units are taken through time. This is currently beyond the scope of the package,
but is an area of our current research.
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Appendix

We have conducted simulations to assess the performance of the proposed method for fitting the
Cox proportional hazards additive mode in Section 2.3.2. Data was generated by the function
sim.sample.data under the settings described in Section 2.3.2.

R> sim.sample.data <- function(f, N = 5000){
set.seed(269)
u <- runif(N, -1, 1)
v <= runif(N, -1, 1)
x <= runif(N, -1, 1)
lambda <- 0.03 * exp(f(u, v, x))
eventTime <- rexp(N, lambda)
censTime <- runif(N, @, 70)
time <- ifelse(eventTime <= censTime, eventTime, censTime)
event <- (eventTime <= censTime) x 1
obs.data <- data.frame(time = time, event = event, u = u, v = v, X = X)
new.data <- data.frame(u = rep(seq(-1, 1, 0.01), each = 201),
v = rep(seq(-1, 1, 0.01), 201))
truth <- f(new.data$u, new.data$v, @)
list(obs = obs.data, new = new.data, truth = truth - median(truth))

+ 4+ o+ + o+ o+ o+ o+ o+ o+ +

]

The first simulation example assumes a linear effect of all covariates on the log-hazard as shown in Eq.
21. The following code generates the data for the first simulation example and estimates the spatial
effect using modgam() function.

R> f.linear <- function(u, v, x){

+  log(@.7) * x + log(1.2) * u + log(1.5) * v

+}

R> data.linear <- sim.sample.data(f.linear)

R> fit.linear <- modgam(Surv(time, event) ~ lo(u, v) + X,
+ data = data.linear$obs, rgrid = data.linear$new,

+ family = "survival”, sp = 0.4)

The second simulation example assumes a nonlinear effect of spatial parameters on the log-hazard
as shown in Eq. 22. The following code generates the data for the second simulation example and
estimates the spatial effect using modgam() function.

R> f.nonlinear <- function(u,v,x){

+  log(@.7)*x + log(1.2)*u + log(1.5)*v+1log(@.8)*u*2+log(1.8)*u*v
+ 3}

R> data.nonlinear <- sim.sample.data(f.nonlinear)

R> fit.nonlinear <- modgam(Surv(time, event) ~ lo(u, v) + X,

+ rgrid = data = data.nonlinear$obs, data.nonlinear$new,

+ family = "survival”, sp = 0.2)

Heatmaps of the log-hazard ratio comparing the hazard of the location to the median hazard for the
two simulation examples are generated using the following code:

R> par(mfrow = c(2, 2))

R> obj.linear <- list(grid = data.linear$new, fit = data.linear$truth)

R> colormap(obj.linear, axes = T, arrow = F, mapmin = -0.6, mapmax = 0.55,
+ legend.name = "log hazard ratio”, legend.cex = 1.3, legend.add.line = 0,
+ col.seq = diverge_hsv(201))

R> mtext(”(a) Truths for linear spatial effect”, side = 1, line = 4)

R> plot(fit.linear, mapmin = -0.6, mapmax = ©.55, axes =T, arrow = F,

+ legend.cex = 1.3)
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R> mtext(”(b) Estimates for linear spatial effect”, side = 1, line = 4)

R> obj.nonlinear <- list(grid = data.nonlinear$new,

+ fit = data.nonlinear$truth)

R> colormap(obj.nonlinear, axes = T, arrow = F, mapmin = -0.9,

+ mapmax = 1.05, legend.name = "log hazard ratio”, legend.cex = 1.3,
legend.add.line = @, col.seq = diverge_hsv(201))

R> mtext(”(c) Truths for nonlinear spatial effect”, side = 1 , line = 4)

R> plot(fit.nonlinear, mapmin = -0.9, mapmax = 1.05, axes =T,

+ arrow = F, legend.cex = 1.3)

R> mtext(”(d) Estimates for nonlinear spatial effect”, side = 1, line = 4)

Comparisons of the true log-hazard ratio and the esimated log-hazard ratio for the two simulation
examples are plotted using the following code:

R> par(mfrow = c(1, 2), mai = c(1.3, 0.8, 0.4, 0.4))

R> plot(data.linear$truth, fit.linear$fit, xlab = "true log hazard ratio”,
+ ylab = "predicted log hazard ratio")

R> abline(@, 1, lwd = 4, col = "green")

R> mtext(”(a) Linear spatial effect”, side = 1, line = 4.5)

R> plot(data.nonlinear$truth, fit.nonlinear$fit,

+ xlab = "true log hazard ratio”, ylab = "predicted log hazard ratio”)
R> abline(@, 1, lwd = 4, col = "green")

R> mtext(”(b) Nonlinear spatial effect”, side = 1, line = 4.5)
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