
CONTRIBUTED RESEARCH ARTICLE 124

BondValuation: An R Package for Fixed
Coupon Bond Analysis
by Wadim Djatschenko

Abstract The purpose of this paper is to introduce the R package BondValuation for the analysis of
large datasets of fixed coupon bonds. The conceptual heterogeneity of fixed coupon bonds traded
in the global markets imposes a high degree of complexity on their comparative analysis. Contrary
to baseline fixed income theory, in practice, most bonds feature coupon period irregularities. In
addition, there are a multitude of day count methods that determine the interest accrual, the cash
flows and the discount factors used in bond valuation. Several R packages, e.g., fBonds, RQuantLib,
and YieldCurve, provide tools for fixed income analysis. Nevertheless, none of them is capable
of evaluating bonds featuring irregular first and/or final coupon periods, and neither provides
adequate coverage of day count conventions currently used in the global bond markets. The R package
BondValuation closes this gap using the generalized valuation methodology presented in Djatschenko
(2019).

Introduction

Although bond valuation using the traditional present value approach is fundamental in financial the-
ory and practice, the R community lacks applications that comprehensively handle the peculiarities of
real-world fixed coupon bonds. A possible reason for the slow development of adequate computation
tools concerns the matter’s theoretical intricacy, characterized by a complex interaction of day count
conventions (DCC) and irregularities in the temporal structure of the fixed income instruments.

A day count convention is an instrument-specific set of rules that prescribes the way in which
calendar dates are converted to numerical values. Thus, given a schedule of a bond’s anniversary
dates (i.e., issue date, coupon payment dates, maturity date), a day count convention is used, e.g., to
determine the fraction of regular coupon periods between two calendar dates within the bond’s life.
Irregular first and final coupon periods occur irrespective of the stipulated day count convention. The
lengths of the first and final coupon periods are measured in fractions of regular coupon periods and
calculated according to the rules of the specified day count convention. A fist or final coupon period is
irregular, if its length differs from 1, which is the length of a regular coupon period.1

The R package RQuantLib (Eddelbuettel et al., 2018) provides access to parts of QuantLib (QuantLib
Team, 2018), which is the leading open-source software library for quantitative finance. Currently,
QuantLib incorporates methods for the analysis and valuation of a wide variety of financial instru-
ments, such as options, swaps, various financial derivatives, and several types of bonds, including
fixed rate bonds. Nevertheless, QuantLib does not implement methods for handling irregular coupon
periods, and the coverage of DCCs is not exhaustive with nine different conventions.

A closer examination of bond market data reveals the importance of this problem. According
to the Thomson Reuters EIKON database, 99.66% of the plain vanilla fixed coupon bonds that were
issued worldwide in 2017 are spread over 15 different DCCs, and 67% of them feature irregular first
and/or final coupon periods. Given the enormous size of the global bond market, neglecting irregular
coupon periods potentially leads to cash flow miscalculations in the tens of billions of US dollars, as
Djatschenko (2019) points out.

Essentially, DCCs influence bond valuation in three places. First, the amounts of interest payable at
the end of any irregular coupon period are computed according to the respective convention. Second,
the powers of the discount factors used in present value calculations depend on the stipulated DCC.
Finally, in contrast to stocks, the full prices of bonds are usually not directly observable but need to
be calculated as the sum of the quoted clean price and accrued interest, which is paid by the buyer
to the seller if the transaction is conducted between two coupon payment dates. Accrued interest is
computed conformal to the stipulated bond- and market-specific DCCs.

Djatschenko (2019) addresses these three aspects and proposes a generalized valuation methodol-
ogy for fixed coupon bonds that allows for irregular first and final coupon periods and is compatible
with any conceivable DCC. In summary, the methodology can be described as follows. In a first step,
Djatschenko (2019) introduces a standardized bond-specific temporal structure, which is determined
by the stipulated DCC. Based on this time structure, a valuation formula is derived that allows for
first and final coupon periods of any lengths. The novelty of this proposed evaluation formula lies

1Djatschenko (2019) provides a comprehensive overview of most day count conventions currently used in the
global bond markets and demonstrates their interactions with irregular coupon periods.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=BondValuation
https://CRAN.R-project.org/package=fBonds
https://CRAN.R-project.org/package=RQuantLib
https://CRAN.R-project.org/package=YieldCurve

CONTRIBUTED RESEARCH ARTICLE 125

in the isolation of each DCC-dependent parameter, resulting in a modular structure that can easily
integrate any conceivable DCC. In addition, Djatschenko (2019) presents closed-form solutions for the
valuation formula’s first and second derivatives, which are useful in the Newton-Raphson based
determination of the bond’s yield as well as in calculation of duration and convexity. The approach
outlined in Djatschenko (2019) relies exclusively on information that is typically provided by financial
data vendors and is seamlessly implemented in the R package BondValuation.

The remainder of this paper consists of the two main sections, ”The BondValuation package“
and ”Application of the package BondValuation“. The section entitled ”The BondValuation package“
provides an overview of the functions implemented in the R package BondValuation and briefly
illustrates the underlying theoretical concepts. The subsection entitled ”Day count conventions“
introduces the DCCs covered by BondValuation and demonstrates their impact on interest accrual using
the function AccrInt(). Subsequently, the Bond-specific temporal structure and its implementation
within the function AnnivDates() are illustrated. In the following subsection, the calculation of
Cash flows, accrued interest, and dirty price is demonstrated using the functions AnnivDates()
and DP(). Next, the functions BondVal.Yield() and BondVal.Price() are used to compute Yield to
maturity, duration, and convexity. The section entitled ”Application of the package BondValuation“
demonstrates how the R package BondValuation can be used for the analysis of large data frames of
fixed coupon bonds. The paper ends with a short ”Conclusion“.

The BondValuation package

The R package BondValuation consists of five functions, AccrInt(), AnnivDates(), BondVal.Price(),
BondVal.Yield(), and DP(), and four data frames, List.DCC, NonBusDays.Brazil, PanelSomeBonds2016,
SomeBonds2016.

The workhorse function of the package, AnnivDates(), performs a variety of sanity checks on the
input data and, if possible, automatically corrects corrupted entries. It determines the bond-specific
temporal structure and cash flows. The output of AnnivDates() is used in the downstream processes of
the functions BondVal.Price(), BondVal.Yield(), and DP(). While AnnivDates(), BondVal.Price(),
BondVal.Yield(), and DP() require bond data as input, the function AccrInt() simply computes the
amount of interst accruing from some start date to some end date.

The data frames PanelSomeBonds2016 and SomeBonds2016 provide simulated data of 100 plain
vanilla fixed coupon corporate bonds issued in 2016. List.DCC provides an overview of the DCCs
implemented in the R package BondValuation. NonBusDays.Brazil is used with the BusDay/252
(Brazilian) convention and contains all non-business days in Brazil from 1946-01-01 to 2299-12-31 based
on the Brazilian national holiday calendar.

Day count conventions

All DCCs that are identified by Thomson Reuters EIKON for plain vanilla fixed coupon bonds in 2017,
and, additionally, the 30E/360 (ISDA) method, are covered by the R package BondValuation2:

> # example 1
> library(BondValuation)
> print(List.DCC, row.names = FALSE)
DCC DCC.Name DCC.Reference
1 ACT/ACT (ISDA) ISDA (1998); ISDA (2006) section 4.16 (b)
2 ACT/ACT (ICMA) ICMA Rule 251; ISDA (2006) section 4.16 (c)
3 ACT/ACT (AFB) ISDA (1998); EBF (2004); SWX (2003)
4 ACT/365L ICMA Rule 251; SWX (2003)
5 30/360 ISDA (2006) section 4.16 (f); MSRB (2017) Rule G-33
6 30E/360 ICMA Rule 251; ISDA (2006) section 4.16 (g); SWX (2003)
7 30E/360 (ISDA) ISDA (2006) section 4.16 (h)
8 30/360 (German) EBF (2004); SWX (2003)
9 30/360 US Mayle (1993); SWX (2003)

10 ACT/365 (Fixed) ISDA (2006) section 4.16 (d); SWX (2003)
11 ACT(NL)/365 Krgin (2002); Thomson Reuters EIKON
12 ACT/360 ISDA (2006) section 4.16 (e); SWX (2003)
13 30/365 Krgin (2002); Thomson Reuters EIKON
14 ACT/365 (Canadian Bond) IIAC (2018); Thomson Reuters EIKON
15 ACT/364 Thomson Reuters EIKON
16 BusDay/252 (Brazilian) Caputo Silva et al. (2010), Itau Unibanco S.A. (2017)

2Djatschenko (2019) provides a comprehensive overview of these DCCs.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 126

The function AccrInt() can be used to compare the differences in interest accrual between the
day count methods. As an example, the code below returns the number of days and the amount of
interest (in percent of the bond’s par value) accrued from Start = 2011-08-31 to End = 2012-02-29
with different DCCs, ceteris paribus. In this example, we assume that CpY = 2 coupons are paid per
year, the nominal interest rate p.a. is Coup = 5.25%, the bond is redeemed at RV = 100% of its par value,
and payments follow the End-of-Month rule3, i.e., EOM = 1. In addition, some of the DCCs require
specification of the next coupon payment’s year figure, YearNCP = 2012, and the maturity date, Mat =
2021-08-31.

> # example 2
> library(BondValuation)
> DCC_Comparison<-data.frame(Start = rep(as.Date("2011-08-31"), 16),
+ End = rep(as.Date("2012-02-29"), 16),
+ Coup = rep(5.25, 16),
+ DCC = seq(1, 16),
+ DCC.Name = List.DCC[, 2],
+ RV = rep(100, 16),
+ CpY = rep(2, 16),
+ Mat = rep(as.Date("2021-08-31"), 16),
+ YearNCP = rep(2012, 16),
+ EOM = rep(1, 16))
> AccrIntOutput <- suppressWarnings(
+ apply(
+ DCC_Comparison[, c('Start', 'End', 'Coup', 'DCC', 'RV', 'CpY', 'Mat',
+ 'YearNCP', 'EOM')], 1,
+ function(y) AccrInt(y[1], y[2], y[3], y[4], y[5], y[6], y[7], y[8], y[9])
+)
+)
> Accrued_Interest <- do.call(rbind, lapply(AccrIntOutput, function(x) x[[1]]))
> Days_Accrued <- do.call(rbind, lapply(AccrIntOutput, function(x) x[[2]]))
> DCC_Comparison <- cbind(DCC_Comparison, Accrued_Interest, Days_Accrued)
> print(DCC_Comparison[, c('DCC.Name', 'Start', 'End', 'Days_Accrued',
+ 'Accrued_Interest')], row.names = FALSE)

DCC.Name Start End Days_Accrued Accrued_Interest
ACT/ACT (ISDA) 2011-08-31 2012-02-29 182 2.615490
ACT/ACT (ICMA) 2011-08-31 2012-02-29 182 2.625000
ACT/ACT (AFB) 2011-08-31 2012-02-29 182 2.617808

ACT/365L 2011-08-31 2012-02-29 182 2.610656
30/360 2011-08-31 2012-02-29 179 2.610417
30E/360 2011-08-31 2012-02-29 179 2.610417

30E/360 (ISDA) 2011-08-31 2012-02-29 180 2.625000
30/360 (German) 2011-08-31 2012-02-29 180 2.625000

30/360 US 2011-08-31 2012-02-29 179 2.610417
ACT/365 (Fixed) 2011-08-31 2012-02-29 182 2.617808

ACT(NL)/365 2011-08-31 2012-02-29 182 2.617808
ACT/360 2011-08-31 2012-02-29 182 2.654167
30/365 2011-08-31 2012-02-29 179 2.574658

ACT/365 (Canadian Bond) 2011-08-31 2012-02-29 182 2.625000
ACT/364 2011-08-31 2012-02-29 182 2.625000

BusDay/252 (Brazilian) 2011-08-31 2012-02-29 124 2.549769

Bond-specific temporal structure

The function AnnivDates() evaluates bond-specific information and returns the bond’s time-invariant
characteristics in the data frame Traits, the bond’s temporal structure in the data frame DateVectors
and, if the nominal interest rate is passed, the bond’s cash flows in the data frame PaySched.4 The
classes and formats of input data are checked and adjusted, if possible. Moreover, AnnivDates() per-
forms several plausibility tests, e.g., whether the provided calendar dates are in a correct chronological
order and whether there are inconsistencies among the provided parameters. The results of these
sanity checks are reported in the data frame Warnings.

3See manual to the R package BondValuation for details on implementation and Krgin (2002) for the theoretical
background of the End-of-Month rule.

4See Djatschenko (2019) for theoretical background.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 127

The minimum accepted input for AnnivDates() are two calendar dates, of which the first is
interpreted as the bond’s issue date and the second as its maturity date. If, as illustrated below, only
two dates are passed to AnnivDates(), several parameters take on default values, which are reported
in warning messages.

> # example 3
> library(BondValuation)
> AnnivDates(as.Date("2019-05-31"), "2021-07-31")
$`Warnings`
Em_FIAD_differ EmMatMissing CpYOverride RV_set100percent NegLifeFlag

0 0 1 1 0
ZeroFlag Em_Mat_SameMY ChronErrorFlag FIPD_LIPD_equal IPD_CpY_Corrupt

0 0 0 0 0
EOM_Deviation EOMOverride DCCOverride NoCoups

0 1 1 0
$Traits
DateOrigin CpY FIAD Em Em_Orig FIPD
1970-01-01 2 <NA> 2019-05-31 2019-05-31 <NA>
FIPD_Orig est_FIPD LIPD LIPD_Orig est_LIPD Mat

<NA> 2019-07-31 <NA> <NA> 2021-01-31 2021-07-31
Refer FCPType FCPLength LCPType LCPLength Par

2021-07-31 short 0.3370166 regular 1 100
CouponInPercent.p.a DayCountConvention EOM_Orig est_EOM EOM_used

NA 2 NA 1 1

$DateVectors
RealDates RD_indexes CoupDates CD_indexes AnnivDates AD_indexes

2019-05-31 0.6629834 2019-07-31 1 2019-01-31 0
2019-07-31 1.0000000 2020-01-31 2 2019-07-31 1
2020-01-31 2.0000000 2020-07-31 3 2020-01-31 2
2020-07-31 3.0000000 2021-01-31 4 2020-07-31 3
2021-01-31 4.0000000 2021-07-31 5 2021-01-31 4
2021-07-31 5.0000000 <NA> NA 2021-07-31 5

Warning messages:
1: In InputFormatCheck(Em = Em, Mat = Mat, CpY = CpY, FIPD = FIPD, :

The maturity date (Mat) is supplied as a string of class "character" in the
format "yyyy-mm-dd". It is converted to class "Date" using the command
"as.Date(Mat,"%Y-%m-%d")" and processed as Mat = 2021-07-31 .

2: In AnnivDates(as.Date("2019-05-31"), "2021-07-31") :
Number of interest payments per year (CpY) is missing or NA. CpY is set 2!

3: In AnnivDates(as.Date("2019-05-31"), "2021-07-31") :
Redemption value (RV) is missing or NA. RV is set 100!

4: In AnnivDates(as.Date("2019-05-31"), "2021-07-31") :
EOM was not provided or NA! EOM is set 1 .
Note: The available calandar dates suggest that EOM = 1 .

5: In AnnivDates(as.Date("2019-05-31"), "2021-07-31") :
The day count indentifier (DCC) is missing or NA. DCC is set 2 (Act/Act (ICMA))!

Since neither the first nor the penultimate coupon payment date is passed to AnnivDates(), the
calendar dates in the data frame DateVectors are constructed backwards starting from the matu-
rity date 2021-07-31. This results in a bond with a short first coupon period having a length of
$Traits$FCPLength = 0.3370166 regular coupon periods.

The data frame DateVectors contains three vectors of calendar dates, RealDates, CoupDates,
and AnnivDates, and their corresponding indexes, RD_indexes, CD_indexes, and AD_indexes. The
vector RealDates comprises the bond’s issue date, maturity date, and all coupon payment dates in
between, while CoupDates contains only the coupon payment dates. The vector AnnivDates consists
of the bond’s so-called anniversary dates, i.e., scheduled coupon dates and notional coupon dates
located before the first and after the penultimate coupon payment dates. The lengths of the first
($Traits$FCPLength) and final coupon periods ($Traits$LCPLength) are calculated as differences
between the coresponding values of the vectors AD_indexes and RD_indexes. RD_indexes are used
in the functions BondVal.Price(), BondVal.Yield(), and DP() to determine the powers of discount
factors in pricing formulas.

As warning message 4 in the example above reports, the function AnnivDates() analyzes the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 128

provided calendar dates to ascertain whether the bond follows the End-of-Month rule (EOM). An auto-
mated replacement of the provided value of EOM by the value determined by the function AnnivDates()
can be activated by setting option FindEOM = TRUE, which defaults to FALSE.

The following example illustrates the effect of EOM on DateVectors. In addition to issue date (Em)
and maturity date (Mat), the first coupon payment date (FIPD), the penultimate coupon payment date
(LIPD), the number of coupon payments p.a. (CpY), and EOM are passed to the function AnnivDates():

> # example 4
> library(BondValuation)
> # example 4a: computing DateVectors for EOM = 1
> EOM.input <- 1
> AnnivDates(Em = as.Date("2019-05-31"),
+ Mat = as.Date("2021-07-31"),
+ CpY = 2,
+ FIPD = as.Date("2020-02-29"),
+ LIPD = as.Date("2021-02-28"),
+ EOM = EOM.input)$DateVectors

RealDates RD_indexes CoupDates CD_indexes AnnivDates AD_indexes
1 2019-05-31 -0.500000 2020-02-29 1.000000 2019-02-28 -1
2 2020-02-29 1.000000 2020-08-31 2.000000 2019-08-31 0
3 2020-08-31 2.000000 2021-02-28 3.000000 2020-02-29 1
4 2021-02-28 3.000000 2021-07-31 3.831522 2020-08-31 2
5 2021-07-31 3.831522 <NA> NA 2021-02-28 3
6 <NA> NA <NA> NA 2021-08-31 4
Warning messages:
1: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"), :

Redemption value (RV) is missing or NA. RV is set 100!
2: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"), :

The day count indentifier (DCC) is missing or NA. DCC is set 2 (Act/Act (ICMA))!
>
> # example 4b: computing DateVectors for EOM = 0
> EOM.input <- 0
> AnnivDates(Em = as.Date("2019-05-31"),
+ Mat = as.Date("2021-07-31"),
+ CpY = 2,
+ FIPD = as.Date("2020-02-29"),
+ LIPD = as.Date("2021-02-28"),
+ EOM = EOM.input)$DateVectors

RealDates RD_indexes CoupDates CD_indexes AnnivDates AD_indexes
1 2019-05-31 -0.4945055 2020-02-29 1.000000 2019-02-28 -1
2 2020-02-29 1.0000000 2020-08-29 2.000000 2019-08-29 0
3 2020-08-29 2.0000000 2021-02-28 3.000000 2020-02-29 1
4 2021-02-28 3.0000000 2021-07-31 3.840659 2020-08-29 2
5 2021-07-31 3.8406593 <NA> NA 2021-02-28 3
6 <NA> NA <NA> NA 2021-08-29 4
Warning messages:
1: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"), :

Redemption value (RV) is missing or NA. RV is set 100!
2: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"), :

The available calandar dates suggest that EOM = 1 .
Option FindEOM = FALSE is active. Provided EOM is not overridden and remains
EOM = 0 .

3: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"), :
The day count indentifier (DCC) is missing or NA. DCC is set 2 (Act/Act (ICMA))!

In contrast to example 3, the bond in example 4 features a long first and a short final coupon period.
The function AnnivDates() has checked whether the provided dates FIPD and LIPD are on each other’s
annivesary dates and constructed the calendar dates in DateVectors backwards and forwards from
LIPD. The values of RD_indexes and AD_indexes are illustrated in Figure 1, where E corresponds to
the first element of RD_indexes and M is the final element of RD_indexes.

As shown in example 4, all else equal, the value of EOM affects the DCC-conformal temporal locations
of the issue date E and the maturity date M and, hence, the lengths of the first and final coupon
periods, which, in turn, determine the amounts of interest paid on the first and final coupon payment
dates. So far, no value of DCC was passed to the function AnnivDates(). As reported in the warning

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 129

messages in example 4, the parameter DCC defaults to the Act/Act (ICMA) convention. The following,
example 5, illustrates how RD_indexes, FCPLength and LCPLength vary across DCCs for EOM = 0.

t−1 tE t0 t1 t2 t3 tM t4

FCPLength LCPLength

Figure 1: Timeline illustration of the bonds in examples 4 and 5.

> # example 5
> library(BondValuation)
> TempStruct.by.DCC <- data.frame(Em = rep(as.Date("2019-05-31"), 16),
+ Mat = rep(as.Date("2021-07-31"), 16),
+ CpY = rep(2, 16),
+ FIPD = rep(as.Date("2020-02-29"), 16),
+ LIPD = rep(as.Date("2021-02-28"), 16),
+ FIAD = rep(as.Date("2019-05-31"), 16),
+ DCC = seq(1, 16),
+ EOM = rep(0, 16),
+ DCC.Name = List.DCC[, 2])
> # Applying AnnivDates() to the data frame TempStruct.by.DCC for EOM = 0
> suppressWarnings(
+ FullAnalysis.EOM0 <- apply(
+ TempStruct.by.DCC[, c('Em','Mat','CpY','FIPD','LIPD','FIAD','DCC','EOM')],
+ 1, function(y) AnnivDates(
+ y[1], y[2], y[3], y[4], y[5], y[6], , , y[7], y[8])
+)
+)
> FCPLength.EOM0 <- lapply(lapply(lapply(FullAnalysis.EOM0, `[[`, 2), `[[`, 15)
+ , na.omit)
> FCPLength.EOM0 <- as.data.frame(do.call(rbind, lapply(FCPLength.EOM0, round, 4)))
> LCPLength.EOM0 <- lapply(lapply(lapply(FullAnalysis.EOM0, `[[`, 2), `[[`, 17)
+ , na.omit)
> LCPLength.EOM0 <- as.data.frame(do.call(rbind, lapply(LCPLength.EOM0, round, 4)))
> TempStruct.EOM0 <- lapply(lapply(lapply(FullAnalysis.EOM0, `[[`, 3), `[[`, 2)
+ , na.omit)
> TempStruct.EOM0 <- lapply(TempStruct.EOM0, `length<-`,
+ max(lengths(TempStruct.EOM0)))
> TempStruct.EOM0 <- as.data.frame(do.call(rbind, lapply(TempStruct.EOM0, round, 4)))
> TempStruct.by.DCC.EOM0 <- cbind(TempStruct.by.DCC, TempStruct.EOM0,
+ FCPLength.EOM0, LCPLength.EOM0)
> names(TempStruct.by.DCC.EOM0)[c(10:16)] <- c("E", "01", "02", "03", "M",
+ "FCPLength", "LCPLength")
> print(TempStruct.by.DCC.EOM0[, c(9:ncol(TempStruct.by.DCC.EOM0))],
+ row.names = FALSE)

DCC.Name E 01 02 03 M FCPLength LCPLength
ACT/ACT (ISDA) -0.4945 1 2 3 3.8407 1.4945 0.8407
ACT/ACT (ICMA) -0.4945 1 2 3 3.8407 1.4945 0.8407
ACT/ACT (AFB) -0.4945 1 2 3 3.8407 1.4945 0.8407

ACT/365L -0.4945 1 2 3 3.8407 1.4945 0.8407
30/360 -0.4862 1 2 3 3.8453 1.4862 0.8453

30E/360 -0.4917 1 2 3 3.8398 1.4917 0.8398
30E/360 (ISDA) -0.4972 1 2 3 3.8380 1.4972 0.8380

30/360 (German) -0.4972 1 2 3 3.8380 1.4972 0.8380
30/360 US -0.4862 1 2 3 3.8453 1.4862 0.8453

ACT/365 (Fixed) -0.4945 1 2 3 3.8407 1.4945 0.8407
ACT(NL)/365 -0.4945 1 2 3 3.8407 1.4945 0.8407

ACT/360 -0.4945 1 2 3 3.8407 1.4945 0.8407
30/365 -0.4862 1 2 3 3.8453 1.4862 0.8453

ACT/365 (Canadian Bond) -0.4945 1 2 3 3.8407 1.4945 0.8407
ACT/364 -0.4945 1 2 3 3.8407 1.4945 0.8407

BusDay/252 (Brazilian) -0.5040 1 2 3 3.8425 1.5040 0.8425

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 130

The output of example 5 shows that for the specified bond, there is little variation in temporal struc-
ture across the DCCs. Specifically, with DCC ∈ {1, 2, 3, 4, 10, 11, 12, 14, 15}, the values of RD_indexes
are {−0.4945, 1, 2, 3, 3.8407}; with DCC ∈ {5, 9, 13}, it holds RD_indexes= {−0.4862, 1, 2, 3, 3.8453},
and with DCC ∈ {7, 8}, we get RD_indexes = {−0.4972, 1, 2, 3, 3.8380}. Only the DCCs 6 and 16
produce a unique temporal structure for this bond. Nevertheless, it would be wrong to infer from this
that the temporal structure always has so little variation across the DCCs, as example 6 illustrates.
> # example 6
> library(BondValuation)
> TempStruct.by.DCC <- data.frame(Em = rep(as.Date("2019-10-31"), 16),
+ Mat = rep(as.Date("2024-02-29"), 16),
+ CpY = rep(2, 16),
+ FIPD = rep(as.Date("2020-03-30"), 16),
+ LIPD = rep(as.Date("2023-03-30"), 16),
+ FIAD = rep(as.Date("2019-10-31"), 16),
+ DCC = seq(1, 16),
+ EOM = rep(0, 16),
+ DCC.Name = List.DCC[, 2])
>
> # Applying AnnivDates() to the data frame TempStruct.by.DCC for EOM = 0
> suppressWarnings(
+ FullAnalysis.EOM0 <- apply(
+ TempStruct.by.DCC[, c('Em','Mat','CpY','FIPD','LIPD','FIAD','DCC','EOM')],
+ 1, function(y) AnnivDates(
+ y[1], y[2], y[3], y[4], y[5], y[6], , , y[7], y[8])
+)
+)
> FCPLength.EOM0 <- lapply(lapply(lapply(FullAnalysis.EOM0, `[[`, 2), `[[`, 15)
+ , na.omit)
> FCPLength.EOM0 <- as.data.frame(do.call(rbind, lapply(FCPLength.EOM0, round, 4)))
> LCPLength.EOM0 <- lapply(lapply(lapply(FullAnalysis.EOM0, `[[`, 2), `[[`, 17)
+ , na.omit)
> LCPLength.EOM0 <- as.data.frame(do.call(rbind, lapply(LCPLength.EOM0, round, 4)))
> TempStruct.EOM0 <- lapply(lapply(lapply(FullAnalysis.EOM0, `[[`, 3), `[[`, 2)
+ , na.omit)
> TempStruct.EOM0 <- lapply(TempStruct.EOM0, `length<-`,
+ max(lengths(TempStruct.EOM0)))
> TempStruct.EOM0 <- as.data.frame(do.call(rbind, lapply(TempStruct.EOM0, round, 4)))
> TempStruct.by.DCC.EOM0 <- cbind(TempStruct.by.DCC, TempStruct.EOM0,
+ FCPLength.EOM0, LCPLength.EOM0)
> names(TempStruct.by.DCC.EOM0)[c(10:20)] <- c("E","01","02","03","04","05","06",
+ "07","M","FCPLength","LCPLength")
> print(TempStruct.by.DCC.EOM0[, c(9:ncol(TempStruct.by.DCC.EOM0))],
+ row.names = FALSE)

DCC.Name E 01 02 03 04 05 06 07 M FCPLength LCPLength
ACT/ACT (ISDA) 0.1706 1 2 3 4 5 6 7 8.8354 0.8294 1.8354
ACT/ACT (ICMA) 0.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352
ACT/ACT (AFB) 0.1708 1 2 3 4 5 6 7 8.8375 0.8292 1.8375

ACT/365L 0.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352
30/360 0.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278

30E/360 0.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278
30E/360 (ISDA) 0.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278

30/360 (German) 0.1667 1 2 3 4 5 6 7 8.8333 0.8333 1.8333
30/360 US 0.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278

ACT/365 (Fixed) 0.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352
ACT(NL)/365 0.1713 1 2 3 4 5 6 7 8.8398 0.8287 1.8398

ACT/360 0.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352
30/365 0.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278

ACT/365 (Canadian Bond) 0.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352
ACT/364 0.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352

BusDay/252 (Brazilian) 0.1840 1 2 3 4 5 6 7 8.8279 0.8160 1.8279

The output of example 6 reveals that, all else equal, the specified bond can feature 7 different
temporal structures, depending on the stipulated DCC. While in example 5 the “ACT/ACT” family of
DCCs produced the same temporal structure, in example 6 most of the “30/360” DCCs result in the same
day count.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 131

Cash flows, accrued interest, and dirty price

In the preceding examples of AnnivDates(), no information on nominal interest rate (Coup) and
redemption value (RV) was passed to the function. If this information, however, is provided, then
AnnivDates() generates the data frame PaySched, consisting of the scheduled coupon dates and the
corresponding cash flows. As Djatschenko (2019) points out, precise application of the respective
DCC’s mathematical rule results in varying interest payments. While this is intended for calculation
of the cash flows paid at the ends of irregular first and final coupon periods, most issuers design
their bonds to pay the same cash flow at the end of each regular period. With default RegCF.equal
= 0 the function AnnivDates() calculates all cash flows according to the mathematical rule of the
respective DCC. Passing any other value to RegCF.equal forces all regular cash flows to be equal sized.
The following, example 7, uses the same input as example 6 supplemented by information on nominal
interest rate p.a. (Coup = 10%) and redemption value (RV = 100%) and illustrates the differences in
cash flows (in percent of the bond’s par value) by DCC between the two modes of RegCF.equal.

> # example 7
> library(BondValuation)
> CashFlows.by.DCC <- data.frame(Em = rep(as.Date("2019-10-31"), 16),
+ Mat = rep(as.Date("2024-02-29"), 16),
+ CpY = rep(2, 16),
+ FIPD = rep(as.Date("2020-03-30"), 16),
+ LIPD = rep(as.Date("2023-03-30"), 16),
+ FIAD = rep(as.Date("2019-10-31"), 16),
+ RV = rep(100, 16),
+ Coup = rep(10, 16),
+ DCC = seq(1, 16),
+ EOM = rep(0, 16),
+ DCC.Name = List.DCC[, 2])
>
> # Applying AnnivDates() to the data frame CashFlows.by.DCC for EOM = 0
> # with option RegCF.equal = 0 and RegCF.equal = 1
> Suffix <- c("RegCFvary","RegCFequal")
> for (i in c(0,1)) {
+ suppressWarnings(
+ FullAnalysis <- apply(
+ CashFlows.by.DCC[, c('Em','Mat','CpY','FIPD','LIPD','FIAD','RV',
+ 'Coup','DCC','EOM')],
+ 1, function(y) AnnivDates(
+ y[1],y[2],y[3],y[4],y[5],y[6],y[7],y[8],y[9],y[10], RegCF.equal = i)
+)
+)
+ CashFlows <- lapply(lapply(lapply(FullAnalysis, `[[`, 4), `[[`, 2)
+ , na.omit)
+ CashFlows <- as.data.frame(do.call(rbind, lapply(CashFlows, round, 4)))
+ CashFlows <- cbind(CashFlows.by.DCC, CashFlows)
+ names(CashFlows)[c(12:19)] <- c(
+ "CF.1","CF.2","CF.3","CF.4","CF.5","CF.6","CF.7","CF.M")
+ assign(paste0("CashFlows.by.DCC.",Suffix[i+1]),CashFlows)
+ rm(FullAnalysis,CashFlows)
+ }
>
> # RegCF.equal = 0, \textit{i.e.}, regular cash flows may vary
> print(CashFlows.by.DCC.RegCFvary[, c(11:ncol(CashFlows.by.DCC.RegCFvary))],
+ row.names = FALSE)

DCC.Name CF.1 CF.2 CF.3 CF.4 CF.5 CF.6 CF.7 CF.M
ACT/ACT (ISDA) 4.1303 5.0273 4.9519 5.0411 4.9589 5.0411 4.9589 9.2011
ACT/ACT (ICMA) 4.1484 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1758
ACT/ACT (AFB) 4.1257 5.0411 4.9589 5.0411 4.9589 5.0411 4.9589 9.2055

ACT/365L 4.1257 5.0273 4.9589 5.0411 4.9589 5.0411 4.9589 9.1803
30/360 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

30E/360 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389
30E/360 (ISDA) 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

30/360 (German) 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1667
30/360 US 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

ACT/365 (Fixed) 4.1370 5.0411 4.9589 5.0411 4.9589 5.0411 4.9589 9.2055

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 132

ACT(NL)/365 4.1096 5.0411 4.9589 5.0411 4.9589 5.0411 4.9589 9.2055
ACT/360 4.1944 5.1111 5.0278 5.1111 5.0278 5.1111 5.0278 9.3333
30/365 4.1096 4.9315 4.9315 4.9315 4.9315 4.9315 4.9315 9.0137

ACT/365 (Canadian Bond) 4.1370 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1644
ACT/364 4.1484 5.0549 4.9725 5.0549 4.9725 5.0549 4.9725 9.2308

BusDay/252 (Brazilian) 3.9332 4.8809 4.8809 4.8809 4.8809 4.8809 4.8809 9.0060
>
> # RegCF.equal = 1, \textit{i.e.}, regular cash flows forced to be equal
> print(CashFlows.by.DCC.RegCFequal[, c(11:ncol(CashFlows.by.DCC.RegCFequal))],
+ row.names = FALSE)

DCC.Name CF.1 CF.2 CF.3 CF.4 CF.5 CF.6 CF.7 CF.M
ACT/ACT (ISDA) 4.1303 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2011
ACT/ACT (ICMA) 4.1484 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1758
ACT/ACT (AFB) 4.1257 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2055

ACT/365L 4.1257 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1803
30/360 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

30E/360 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389
30E/360 (ISDA) 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

30/360 (German) 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1667
30/360 US 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

ACT/365 (Fixed) 4.1370 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2055
ACT(NL)/365 4.1096 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2055

ACT/360 4.1944 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.3333
30/365 4.1096 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.0137

ACT/365 (Canadian Bond) 4.1370 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1644
ACT/364 4.1484 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2308

BusDay/252 (Brazilian) 3.9332 4.8809 4.8809 4.8809 4.8809 4.8809 4.8809 9.0060

Please note that, irrespective of the value of RegCF.equal passed to AnnivDates(), the cash flows
at the ends of all regular coupon periods are equal sized with the conventions ACT/ACT (ICMA),
ACT/365 (Canadian Bond), and BusDay/252 (Brazilian). This is due to the DCC-specific rules described
in Djatschenko (2019). While with the majority of DCCs, the cash flows are computed based upon the
ratio of the nominal interest rate p.a. and the number of interest payments per year, which yields
regular cash flows of 5%, BusDay/252 (Brazilian) determines them exponentially, resulting in regular
cash flows of 4.8809%.

The vast majority of bonds are quoted clean, i.e., their observable prices do not contain accrued
interest. The actual price that a bond buyer pays to the seller is called full or dirty price and computed
as the sum of the quoted clean price and accrued interest, which is calculated according to the
respective DCC. Accrued interest and the dirty price of a specific bond can be calculated using the
function DP(). In addition to the input parameters required by AnnivDates(), the clean price (CP) and
the settlement date (SETT) need to be passed to the function DP(). The following, example 8, returns
the accrued interest and dirty price by DCC for the same bond as used in example 7, assuming that on
the settlement dates SETT1 = 2020-09-28, SETT2 = 2023-03-30, and SETT3 = 2024-01-15, the quoted
clean price is 105% of the bond’s par value.

> # example 8
> library(BondValuation)
> AccrIntDP.by.DCC <- data.frame(CP = 105,
+ SETT1 = rep(as.Date("2020-09-28"), 16),
+ SETT2 = rep(as.Date("2023-03-30"), 16),
+ SETT3 = rep(as.Date("2024-01-15"), 16),
+ Em = rep(as.Date("2019-10-31"), 16),
+ Mat = rep(as.Date("2024-02-29"), 16),
+ CpY = rep(2, 16),
+ FIPD = rep(as.Date("2020-03-30"), 16),
+ LIPD = rep(as.Date("2023-03-30"), 16),
+ FIAD = rep(as.Date("2019-10-31"), 16),
+ RV = rep(100, 16),
+ Coup = rep(10, 16),
+ DCC = seq(1, 16),
+ EOM = rep(0, 16),
+ DCC.Name = List.DCC[, 2])
>
> Suffix <- c("SETT1","SETT2","SETT3")
> for (i in c(1:3)) {

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 133

+ DP.Output<-suppressWarnings(
+ apply(AccrIntDP.by.DCC[,c('CP',paste0('SETT',i),'Em','Mat','CpY','FIPD',
+ 'LIPD','FIAD','RV','Coup','DCC')],
+ 1,function(y) DP(y[1],y[2],y[3],y[4],y[5],y[6],y[7],
+ y[8],y[9],y[10],y[11])))
+ AI<-do.call(rbind,lapply(lapply(lapply(DP.Output, `[[`, 2), `[[`, 3), round, 4))
+ DP<-do.call(rbind,lapply(lapply(lapply(DP.Output, `[[`, 2), `[[`, 1), round, 4))
+ AccrIntDP.by.DCC<-cbind(AccrIntDP.by.DCC,AI,DP)
+ names(AccrIntDP.by.DCC)[
+ c((ncol(AccrIntDP.by.DCC) - 1) : ncol(AccrIntDP.by.DCC))] <- c(
+ paste0("AI.", Suffix[i]), paste0("DP.", Suffix[i]))
+ rm(DP.Output,AI,DP)
+ }
> print(AccrIntDP.by.DCC[,c(15:ncol(AccrIntDP.by.DCC))], row.names = FALSE)

DCC.Name AI.SETT1 DP.SETT1 AI.SETT2 DP.SETT2 AI.SETT3 DP.SETT3
ACT/ACT (ISDA) 4.9727 109.9727 0 105 7.9716 112.9716
ACT/ACT (ICMA) 4.9457 109.9457 0 105 7.9396 112.9396
ACT/ACT (AFB) 4.9863 109.9863 0 105 7.9726 112.9726

ACT/365L 4.9727 109.9727 0 105 7.9508 112.9508
30/360 4.9444 109.9444 0 105 7.9167 112.9167

30E/360 4.9444 109.9444 0 105 7.9167 112.9167
30E/360 (ISDA) 4.9444 109.9444 0 105 7.9167 112.9167

30/360 (German) 4.9444 109.9444 0 105 7.9167 112.9167
30/360 US 4.9444 109.9444 0 105 7.9167 112.9167

ACT/365 (Fixed) 4.9863 109.9863 0 105 7.9726 112.9726
ACT(NL)/365 4.9863 109.9863 0 105 7.9726 112.9726

ACT/360 5.0556 110.0556 0 105 8.0833 113.0833
30/365 4.8767 109.8767 0 105 7.8082 112.8082

ACT/365 (Canadian Bond) 4.9863 109.9863 0 105 7.9315 112.9315
ACT/364 5.0000 110.0000 0 105 7.9945 112.9945

BusDay/252 (Brazilian) 4.8412 109.8412 0 105 7.7354 112.7354

Yield to maturity, duration, and convexity

The yield to maturity p.a. is determined as the value y that fulfills equation (1).

DPτ = CPτ + AC(tτ) =
CN(tτ)(
1 +

y
h

)w +
η

∑
i=1

CFi+k(
1 +

y
h

)w+i +
CFM + RV(

1 +
y
h

)w+η+z . (1)

In equation (1), DPτ denotes the dirty price, consisting of the quoted clean price CPτ and accrued
interest AC(tτ). Conformal with the notation in Djatschenko (2019), tτ is the settlement date and
τ its index in the temporal structure established by the function AnnivDates(). On the right side
of equation (1), CN(tτ) denotes the next coupon payment after the settlement date tτ , and w is the
fraction of a regular coupon period left until this payment. The set CFi+k with i ∈ {x ∈N | x ∈ [1, η]}
contains all interest payments after tk, excluding the final coupon payment, CFM, where k is the
index of the next coupon date after tτ , η is the number of interest payment dates between tτ and the
penultimate coupon date, and M is the index corresponding to the bond’s maturity date. RV denotes
the redemption payment, z represents the length of the final coupon period, and h represents the
number of regular interest payments per year.

The dirty price DPτ and the accrued interest AC(τ) are computed as illustrated in example 8. The
cash flows CN(tτ), CFi+k, and CFM are calculated as demonstrated in example 7. The powers in the
denominators in equation (1) are found based on the temporal structure established by the function
AnnivDates(), as shown in example 6.

Essentially, the same DCC is used for computation of cash flows, accrued interest and the indexes of
the temporal structure. Nevertheless, the option Calc.Method in the functions BondVal.Price() and
BondVal.Yield() allows for switching the calculation method for the temporal structure to DCC = 2,
i.e., ACT/ACT (ICMA), while keeping the DCC passed to the function for determination of cash flows
and accrued interest.

The function BondVal.Price() can be used to compute a bond’s clean price, (CPτ), given its yield
to maturity p.a. (y), while the function BondVal.Yield() returns y given CPτ . Besides accrued interest
(AC(tτ)) and dirty price (DPτ), both functions return τ, MacAulay duration, modified duration, and

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 134

convexity of the specified bond.5 The following, example 9, demonstrates the use of the function
BondVal.Yield() for the bond analyzed in example 8. In the output of example 9, YtM denotes the
bond’s yield to maturity p.a. in percent, DUR is the bond’s modified duration in years, and Conv is the
bond’s convexity in years. The suffixes .S1, .S2, and .S3 correspond to the three analyzed settlement
dates, SETT1 = 2020-09-28, SETT2 = 2023-03-30, and SETT3 = 2024-01-15. For space reasons, the
first column of the displayed data frame contains the DCC-codes instead of their names.

> # example 9
> library(BondValuation)
> YtM.by.DCC <- data.frame(CP = 105,
+ SETT1 = rep(as.Date("2020-09-28"), 16),
+ SETT2 = rep(as.Date("2023-03-30"), 16),
+ SETT3 = rep(as.Date("2024-01-15"), 16),
+ Em = rep(as.Date("2019-10-31"), 16),
+ Mat = rep(as.Date("2024-02-29"), 16),
+ CpY = rep(2, 16),
+ FIPD = rep(as.Date("2020-03-30"), 16),
+ LIPD = rep(as.Date("2023-03-30"), 16),
+ FIAD = rep(as.Date("2019-10-31"), 16),
+ RV = rep(100, 16),
+ Coup = rep(10, 16),
+ DCC = seq(1, 16),
+ EOM = rep(0, 16))
>
> Suffix <- c("S1","S2","S3")
> i<-1
> for (i in c(1:3)) {
+ BondValYield.Output<-suppressWarnings(
+ apply(YtM.by.DCC[,c('CP',paste0('SETT',i),'Em','Mat','CpY','FIPD',
+ 'LIPD','FIAD','RV','Coup','DCC')],
+ 1,function(y) BondVal.Yield(y[1],y[2],y[3],y[4],y[5],y[6],y[7],
+ y[8],y[9],y[10],y[11])))
+
+ YtM<-do.call(rbind,lapply(lapply(BondValYield.Output, `[[`, 4), round, 3))
+ ModDUR<-do.call(rbind,lapply(lapply(BondValYield.Output, `[[`, 5), round, 4))
+ Conv<-do.call(rbind,lapply(lapply(BondValYield.Output, `[[`, 7), round, 4))
+ YtM.by.DCC<-cbind(YtM.by.DCC,YtM,ModDUR,Conv)
+ names(YtM.by.DCC)[
+ c((ncol(YtM.by.DCC) - 2) : ncol(YtM.by.DCC))] <- c(
+ paste0("YtM.", Suffix[i]), paste0("DUR.", Suffix[i]),
+ paste0("Conv.", Suffix[i]))
+ rm(BondValYield.Output,YtM,ModDUR,Conv)
+ }
> print(YtM.by.DCC[,c(13,15:ncol(YtM.by.DCC))], row.names = FALSE)
DCC YtM.S1 DUR.S1 Conv.S1 YtM.S2 DUR.S2 Conv.S2 YtM.S3 DUR.S3 Conv.S3
1 8.244 2.7593 4.9777 4.360 0.8824 0.7786 -27.035 0.1277 0.0163
2 8.252 2.7590 4.9766 4.334 0.8825 0.7788 -26.956 0.1279 0.0164
3 8.245 2.7595 4.9793 4.360 0.8833 0.7803 -26.899 0.1282 0.0164
4 8.238 2.7604 4.9813 4.339 0.8824 0.7787 -27.002 0.1279 0.0164
5 8.251 2.7564 4.9676 4.313 0.8792 0.7730 -27.373 0.1265 0.0160
6 8.251 2.7564 4.9676 4.313 0.8792 0.7730 -27.373 0.1265 0.0160
7 8.251 2.7564 4.9676 4.313 0.8792 0.7730 -27.373 0.1265 0.0160
8 8.252 2.7584 4.9746 4.329 0.8817 0.7774 -26.568 0.1293 0.0167
9 8.251 2.7564 4.9676 4.313 0.8792 0.7730 -27.373 0.1265 0.0160

10 8.248 2.7587 4.9763 4.365 0.8822 0.7784 -26.973 0.1279 0.0164
11 8.243 2.7604 4.9824 4.354 0.8845 0.7823 -26.825 0.1286 0.0165
12 8.381 2.7505 4.9554 4.498 0.8812 0.7765 -26.824 0.1279 0.0163
13 8.120 2.7645 4.9882 4.183 0.8802 0.7748 -27.521 0.1265 0.0160
14 8.236 2.7593 4.9776 4.322 0.8826 0.7789 -26.983 0.1279 0.0164
15 8.274 2.7570 4.9722 4.391 0.8820 0.7780 -26.943 0.1279 0.0164
16 8.032 2.7729 5.0104 4.175 0.8803 0.7750 -26.038 0.1314 0.0173

5Djatschenko (2019) provides the theoretical background on the implemented key figures.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 135

Application of the package BondValuation

This section demonstrates how the R package BondValuation can be applied for the analysis of large
data frames. For this purpose, the two sample data frames, SomeBonds2016 and PanelSomeBonds2016,
are used. SomeBonds2016 contains time-invariant information of 100 hypothetical bonds. PanelSomeBonds2016
provides daily clean prices and yields of the same bonds in long format.

Checking the data with AnnivDates()

Since erroneous entries in the data are often an issue, the function AnnivDates() performs several
plausibility checks. Example 10 provides a summary of SomeBonds2016 and illustrates a strategy for
error identification in this data frame.

> # example 10
> library(BondValuation)
> summary(SomeBonds2016)

ID.No Coup.Type Issue.Date FIAD.Input
Min. : 1.00 Length:100 Min. :2016-01-01 Min. :2016-01-01
1st Qu.: 25.75 Class :character 1st Qu.:2016-04-25 1st Qu.:2016-04-25
Median : 50.50 Mode :character Median :2016-06-12 Median :2016-06-12
Mean : 50.50 Mean :2016-06-19 Mean :2016-06-19
3rd Qu.: 75.25 3rd Qu.:2016-08-23 3rd Qu.:2016-08-23
Max. :100.00 Max. :2016-10-14 Max. :2016-10-28
FIPD.Input LIPD.Input Mat.Date CpY.Input

Min. :2016-04-24 Min. :2016-08-23 Min. :2017-01-24 Min. : 1.0
1st Qu.:2016-09-30 1st Qu.:2019-02-14 1st Qu.:2019-07-24 1st Qu.: 2.0
Median :2016-12-15 Median :2020-06-08 Median :2020-11-20 Median : 2.5
Mean :2016-12-15 Mean :2021-11-11 Mean :2022-05-18 Mean : 4.3
3rd Qu.:2017-03-02 3rd Qu.:2022-11-04 3rd Qu.:2023-05-05 3rd Qu.: 6.0
Max. :2017-08-23 Max. :2056-05-20 Max. :2056-08-31 Max. :12.0
Coup.Input RV.Input DCC.Input EOM.Input

Min. : 0.010 Min. :100 Min. : 1.00 Min. :0.00
1st Qu.: 0.800 1st Qu.:100 1st Qu.: 5.00 1st Qu.:1.00
Median : 1.410 Median :100 Median :10.00 Median :1.00
Mean : 2.270 Mean :100 Mean : 8.95 Mean :0.79
3rd Qu.: 2.869 3rd Qu.:100 3rd Qu.:13.00 3rd Qu.:1.00
Max. :24.020 Max. :100 Max. :16.00 Max. :1.00

The summary information above reveals that all bonds in the data frame were issued (Issue.Date)
and started to accrue interest (FIAD.Input) in 2016. The terms to maturity (Mat.Date) span from about
1 to approximately 40 years. The summary of variable CpY.Input shows that there are no zero coupon
bonds in the dataset and the number of interest payments per year varies from 1 to 12. Nominal
interest rates (Coup.Input) average 2.27%, varying from 0.01% to 24.02%. All bonds are redeemed
(RV.Input) at 100% of their respective par values and 79% of them follow the End-of-Month rule
(EOM.Input). Now AnnivDates() is used to analyze the data for plausibility.

> # example 10: continued (I)
>
> # Applying AnnivDates() to the data frame SomeBonds2016.
> FullAnalysis<-suppressWarnings(
+ apply(
+ SomeBonds2016[,c('Issue.Date','Mat.Date','CpY.Input','FIPD.Input',
+ 'LIPD.Input','FIAD.Input','RV.Input','Coup.Input',
+ 'DCC.Input','EOM.Input')], 1,
+ function(y) AnnivDates(y[1], y[2], y[3], y[4], y[5], y[6], y[7],
+ y[8], y[9], y[10])
+)
+)
> # Extracting the data frame Warnings and binding the Warnings to the bonds
> BondsWithWarnings<-cbind(
+ SomeBonds2016, do.call(
+ rbind, lapply(FullAnalysis, `[[`, 1)
+)
+)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 136

> summary(BondsWithWarnings[,c((ncol(SomeBonds2016)+1):ncol(BondsWithWarnings))])
Em_FIAD_differ EmMatMissing CpYOverride RV_set100percent NegLifeFlag
Min. :0.00 Min. :0 Min. :0 Min. :0 Min. :0
1st Qu.:0.00 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
Median :0.00 Median :0 Median :0 Median :0 Median :0
Mean :0.04 Mean :0 Mean :0 Mean :0 Mean :0
3rd Qu.:0.00 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
Max. :1.00 Max. :0 Max. :0 Max. :0 Max. :0

ZeroFlag Em_Mat_SameMY ChronErrorFlag FIPD_LIPD_equal IPD_CpY_Corrupt
Min. :0 Min. :0 Min. :0.00 Min. :0.00 Min. :0.00
1st Qu.:0 1st Qu.:0 1st Qu.:0.00 1st Qu.:0.00 1st Qu.:0.00
Median :0 Median :0 Median :0.00 Median :0.00 Median :0.00
Mean :0 Mean :0 Mean :0.01 Mean :0.02 Mean :0.09
3rd Qu.:0 3rd Qu.:0 3rd Qu.:0.00 3rd Qu.:0.00 3rd Qu.:0.00
Max. :0 Max. :0 Max. :1.00 Max. :1.00 Max. :1.00

EOM_Deviation EOMOverride DCCOverride NoCoups
Min. :0.00 Min. :0.00 Min. :0 Min. :0.00
1st Qu.:0.00 1st Qu.:0.00 1st Qu.:0 1st Qu.:0.00
Median :1.00 Median :1.00 Median :0 Median :0.00
Mean :0.69 Mean :0.68 Mean :0 Mean :0.01
3rd Qu.:1.00 3rd Qu.:1.00 3rd Qu.:0 3rd Qu.:0.00
Max. :1.00 Max. :1.00 Max. :0 Max. :1.00

The summary information in example 10: continued (I) reveals that 1% of the bonds suffer from a
chronological error (ChronErrorFlag) and 9% feature inconsistencies between the coupon payment
dates and the number of interest payment dates per year CpY (IPD_CpY_Corrupt). To illustrate the
rationale behind the plausibility analysis, a manual inspection of the affected bonds is performed
below.6

> # example 10: continued (II)
>
> # manual examination of the rows where ChronErrorFlag = 1
> print(BondsWithWarnings[
+ which(BondsWithWarnings$ChronErrorFlag == 1),
+ c('ID.No', 'Issue.Date', 'FIAD.Input', 'FIPD.Input', 'LIPD.Input', 'Mat.Date')],
+ row.names = FALSE)
ID.No Issue.Date FIAD.Input FIPD.Input LIPD.Input Mat.Date

17 2016-08-23 2016-08-23 2017-08-23 2016-08-23 2017-08-23
>
> # manual examination of the rows where IPD_CpY_Corrupt = 1
> print(BondsWithWarnings[
+ which(BondsWithWarnings$IPD_CpY_Corrupt == 1),
+ c('ID.No', 'Issue.Date', 'FIAD.Input', 'FIPD.Input', 'LIPD.Input', 'Mat.Date',
+ 'CpY.Input')], row.names = FALSE)
ID.No Issue.Date FIAD.Input FIPD.Input LIPD.Input Mat.Date CpY.Input

2 2016-06-23 2016-06-23 2016-07-15 2019-05-15 2019-06-15 4
4 2016-05-24 2016-05-24 2016-05-31 2017-04-30 2017-05-31 2

19 2016-09-28 2016-09-28 2017-02-28 2021-08-31 2021-09-28 1
56 2016-07-26 2016-07-26 2017-01-26 2020-07-26 2020-10-26 1
64 2016-04-13 2016-04-13 2016-04-24 2017-03-24 2017-04-24 6
65 2016-09-30 2016-09-30 2016-10-31 2018-02-28 2018-03-29 1
70 2016-08-26 2016-08-26 2016-11-20 2056-05-20 2056-08-31 1
82 2016-06-30 2016-06-30 2016-07-15 2028-09-15 2028-12-15 2
84 2016-07-20 2016-07-20 2016-07-24 2016-09-24 2017-01-24 2

The chronological error occurred because the provided penultimate coupon date (LIPD.Input)
is located prior to the supplied first interest payment date (FIPD.Input). Since the authenticity of
FIPD.Input and LIPD.Input is unclear in this case, both are automatically dropped by AnnivDates(),
and the calculation continues based upon the provided values of Issue.Date and Mat.Date.

As can be seen in the manual examination of the rows where IPD_CpY_Corrupt = 1, for all of them,
there are inconsistencies between the value of CpY.Input and the interval between FIPD.Input and
LIPD.Input. In the first row, for example, CpY.Input indicates that coupons are paid quarterly. If the

6Please refer to the package manual of BondValuation for detailed descriptions of the other warning flags.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 137

value of FIPD.Input is correct, coupon payments should occur on July 15th, October 15th, January
15th, and April 15th. If the value of LIPD.Input is genuine, however, interest should be paid on May
15th, August 15th, November 15th, and February 15th. Finally, in this case, FIPD.Input and LIPD.Input
can both be correct, lying on each other’s anniversary dates for a value of CpY.Input = 6. Since it
is not clear which of the three values is correct, AnnivDates() cannot automatically revise the input
but only helps the user to identify the inconsistency. If the data are passed to AnnivDates() as they
are, CpY.Input is assumed to be genuine, FIPD.Input and LIPD.Input are dropped, and the execution
continues as if they were not provided in the first place, resulting in the temporal structure and cash
flows provided below in example 10: continued (III).

> # example 10: continued (III)
> # Printing data frame DateVectors for bond with ID.No = 2
> print(
+ as.data.frame(do.call(rbind, lapply(FullAnalysis, `[[`, 3)[2])),
+ row.names = FALSE)
RealDates RD_indexes CoupDates CD_indexes AnnivDates AD_indexes

2016-06-23 0.08888889 2016-09-15 1 2016-06-15 0
2016-09-15 1.00000000 2016-12-15 2 2016-09-15 1
2016-12-15 2.00000000 2017-03-15 3 2016-12-15 2
2017-03-15 3.00000000 2017-06-15 4 2017-03-15 3
2017-06-15 4.00000000 2017-09-15 5 2017-06-15 4
2017-09-15 5.00000000 2017-12-15 6 2017-09-15 5
2017-12-15 6.00000000 2018-03-15 7 2017-12-15 6
2018-03-15 7.00000000 2018-06-15 8 2018-03-15 7
2018-06-15 8.00000000 2018-09-15 9 2018-06-15 8
2018-09-15 9.00000000 2018-12-15 10 2018-09-15 9
2018-12-15 10.00000000 2019-03-15 11 2018-12-15 10
2019-03-15 11.00000000 2019-06-15 12 2019-03-15 11
2019-06-15 12.00000000 <NA> NA 2019-06-15 12
>
> # Printing data frame PaySched for bond with ID.No = 2
> print(
+ as.data.frame(do.call(rbind, lapply(FullAnalysis, `[[`, 4)[2])),
+ row.names = FALSE)
CoupDates CoupPayments

2016-09-15 0.7368611
2016-12-15 0.8087500
2017-03-15 0.8087500
2017-06-15 0.8087500
2017-09-15 0.8087500
2017-12-15 0.8087500
2018-03-15 0.8087500
2018-06-15 0.8087500
2018-09-15 0.8087500
2018-12-15 0.8087500
2019-03-15 0.8087500
2019-06-15 0.8087500

The consequences of the plausibility-check-induced automated data revision by AnnivDates()
are stored in the data frame Traits. Alongside the values that were initially provided and that are
actually used in the subsequent calculations, Traits contains information on the types and lengths of
the first and final coupon periods. Example 10: continued (IV) demonstrates how the data frame Traits
can be extracted from the output of AnnivDates() and provides summary information on the lengths
and types of the first and final coupon periods in the data frame SomeBonds2016. Of the 100 bonds
in SomeBonds2016, only 20 have regular first coupon periods and 28 feature final coupon periods of
regular length. The lengths of the first coupon periods vary from 1.37% to 1, 200% of the bond-specific
regular coupon period length, while the final coupon periods average 238% and span from 2.78% to
1, 200% of the respective bond’s regular coupon period length.

> # example 10: continued (IV)
> # Extracting the data frame Warnings and binding the Warnings to the bonds
> BondsWithTraits<-cbind(
+ SomeBonds2016, do.call(
+ rbind, lapply(FullAnalysis, `[[`, 2)
+)

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 138

+)
> summary(BondsWithTraits[, c('FCPType', 'LCPType', 'FCPLength', 'LCPLength')])

FCPType LCPType FCPLength LCPLength
long :49 long :51 Min. : 0.01366 Min. : 0.02778
short :31 regular:28 1st Qu.: 0.92150 1st Qu.: 1.00000
regular:20 short :21 Median : 1.00000 Median : 1.25140

Mean : 2.19291 Mean : 2.38417
3rd Qu.: 3.00000 3rd Qu.: 3.00000
Max. :12.00000 Max. :12.00000

Applying BondVal.Yield() to long format data

In addition to the time-invariant information in SomeBonds2016, the data frame PanelSomeBonds2016
provides daily clean prices (CP.Input) and yields to maturity (YtM.Input) that correspond to the trade
dates, TradeDate, and settlement dates, SETT. TradeDate is the calendar date on which the transaction
is initiated and the quoted clean price is observed; SETT is the actual calendar date on which the
transfer of cash and assets is completed. The settlement date is used for the following computation.
Example 11 below shows that PanelSomeBonds2016 has 12, 718 rows and 16 columns and provides
summary information regarding the time-variant variables. The clean prices span from 90.38% to
224.16%, while the yields to maturity average −0.01593%, varying from −1.725% to 2%.

> # example 11
> library(BondValuation)
> dim(PanelSomeBonds2016)
[1] 12718 16
> summary(PanelSomeBonds2016[, c(13:16)])

TradeDate SETT CP.Input YtM.Input
Min. :2016-01-29 Min. :2016-02-02 Min. : 90.38 Min. :-1.72500
1st Qu.:2016-08-03 1st Qu.:2016-08-05 1st Qu.:102.73 1st Qu.:-0.35000
Median :2016-10-03 Median :2016-10-05 Median :105.79 Median :-0.02500
Mean :2016-09-20 Mean :2016-09-23 Mean :112.53 Mean :-0.01593
3rd Qu.:2016-11-17 3rd Qu.:2016-11-21 3rd Qu.:113.21 3rd Qu.: 0.27500
Max. :2016-12-30 Max. :2017-01-03 Max. :224.16 Max. : 2.00000

In the following, example 12, the function BondVal.Yield() is used to determine τ, accrued interest,
dirty price, yield to maturity, modified duration, MacAulay duration, and convexity for each bond
and settlement date in PanelSomeBonds2016. In alternative 1, the function BondVal.Yield() is applied
to every row of the data frame PanelSomeBonds. Alternative 2 demonstrates a significantly faster
approach, where AnnivDates() is applied to every bond’s time-invariant characteristics before its
output is passed to BondVal.Yield() for every settlement date. Alternative 2 takes less than half the
time of alternative 1.7

> # example 12
> # analysis of PanelSomeBonds2016 with BondValuation
> library(BondValuation)
> Panel <- PanelSomeBonds2016
> Vars <- c("tau","AccrInt","DP","YtM","ModDUR","MacDUR","Conv")
> Panel[, c((ncol(Panel) + 1) : (ncol(Panel) + length(Vars)))] <- as.numeric(NA)
> names(Panel)[(ncol(Panel) - length(Vars) + 1) : ncol(Panel)] <- Vars
>
> # Alternative 1: loop through the data frame
> # applying BondVal.Yield to each row
> Time.Alt01 <- system.time(
+ for (i in c(1:nrow(Panel))) {
+ BondVal.Out <- suppressWarnings(
+ BondVal.Yield(CP = Panel$CP.Input[i],
+ SETT = Panel$SETT[i],
+ Em = Panel$Issue.Date[i],
+ Mat = Panel$Mat.Date[i],
+ CpY = Panel$CpY.Input[i],
+ FIPD = Panel$FIPD.Input[i],
+ LIPD = Panel$LIPD.Input[i],

7On an "Intel(R) Core(TM) i7-3687U CPU @ 2.10GHz" machine, alternative 1 takes about 350 seconds, while
alternative 2 takes ca. 170 seconds.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 139

+ FIAD = Panel$FIAD.Input[i],
+ RV = Panel$RV.Input[i],
+ Coup = Panel$Coup.Input[i],
+ DCC = Panel$DCC.Input[i],
+ EOM = Panel$EOM.Input[i],
+ Precision = .Machine$double.eps^0.5
+)
+)
+ Panel[i, c((ncol(Panel) - length(Vars) + 1) : ncol(Panel))] <-
+ round(as.numeric(BondVal.Out[c(11, 2 : 7)]), 4)
+ }, gcFirst = TRUE
+)
>
>
> # Alternative 2: Run AnnivDates() once per Bond-ID and pass its output
> # to BondVal.Yield() for every row with the same Bond-ID
> NonDuplID <- c(which(!duplicated(Panel$ID.No)), (nrow(Panel)+1))
> Time.Alt02 <- system.time(
+ for (i in c(1 : (length(NonDuplID) - 1))) {
+ BondCount <- NonDuplID[i]
+ AnnivDates.Out <- suppressWarnings(
+ AnnivDates(Em = Panel$Issue.Date[BondCount],
+ Mat = Panel$Mat.Date[BondCount],
+ CpY = Panel$CpY.Input[BondCount],
+ FIPD = Panel$FIPD.Input[BondCount],
+ LIPD = Panel$LIPD.Input[BondCount],
+ FIAD = Panel$FIAD.Input[BondCount],
+ RV = Panel$RV.Input[BondCount],
+ Coup = Panel$Coup.Input[BondCount],
+ DCC = Panel$DCC.Input[BondCount],
+ EOM = Panel$EOM.Input[BondCount]
+)
+)
+ for (j in c(NonDuplID[i] : (NonDuplID[i + 1] - 1))) {
+ BondVal.Out <- suppressWarnings(
+ BondVal.Yield(CP = Panel$CP.Input[j],
+ SETT = Panel$SETT[j],
+ Em = Panel$Issue.Date[j],
+ Mat = Panel$Mat.Date[j],
+ CpY = Panel$CpY.Input[j],
+ FIPD = Panel$FIPD.Input[j],
+ LIPD = Panel$LIPD.Input[j],
+ FIAD = Panel$FIAD.Input[j],
+ RV = Panel$RV.Input[j],
+ Coup = Panel$Coup.Input[j],
+ DCC = Panel$DCC.Input[j],
+ EOM = Panel$EOM.Input[j],
+ InputCheck = 0,
+ Precision = .Machine$double.eps^0.5,
+ AnnivDatesOutput = AnnivDates.Out
+)
+)
+ Panel[j, c((ncol(Panel) - length(Vars) + 1) : ncol(Panel))] <-
+ round(as.numeric(BondVal.Out[c(11, 2 : 7)]), 4)
+ }
+ }, gcFirst = TRUE
+)
>
> round(Time.Alt02[[3]] / Time.Alt01[[3]], 2)
[1] 0.48

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 140

Conclusion

This article introduces the R package BondValuation and provides guidance on its application for
analysis of large data frames of fixed coupon bonds. The theoretical foundation of the package is the
generalized valuation methodology developed by Djatschenko (2019). Its seamless implementation
in BondValuation is framed by a set of routines that assist the user in data quality evaluation and
automatically correct corrupted entries.

BondValuation is the first R package that properly handles irregular first and final coupon periods
of fixed coupon bonds and provides a comprehensive coverage of the day count conventions (DCC)
used in the global bond markets. Currently, 16 different DCCs are implemented, which account for the
vast majority of the methods used in the global fixed income markets. Within its scope, the R package
BondValuation performs correctly and efficiently. Nevertheless, the current version of the software
remains open for further development and refinement. Essentially, the calculations are performed
under the assumption that interest accrual and temporal structure follow the same DCC. The option
CalcMethod in the functions BondVal.Price() and BondVal.Yield() can be used to force the temporal
structure to follow the ACT/ACT (ICMA) method, while the DCC passed to the respective function is
used to compute accrued interest. In future versions of the package, I intend to implement an explicit
assignment of DCC to both interest accrual and temporal structure, which will increase the flexibility of
the package.

A further limitation is that the calendar dates of the temporal structure are currently returned,
regardless of whether or not they are business days. Although this is the common approach in
theoretical bond valuation, including the possibility of business day adjustments for cash flows would
be particularly appealing to practitioners. Along with business day adjustments, future versions of
BondValuation can be extended by methods for bond portfolio analysis.

The current version of BondValuation is designed for processing non-callable, option-free, non-
sinkable fixed coupon bonds and zero bonds. With the implemented methods, callable bonds can
be analyzed through appropriate adjustment of the maturity date to the next call date, returning
the so-called yield-to-worst and the corresponding duration and convexity measures. Based on the
implemented functions, the R package BondValuation can be extended to incorporate methods for
explicit treatment of callable, sinkable and convertible fixed and floating rate bonds.

The R package BondValuation provides the computational foundation for the exploration of
a variety of interesting research questions related to the analysis of fixed income securities across
markets. Even considering the limitations described above, the software is also useful to practitioners.
I intend to continuously extend and improve the package, and I highly appreciate feedback from the
users.

Acknowledgments

I would like to thank Ingo Geishecker for our frequent discussions and his profound advice. I am also
grateful to Karl Ludwig Keiber and Philipp Otto for their helpful comments and suggestions, and to
Inna Keil for her excellent research assistance. All remaining errors are my own responsibility.

Bibliography

Banking Federation of the European Union. Master Agreement for Financial Transactions - Supplement
to the Derivatives Annex - Interest Rate Transactions, 2004. URL http://www.ebf.eu/wp-content/
uploads/2017/07/10InterestRateTransactions-2004-02699-01-E.pdf. [p2]

A. Caputo Silva, L. Oliveira de Carvalho, and O. Ladeira de Medeiros. PUBLIC DEBT: the Brazil-
ian experience. National Treasury Secretariat and World Bank, Brasilia, BR, 2010. ISBN 978-
85-87841-44-5. URL http://documents.worldbank.org/curated/en/967171469672182286/pdf/
700810ESW0P1160Brazilian0Experience.pdf. [p3]

D. Christie and SWX Swiss Exchange. Accrued Interest & Yield Calculations and Determination of
Holiday Calendars, 2003. URL http://janroman.dhis.org/finance/General/accrued_interest_
en.pdf. [p2]

W. Djatschenko. The Nitty Gritty of Bond Valuation: A Generalized Methodology for Straight Bond
Analysis, July 2019. URL http://dx.doi.org/10.2139/ssrn.3205167. Discussion Paper. [p1, 2, 3,
8, 9, 10, 11, 17]

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

http://www.ebf.eu/wp-content/uploads/2017/07/10InterestRateTransactions-2004-02699-01-E.pdf
http://www.ebf.eu/wp-content/uploads/2017/07/10InterestRateTransactions-2004-02699-01-E.pdf
http://documents.worldbank.org/curated/en/967171469672182286/pdf/700810ESW0P1160Brazilian0Experience.pdf
http://documents.worldbank.org/curated/en/967171469672182286/pdf/700810ESW0P1160Brazilian0Experience.pdf
http://janroman.dhis.org/finance/General/accrued_interest_en.pdf
http://janroman.dhis.org/finance/General/accrued_interest_en.pdf
http://dx.doi.org/10.2139/ssrn.3205167

CONTRIBUTED RESEARCH ARTICLE 141

D. Eddelbuettel, K. Nguyen, and T. Leitch. RQuantLib: R Interface to the ’QuantLib’ Library, 2018. URL
https://CRAN.R-project.org/package=RQuantLib. R package version 0.4.5. [p1]

International Capital Market Association. Rule 251 Accrued Interest Calculation - Excerpt from ICMA’s
Rules and Recommendations, 2010. URL https://www.isda.org/a/NIJEE/ICMA-Rule-Book-Rule-
251-reproduced-by-permission-of-ICMA.pdf. [p2]

International Swaps and Derivatives Association, Inc. EMU and Market Conventions: Recent Devel-
opments, 1998. [p2]

International Swaps and Derivatives Association, Inc. 2006 ISDA Definitions. International Swaps and
Derivatives Association, Inc., New York, 2006. [p2]

Investment Industry Association of Canada (IIAC). Canadian Conventions in Fixed Income Markets
- A Reference Document of Fixed Income Securities Formulas and Practices; Release: 1.3, 2018.
URL https://iiac.ca/wp-content/uploads/Canadian-Conventions-in-FI-Markets-Release-1.
3.pdf. [p2]

Itaú Unibanco. Brazilian Sovereign Fixed Income and Foreign Exchange Markets. Itaú Unibanco, 1st edition,
2017. [p3]

D. Krgin. The Handbook of Global Fixed Income Calculations. Wiley, New York, 1st edition, 2002. ISBN
978-0-471-21835-7. [p2, 3]

J. Mayle. Standard Securities Calculation Methods: Fixed Income Securities Formulas for Price, Yield, and
Accrued Interest, volume 1. Securities Industry Association, New York, 3rd edition, 1993. ISBN
1-882936-01-9. [p2]

Municipal Securities Rulemaking Board. MSRB Rule Book. Municipal Securities Rulemaking Board,
Washington, DC, 2017. URL http://www.msrb.org/msrb1/pdfs/MSRB-Rule-Book-October-2017.
pdf. [p2]

QuantLib Team. Quantlib: A free/open-source library for quantitative finance, 2018. URL http:
//quantlib.org/. [p1]

Wadim Djatschenko
European University Viadrina
Frankfurt (Oder)
Germany
ORCiD: 0000-0003-0653-8779
wadim.djatschenko@gmx.de

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=RQuantLib
https://www.isda.org/a/NIJEE/ICMA-Rule-Book-Rule-251-reproduced-by-permission-of-ICMA.pdf
https://www.isda.org/a/NIJEE/ICMA-Rule-Book-Rule-251-reproduced-by-permission-of-ICMA.pdf
https://iiac.ca/wp-content/uploads/Canadian-Conventions-in-FI-Markets-Release-1.3.pdf
https://iiac.ca/wp-content/uploads/Canadian-Conventions-in-FI-Markets-Release-1.3.pdf
http://www.msrb.org/msrb1/pdfs/MSRB-Rule-Book-October-2017.pdf
http://www.msrb.org/msrb1/pdfs/MSRB-Rule-Book-October-2017.pdf
http://quantlib.org/
http://quantlib.org/
mailto:wadim.djatschenko@gmx.de

	BondValuation: An R Package for Fixed Coupon Bond Analysis
	Introduction
	The BondValuation package
	Day count conventions
	Bond-specific temporal structure
	Cash flows, accrued interest, and dirty price
	Yield to maturity, duration, and convexity

	Application of the package BondValuation
	Checking the data with AnnivDates()
	Applying BondVal.Yield() to long format data

	Conclusion
	Acknowledgments

