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Abstract The cluster randomized trial (CRT) is a randomized controlled trial in which randomization is
conducted at the cluster level (e.g., school or hospital) and outcomes are measured for each individual
within a cluster. Often, the number of clusters available to randomize is small (≤ 20), which increases
the chance of baseline covariate imbalance between comparison arms. Such imbalance is particularly
problematic when the covariates are predictive of the outcome because it can threaten the internal
validity of the CRT. Pair-matching and stratification are two restricted randomization approaches
that are frequently used to ensure balance at the design stage. An alternative, less commonly-used
restricted randomization approach is covariate-constrained randomization. Covariate-constrained
randomization quantifies baseline imbalance of cluster-level covariates using a balance metric and
randomly selects a randomization scheme from those with acceptable balance by the balance metric.
It is able to accommodate multiple covariates, both categorical and continuous. To facilitate imple-
mentation of covariate-constrained randomization for the design of two-arm parallel CRTs, we have
developed the cvcrand R package. In addition, cvcrand also implements the clustered permutation
test for analyzing continuous and binary outcomes collected from a CRT designed with covariate-
constrained randomization. We used a real cluster randomized trial to illustrate the functions included
in the package.

Introduction

Cluster randomized trials (CRTs) randomize clusters of individuals, such as schools, hospitals or clinics
(Brown and Li, 2015). The CRT design is chosen when there are concerns of treatment contamination,
when it is logistically easier to conduct the trial using cluster randomization and when intervention of
interest is delivered at the group level (Turner et al., 2017a). CRTs have been used in many disciplines
including social sciences, public policy, medicine and implementation science (Hayes and Moulton,
2009).

In this paper, we focus on the two-arm parallel cluster randomized trial. Usually, there are a total
of ( n

nT
) = n!

nT !(n−nT)!
ways to allocate nT clusters to the intervention arm, out of a total of n clusters. For

example, in a CRT with 10 clusters, 5 of which are assigned to the treatment arm and 5 to the control
arm, there are (10

5 ) = 252 unique allocations in the simple randomization space. Each allocation is
called a randomization scheme and when simple randomization is used, one of the 252 allocations is
randomly selected and implemented in the CRT. Because it is common that there are only a limited
(usually fewer than 20) number of clusters available in a CRT (Fiero et al., 2015), there may be a
non-negligible chance of imbalance between arms regarding the distribution of baseline covariates
(Moulton, 2004). If the covariates are predictive of the outcome, such imbalance may threaten the
internal validity, can lead to loss of power and usually requires statistical adjustment in the analysis
stage (Ivers et al., 2012).

Several design strategies are available to avoid reliance only on statistical adjustment that accounts
for baseline covariate imbalance in the analysis phase. Two most popular ones are pair-matching and
stratification (Ivers et al., 2012), both of which are examples of restricted randomization. Matching
pairs of clusters according to similarity in the baseline covariate profile (e.g., location), and performs
randomization within each pair. Stratification is similar to matching but instead of only considering
pairs of clusters, the procedure forms strata of 2 or more clusters where each stratum includes clusters
with similar baseline covariate profiles. As with matching, the clusters within each stratum are then
randomized into the two arms and, when there are an even number of clusters in each stratum, there
is perfect balance of strata across treatment and control arms. There are several limitations of these
procedures. The power of a pair-matched study might decrease due to a small number of pairs and
a small correlation between the matching covariates and the outcome (Diehr et al., 1995). Loss to
follow-up of a single cluster may require the exclusion of the matched pair in the analysis, and reduces
study power (Ivers et al., 2012). In addition, the intracluster correlation coefficient is not easy to
compute from the matched pairs (Donner and Klar, 2004; Klar and Donner, 1997; Campbell et al.,
2012). In a CRT with a small number of clusters, stratified randomization is only possible with a small
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number of stratification covariates. Otherwise, a single cluster might be in a stratum and will cause an
imbalance between the arms (Ivers et al., 2012). Given that CRTs often identify and recruit all clusters
at the start of the trial, minimization, a common restricted randomization for individually randomized
trials, is rarely applicable to CRTs. To deal with these limitations especially with a small number
of clusters and more than a few baseline covariates to balance, alternative restricted randomization
methods are necessary.

Covariate-constrained randomization is an alternative restricted randomization procedure (Ivers
et al., 2012; Raab and Butcher, 2001). Unlike matching and stratification, covariate-constrained
randomization uses a measure called a balance metric to quantify the difference in mean covariate
values between the two arms for a given randomization scheme across all baseline covariates that
we wish to balance. The simple randomization space is then constrained by keeping the subset of
randomization schemes with which covariates are considered sufficiently balanced by the balance
metric. A final scheme is then selected from this constrained space, and tends to exhibit better baseline
balance on average than a scheme randomly selected without constraints. Compared with pair-
matching and stratification, covariate-constrained randomization may be preferred due to its capacity
to accommodate multiple covariates, both categorical and continuous. Further, the ICC calculation
remains unaffected under constrained randomization.

Although covariate-constrained randomization is a promising design strategy for CRTs, it is not
commonly used in practice. One possible reason is that it requires more programming than simple
randomization, pair-matching or stratification. Therefore, to facilitate its implementation in the design
and analysis of cluster randomized trials, we have developed the cvrall and cvrcov functions in
the cvcrand package. The cvrall function performs constrained randomization based on covariate
balance measured by a scalar balance metric and can assign weights to reflect the relative importance of
candidate covariates. The cvrcov function performs constrained randomization based on multivariate
balance defined through each single covariate, similar to the routine provided in Greene (2017).

From an analysis perspective, when a CRT is designed using covariate-constrained randomization,
this design feature should be reflected in the analysis of the individual-level outcome data collected
during the trial (Li et al., 2016, 2017). To do so, a permutation-based approach can be used. The per-
mutation test, discussed in Gail et al. (1996), should account for the variability within the constrained
randomization space. In other words, the resulting clustered permutation test obtains the p-value
for the treatment effect by referencing the observed test statistics to the permutation distribution
within the constrained space. We provide the cptest function in the cvcrand package to facilitate the
implementation of this permutation test.

Methods

To demonstrate the utility of the cvcrand package, we describe the concepts of covariate-constrained
randomization and the clustered permutation test using an example of a real cluster randomized trial
presented in Dickinson et al. (2015). This CRT aims to compare a collaborative centralized reminder
approach with a practice-based reminder approach for increasing the immunization rate in children
aged 19 to 35 months from 16 counties in Colorado. Each county represents a cluster of children and
eight counties are randomized to each arm. The collaborative reminder approach depends on the joint
efforts between health department leaders and physicians to develop a centralized notification, either
using telephone or mail, for all parents whose pre-school children are not up-to-date on immunizations.
Parents from the practice-based arm are invited to attend a web-based training for reminder using
the Colorado Immunization Information System. Although counties are the randomization unit, the
binary outcome, immunization status, is to be measured for participating children. A list of nine
county-level covariates are collected (see Table 1 for the complete list, of which income is listed twice
as it is coded as both a continuous variable and a derived categorical variable) prior to randomization,
and balance on these covariates are desired during the randomization phase.

Covariate-constrained randomization

Covariate-constrained randomization, henceforth referred to simply as constrained randomization,
is a promising balancing technique for cluster randomized trials (CRTs), especially for those with a
limited number of clusters (Hayes and Moulton, 2009). Constrained randomization usually involves
the following steps: (i) specifying the baseline covariates that one wishes to balance; (ii) enumerat-
ing all possible randomization schemes or randomly simulating a large number of randomization
schemes within the simple randomization space (duplicates are removed if the schemes are randomly
simulated); (iii) retaining a constrained randomization space with a subset of schemes where sufficient
balance across baseline covariates is achieved according to some pre-specified balance metric; (iv)
randomly selecting a scheme from the constrained randomization space for implementation.
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Table 1: County-level variables in the motivating example.

Variable name Variable description

location location (“rural” or “urban”)

inciis
percentage of children aged 19-35 months in the Colorado
Immunization Information System (CIIS)

numberofchildrenages1935months number of children aged 19-35 months
uptodateonimmunizations percentage of up-to-date on immunizations
africanamerican percentage of African American
hispanic percentage of Hispanic ethnicity
income average income ($)
incomecat category of average income (“low”, “medium”, and “high”)
pediatricpracticetofamilymedicin pediatric practice-to-family medicine practice ratio
communityhealthcenters number of community health centers

Stratification can be viewed as a special case of constrained randomization. For instance, we
could consider stratifying on a single binary baseline covariate, geographic location (rural or urban),
for the immunization trial introduced previously. Suppose that 6 counties are located in the rural
area and that 10 counties are located in the urban area. Stratified randomization ensures that half
of the clusters in each stratum, defined by distinct values of the geographic location variable, are
assigned to treatment and the rest to control. If we measure balance by the absolute differences in the
average covariate values between arms, it follows that the stratified randomization space coincides
with a constrained randomization space with zero balance scores when each stratum contains an even
number of clusters.

Constrained randomization generalizes stratification and extends naturally to situations where
there are several, possibly continuous, baseline covariates. The generalization is featured by defining a
balance metric accommodating multiple covariates. A balance metric gives a quantitative assessment
about the balance between the two arms for each randomization scheme, and essentially any sensible
balance metric can be used. We first develop the cvrall function that balances covariates by scalar
balance scores as in Raab and Butcher (2001) and Li et al. (2016, 2017). Suppose we wish to balance
K baseline covariates, either cluster attributes or individual characteristics aggregated at the cluster
level (dummy variables are used for categorical covariates). We denote n as the total number of
clusters, nT , nC as the number of treated and control clusters (i.e., n = nT + nC), xik as the kth covariate
(k = 1, . . . , K) of cluster i. The l2 balance metric, first introduced by Raab and Butcher (2001), can be
written as

B(l2) =
K

∑
k=1

ωk (x̄Tk − x̄Ck)
2 (1)

where x̄Tk = ∑nT
i=1 xik/nT and x̄Ck = ∑n

i=nT+1 xik/nC are the means of the kth cluster-level variable in
the treatment arm and the control arm, respectively, and ωk is a pre-determined weight for the kth
variable. We choose ωk to be the inverse of the variance of the kth variable across all clusters following
Raab and Butcher (2001) and Li et al. (2016), namely

ωk = 1/s2
k =

n− 1

∑n
i=1 (xik − x̄k)

2

where x̄k = ∑n
i=1 xik/n.

An alternative l1 balance metric was introduced by Li et al. (2017) as

B(l1) =
K

∑
k=1

ω̃k |x̄Tk − x̄Ck| (2)

where the notations are consistent with the l2 metric except for the weight ω̃k, which is chosen to be
the inverse of the standard deviation of the kth variable, sk. It has been shown that the two balance
metrics perform similarly in constrained randomization, that both metrics are invariant to affine
transformation of baseline covariates (Li et al., 2016, 2017), and that the resulting balance scores
are free of the unit used to measure the baseline covariates as long as the unit of measurement is
consistent across clusters. Finally, after the randomization schemes are enumerated or simulated, we
simultaneously compute the balance scores for all schemes according to either the l1 or l2 metric,
using the matrix formula given in Li et al. (2017). We refer the reader to Web Appendix B of Li et al.
(2017) for additional computational details.

To reflect the relative importance of different covariates, one may specify different weights in the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 194

l1 and l2 balance metric. To do so, we can modify the l2 balance metric to be

B(l2) =
K

∑
k=1

dkωk (x̄Tk − x̄Ck)
2 (3)

where dk is the user-defined weight for the kth variable. By default, dk = 1 for all variables and equation
(3) reduces to equation (1). When researchers consider a certain variable to be more “important" (in
terms of prognostic value) than the others, a large user-defined weight dk > 1 could be assigned to that
variable when assessing the balance scores. Similarly, we modify the l1 balance metric by allowing for
user-defined weights as

B(l1) =
K

∑
k=1

dkω̃k |x̄Tk − x̄Ck| (4)

Another important element of constrained randomization is the cutoff value, which we denote
by q ∈ (0, 1]. If we write FB as the empirical cumulative distribution function of the balance scores
calculated using a balance metric, we could define the cutoff value as the percentile such that the
constrained space contains schemes with balance scores no larger than F−1

B (q). Intuitively, the cutoff
value measures the proportion of schemes relative to the simple randomization space. When q = 1,
there is no constraint and simple randomization is implemented. When q < 1, only a subset of
schemes with sufficient balance will be retained and constrained randomization is implemented. In
the immunization trial example, we have in total (16

8 ) = 12, 870 possible randomization schemes to
allocate 8 clusters each to intervention and control. If we set q = 0.1, the constrained randomization
space contains around 1288 schemes, allowing for ties in the balance scores.

Ideally, the cutoff value q should be small and away from 1 so that only the “more balanced"
randomization schemes are retained in the constrained space. In fact, the power of statistical inference
on the intervention effect tends to increase as q decreases if prognostic covariates are balanced by
constrained randomization. However, the cutoff value q should not be too small since this may risk
deterministic allocation of clusters into arms (Moulton, 2004), and may prohibit permutation inference
given a fixed type I error rate (Li et al., 2016). In addition, the relationship between q and power is not
monotone since power may stabilize once q < 0.1, as seen in a number of simulations presented in
Li et al. (2017). For this reason, we set the default cutoff value of q = 0.1 in cvrall, unless specified
otherwise by the user. Finally, we note that in our cvrall function, one could also specify the exact
number of schemes kept in the constrained randomization instead of the cutoff quantile value, through
the numschemes argument.

In addition to constraining the randomization space via a scalar summary score, we further
developed the cvrcov function to implement constrained randomization with baseline balance defined
directly through each covariate. This covariate-by-covariate constrained randomization places separate
constraints on each covariate and ensures that the final allocation scheme satisfies marginal balance
of each covariate. In particular, we follow the routine developed by Greene (2017) and constrain
the arm mean difference (or arm total difference) to be no larger than a pre-specified value or a
certain percentage of overall mean (or mean arm total). The covariate-by-covariate balance allows
user-specified constraints on different covariates and is more flexible, but simulating the constrained
randomization space usually requires more computations since the balance metric does not reduce to
simple forms as the l1 or l2 scores.

To better understand the constrained randomization space, we also include a check on the ran-
domization validity (Bailey and Rowley, 1987). Constraining the randomization may induce linkage
or correlation between clusters so that certain pairs of clusters may always be allocated to the same
arm (cluster coincidence) or never be allocated to the same arm (cluster separation), both of which
lead to loss of randomization validity. To assess the degree of loss of validity, the cvrall and cvrcov
functions provide summary statistics on cluster pairs that always or never appear together in the same
arm, similar to the routine by Greene (2017). Such descriptive statistics may inform the appropriate
selection of a constrained space.

Finally, enumerating all possible schemes in the entire simple randomization space may be
computationally demanding, when there are quite a few clusters to randomize (e.g., more than 20).
In that case, the cvrall and cvrcov functions in our package will randomly simulate a large number
of randomization schemes and remove duplicates if any. By default, this large number is set to be
50,000, unless specified otherwise by the user through the size option. With this default setting,
when the total number of schemes in the simple randomization space is no greater than 50,000, the
enumeration method will be used. Otherwise, 50,000 schemes will be randomly simulated from the
simple randomization space and duplicates will be removed to approximate the simple randomization
space.
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Clustered permutation test

After using constrained randomization in the design of a CRT, a permutation test can be used to test the
intervention effect. We implement the clustered permutation test used in Gail et al. (1996) and Li et al.
(2016) in the cptest function. Specifically, we denote the outcome of the jth individual (j = 1, . . . , mi)
from the ith cluster (i = 1, . . . , n) as Yij. During the analysis stage, researchers may wish to adjust for
baseline covariates, which we denote by a vector zij. The choice of adjustment variables may vary
from study to study, and often depends on expert knowledge. Generally, it is a good practice to adjust
for variables with high prognostic values that are already balanced by constrained randomization. For
the permutation test, such a recommendation is not mandatory since the test size remains valid as
long as the permutation distribution is obtained from the constrained randomization space (Li et al.,
2016), even though adjusting for prognostic variables improves the test power (Li et al., 2016, 2017).
However, if one prefers an unadjusted test, the following permutation inference still holds by setting
zij as the null or empty vector.

The permutation test is implemented in a two-step procedure. In the first step, an outcome
regression model is fitted for response Yij with covariates zij. This is often done by fitting a linear
regression model for continuous responses and a logistic regression model for binary responses,
ignoring the clustering of responses. We then compute the predicted response for each individual
by Ŷij, which could be used to calculate the individual residual rij = Yij − Ŷij. In the second step,
cluster-specific residual averages are obtained as r̄i· = ∑mi

j=1 rij/mi. The observed test statistic is then
computed as

U =
1

nT

n

∑
i=1

Wi r̄i· −
1

nC

n

∑
i=1

(1−Wi) r̄i· (5)

where Wi = 1 if the ith cluster is assigned to the treatment arm and Wi = 0 otherwise, and nT =
∑n

i=1 Wi, nC = ∑n
i=1(1−Wi) are the number of treated and control clusters.

Suppose there are S randomization schemes in the constrained randomization space. To obtain
the permutation distribution of the test statistic, we permute the labels of the treatment indicator
according to the constrained randomization space, and recompute a value for Us (s = 1, . . . , S) based
on equation (5). The collection of these values {Us : s = 1, . . . , S} forms the null distribution of the
permutation test statistic. The p-value is then computed by

p-value =
1
S

S

∑
s=1

I (|Us| ≥ |U|) (6)

where I is the indicator function that equals 1 when |Us| ≥ |U| and 0 otherwise.

Illustrative Examples

Constrained randomization by cvrall

We used the cvrall function to perform constrained randomization based on the CRT data published
in Dickinson et al. (2015). To focus ideas, we selected five variables in Table 1 to balance in the design
stage. These variables include location (categorical), inciis (continuous), uptodateonimmunizations
(continuous) and hispanic (continuous). We further considered incomecat as a categorical variable to
illustrate the use of cvrall in the presence of a factor variable. Of note, the cvrall function automati-
cally converts the categorical variables into dummy variables when implementing the constrained
randomization. For instance, here we categorized the county-level covariate incomecat into three
levels based on sample tertiles: “low”, “medium”, and “high”. Two dummy variables are then intro-
duced to represent these three categories. The “high" level is by default considered as the reference
level by alphanumerical order of the first letter. Similarly, when the permutation test is executed in
the cptest function, each categorical covariates will be transformed into dummy variables before
performing the analysis as well. It is also important to point out that there is more than one way to
define dummy variables because any one of the levels of the categorical variable could be chosen as
the reference level. In the cvrall function, if the variable is not specified as a factor with a specific
reference level, we defined the reference level to be the first level by alphanumerical order. However,
if one would like to specify other reference levels, it is possible to preprocess the data to manually
create dummy variables before invoking the cvrall routines, or to specify the variables as factors with
the specific reference levels.

In this trial, we would like to randomize 8 counties into the arm with a collaborative central-
ized reminder approach and 8 into the other arm with a practice-based approach. So we specified
ntotal_cluster = 16 and ntrt_cluster = 8 for the total number of clusters and the number of
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clusters in the treatment arm. Since the total number of possible schemes is (16
8 ) = 12, 870, which is less

than the default maximum number of simulated schemes (50,000), we enumerated all 12,870 schemes.
The example syntax of the function is given as the following, where the x= argument references the
data frame of the covariates that will be used in the calculation of balance scores and hence be balanced
by constrained randomization.

Design_result <- cvrall(clustername = Dickinson_design$county,
balancemetric = "l2",
x = data.frame(Dickinson_design[ , c("location", "inciis",

"uptodateonimmunizations", "hispanic", "incomecat")]),
ntotal_cluster = 16,
ntrt_cluster = 8,
categorical = c("location", "incomecat"),
savedata = "dickinson_constrained.csv",
bhist = TRUE,
cutoff = 0.1,
seed = 12345,
check_validity = TRUE)

Here we used the balance scores calculated by the l2 metric as indicated by balancemetric = "l2".
The cateogrical variables were specified with categorical = c("location","incomecat"). Location
has two levels: "rural" and code"urban"; the level "rural" is the reference level. As income category
is a three-level categorical variable of "low", "med", and "high", the level "high" is considered as the
reference level and 2 dummy variables were created. Since we specified the cutoff value as cutoff =
0.1, the constrained randomization space only included the schemes with l2 balance scores less than
the 10th percentile of the balance score distribution in the simple randomization space. Finally, we
randomly sampled a scheme from the constrained space.

Figure 1: Histogram of balance scores across all 12870 schemes

We saved the constrained randomization space in a file named dickinson_constrained.csv in the
current working directory. In this file, the first column is an indicator variable of whether the scheme is
the final one selected by the program. The remaining columns records the constrained randomization
matrix; each column of the matrix corresponds to a cluster, and each row of the matrix corresponds to
an allocation scheme coded by 1’s and 0’s (1 if the cluster is assigned to the collaborative centralized
reminder approach and 0 if assigned to the practice-based reminder approach). Furthermore, if simple
randomization is used, namely cutoff = 1, the constrained randomization matrix has 12,870 rows and
16 columns. We provide the option to save the constrained randomization space to a local directory so
that it could be used as an input for the permutation inference during the data analysis stage, which
usually happens at a later calendar time.

To facilitate the understanding of the constrained randomization process, we could specify bhist
= TRUE to generate a histogram displaying the distribution of all balance scores with a red line
indicating the cutoff value (the 10th percentile). The sample histogram of balance scores is in Figure
1. The summary statistics of the balance scores are included in the bscores object, regardless of the
bhist = option. As indicated below, the bscores object contains the cutoff value, the balance score
corresponding to the selected scheme, and other quantiles of the balance score distribution.
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> Design_result$bscores
1 score (selected scheme) 6.764
2 cutoff score 7.638
3 Mean 24.000
4 SD 15.775
5 Min 1.161
6 5% 5.826
7 10% 7.638
8 20% 10.849
9 25% 12.221
10 30% 13.840
11 50% 20.578
12 75% 31.621
13 95% 55.486
14 Max 116.656

In order to be transparent about the constrained randomization procedure, we also included
additional summary messages in the following objects: assignment_message, scheme_message,
cutoff_message and choice_message. These objects summarize the sample size and randomization
ratio, the number of schemes used to calculate the balance score distribution, the balance metric and
cutoff value, as well as the balance score of the selected scheme, respectively. For example, the sample
size and randomization ratio are indicated in the following message:

> Design_result$assignment_message
[1] "You have indicated that you want to assign 8 clusters to treatment and 8 to control"

The final randomization scheme is included in the allocation object. In addition, we also provided
a data frame containing the final randomization scheme in the data_CR element. The data frame
includes the covariate values for each cluster in addition to the information on cluster allocation.

> Design_result$data_CR
arm clustername location inciis uptodateonimmunizations hispanic incomecat

1 0 1 Rural 94 37 44 Low
2 0 2 Rural 85 39 23 High
3 0 3 Rural 85 42 12 Low
4 1 4 Rural 93 39 18 High
5 1 5 Rural 82 31 6 High
6 0 6 Rural 80 27 15 Med
7 1 7 Rural 94 49 38 Low
8 0 8 Rural 100 37 39 Low
9 1 9 Urban 93 51 35 Med
10 1 10 Urban 89 51 17 Med
11 0 11 Urban 83 54 7 High
12 1 12 Urban 70 29 13 Med
13 1 13 Urban 93 50 13 High
14 0 14 Urban 85 36 10 Med
15 1 15 Urban 82 38 39 Low
16 0 16 Urban 84 43 28 Med

To assess whether the selected constrained randomization scheme balances the baseline covariates,
we provided a baseline table summarized under the selected randomization scheme. The baseline
table indicates that the covariates are approximately balanced across the two arms, although more
“urban” clusters are assigned to the collaborative centralized reminder approach. The baseline table is
provided in the baseline_table element, and is illustrated below.

> Design_result$baseline_table
arm = 0 arm = 1

n 8 8
location = Urban (%) 3 (37.5) 5 (62.5)
inciis (mean (sd)) 87.00 (6.59) 87.00 (8.45)
uptodateonimmunizations (mean (sd)) 39.38 (7.65) 42.25 (9.18)
hispanic (mean (sd)) 22.25 (13.77) 22.38 (12.94)
incomecat (%)

High 2 (25.0) 3 (37.5)
Low 3 (37.5) 2 (25.0)
Med 3 (37.5) 3 (37.5)
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Finally, we considered the validity of the randomization and used the check_validity = argument
to summarize the cluster coincidence (cluster pairs assigned to the same arm) and cluster separation
(cluster pairs assigned to different arms) within the constrained space. If check_validity = TRUE, we
could obtain the relevant descriptive statistics in the cluster_coin_des object. The four rows in this
object summarize the count and fraction of clusters appearing together, as well as count and fraction
of clusters appearing in the different arms across the constrained randomization space. Recall that
under simple randomization, no linkage or correlation is introduced between clusters and so each
cluster pair has a 50% chance to appear together in the same arm and a 50% chance to appear in
different arms. With the 0.1 cutoff value, the cluster pairs has a 47% chance to appear in the same arm
on average, which is not too distant from the reference value 50%. However, there is a cluster pair that
will appear in the same arm for only about 29% of the times (and appear in different arms for 71% of
times), indicating some loss of validity. On the other hand, the constrained randomization routine
offered by Greene (2017) includes default proportion values, 25% and 75%, as thresholds for loss of
validity. That is to say, a reasonable constrained space should ensure each cluster pair appears in the
same arm (and in different arms) for at least 25% of times and at most 75% times. Our constrained
randomization space satisfies this condition.

> Design_result$cluster_coin_des
Mean Std Dev Minimum 25th Pctl Median 75th Pctl Maximum

samecount 600.600 88.807 368.000 551.750 603.000 648.500 804.000
samefrac 0.467 0.069 0.286 0.429 0.469 0.504 0.625
diffcount 686.400 88.807 483.000 638.500 684.000 735.250 919.000
difffrac 0.533 0.069 0.375 0.496 0.531 0.571 0.714

Stratified constrained randomization by cvrall

Of note, the cvrall function could perform constrained randomization with a stratification factor to
ensure exact balance on that stratification factor. We still considered the above trial example, but now
we wish to perform constrained randomization within each strata defined by the binary location
variable. In other words, two strata of eight counties each will be defined depending on location,
and constrained randomization is then performed based on the additional four covariates within
each stratum. Motivated by the weighted l1 and l2 metrics (3), (4), we could assign a large weight
(e.g., 1000) to location and ensure exact balance on that variable, while keeping the weights for other
variables as 1 (weights = c(1000,1,1,1,1)). Intuitively, a large weight assigned to a covariate sharply
penalizes any imbalance of that covariate, therefore the resulting randomization space approximates
the one obtained by stratifying on location. The example syntax is provided below.

# Stratification on location, with constrained randomization on other
# specified covariates.
Design_stratified_result <- cvrall(clustername = Dickinson_design$county,

balancemetric = "l2",
x = data.frame(
Dickinson_design[,
c("location", "inciis",
"uptodateonimmunizations", "hispanic",
"incomecat")]),

ntotal_cluster = 16,
ntrt_cluster = 8,
categorical = c("location", "incomecat"),
weights = c(1000, 1, 1, 1, 1),
cutoff = 0.1,
seed = 12345)

Depending on the choice of cutoff value, the above syntax may not lead to a randomization space
exactly the same as the one obtained after stratifying on location. The cvrall function also allows
one to directly stratify on the location variable using the stratify option, as shown next. We omitted
the baseline covariate table obtained from stratified constrained randomization, but just comment
that final scheme ensures exact balance on the location variable so that each arm has now 4 urban
counties and 4 rural counties.

# An alternative and equivalent way to stratify on location
Design_stratified_result <- cvrall(clustername = Dickinson_design$county,

balancemetric = "l2",
x = data.frame(
Dickinson_design[ ,
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c("location", "inciis",
"uptodateonimmunizations", "hispanic",
"incomecat")]),

ntotal_cluster = 16,
ntrt_cluster = 8,
categorical = c("location", "incomecat"),
stratify = "location",
cutoff = 0.1,
seed = 12345)

Constrained randomization by cvrcov

We additionally provided the cvrcov function to perform covariate-by-covariate constrained random-
ization, similar to the routine provided by Greene (2017). This approach is particularly attractive for
its flexibility in directly balancing each covariate. We still considered our example trial where we
randomized 8 counties into the each arm for illustration. We specified ntotal_cluster = 16 and
ntrt_cluster = 8 for the total number of clusters and the number of clusters in the treatment arm.
Since the total number of possible schemes is (16

8 ) = 12, 870, which is less than the default maximum
number of simulated schemes (50,000), we enumerated all 12870 schemes.

As the covariate-by-covariate constrained randomization acts on the numeric values of each
variable, we transformed the values of the location to be numeric with "Rural" being 1 and "Urban"
being 0. For illustrative purposes, we also used the numeric average income values rather than its
categories in this example. The x = argument points to the data frame containing the covariates that
will be balanced by constrained randomization routine.

Table 2: Example syntax of balancing constraints.

Syntax Explanation

any no constraints, any arm means or arm totals are acceptable
s5 arm totals must differ in absolute value by no more than 5
sf.5 arm totals must differ in absolute value by no more than 0.5 times the mean arm total
m10 arm means must differ in absolute value by no more than 10
mf0.2 arm means must differ in absolute value by no more than 0.2 times the overall mean
mf.5 arm means must differ in absolute value by no more than 0.5 times the overall mean

The cvrcov function works the same way as the cvrall function, except for that the former requires
additional syntax to specify the balancing constraints for each covariate. The syntax used to balance
each covariate is the same those used in Greene (2017). Specifically, if the first letter is specified as m,
the balancing constraint acts on means, whereas if the first letter is s, the balancing constraint acts on
sums or totals. If the second letter is f, the balancing constraint will be compared to a fractional of a
population quantity (overall mean or mean arm total), otherwise the constraint will be compared to an
actual value. A numeric constraint will follow the specified letters and indicates the tightness of the
constraint. Additional examples are provided in Table 2.

Dickinson_design_numeric <- Dickinson_design
Dickinson_design_numeric$location = (Dickinson_design$location == "Rural") * 1

Design_cov_result <- cvrcov(clustername = Dickinson_design_numeric$county,
x = data.frame(Dickinson_design_numeric[ , c("location", "inciis",

"uptodateonimmunizations",
"hispanic", "income")]),

ntotal_cluster = 16,
ntrt_cluster = 8,
constraints = c("s5", "mf.5", "any", "mf0.2", "mf0.2"),
categorical = c("location"),
savedata = "dickinson_cov_constrained.csv",
seed = 12345,
check_validity = TRUE)

We specified constraints = c("s5","mf.5","any","mf0.2","mf0.2") for the five covariates
respectively. As indicated above, s5 indicates that the allocation scheme should ensure that the arm
totals differ in absolute value by no more than 5. Synaxt mf.5 indicates that the allocation scheme
should ensure that the arm means differ by no more than 0.5 times the overall mean for inciis, among
others. We saved the resulting constrained randomization space as dickinson_cov_constrained.csv.
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Similar to cvrall, the cvrcov routine included additional summary messages in the following
objects: assignment_message and scheme_message. These two objects summarize the sample size and
randomization ratio, the number of schemes enumerated or simulated before applying the constraints.
In addition, a data frame containing the selected final allocation scheme is saved in the data_CR
element as follows.

> Design_cov_result$data_CR
arm id location inciis uptodateonimmunizations hispanic income

1 0 1 1 94 37 44 35988
2 1 2 1 85 39 23 67565
3 0 3 1 85 42 12 35879
4 0 4 1 93 39 18 63617
5 1 5 1 82 31 6 59118
6 0 6 1 80 27 15 57179
7 1 7 1 94 49 38 29738
8 1 8 1 100 37 39 37350
9 1 9 0 93 51 35 52923
10 0 10 0 89 51 17 58302
11 0 11 0 83 54 7 93819
12 0 12 0 70 29 13 54839
13 1 13 0 93 50 13 63857
14 1 14 0 85 36 10 53502
15 0 15 0 82 38 39 39570
16 1 16 0 84 43 28 52457

To evaluate whether the selected constrained randomization scheme balances the baseline co-
variates, we provided a baseline table summarized under the that selected randomization scheme.
The baseline table indicates that the covariates are well balanced across the two arms, with an equal
number of “urban" clusters assigned to each reminder approach.

> Design_cov_result$baseline_table
arm = 0 arm = 1

n 8 8
location = 1 (%) 4 (50.0) 4 (50.0)
inciis (mean (sd)) 84.50 (7.76) 89.50 (6.35)
uptodateonimmunizations (mean (sd)) 39.62 (9.44) 42.00 (7.43)
hispanic (mean (sd)) 20.62 (13.38) 24.00 (13.09)
income (mean (sd)) 54899.12 (19130.82) 52063.75 (12800.82)

The cvrcov function permits the check of randomization validity (Bailey and Rowley, 1987), and
summarizes the cluster coincidence and separation statistics in the cluster_coin_des object. The
result indicates that all cluster pairs appear together in the same arm at least 37% and at most 55% of
the times across the constrained randomization space. Using the 25% and 75% threshold, the summary
statistics indicate that the constrained randomization does not severely depart from validity. Finally,
the cvrcov function summarizes the information of the constrained space in the overall_allocations
and overall_summary objects, which are suppressed here due to limited space. In short, the summary
information informs that the there are in total 12,870 allocations and 5,776 (≈ 45%) satisfied the
balancing constraints.

> Design_cov_result$cluster_coin_des
Mean Std Dev Minimum 25th Pctl Median 75th Pctl Maximum

samecount 2695.467 197.148 2138.000 2567.000 2720.000 2824.500 3182.000
samefrac 0.467 0.034 0.370 0.444 0.471 0.489 0.551
diffcount 3080.533 197.148 2594.000 2951.500 3056.000 3209.000 3638.000
difffrac 0.533 0.034 0.449 0.511 0.529 0.556 0.630

Clustered permutation test by cptest

Since the immunization study is an ongoing trial, we used simulated outcome data to demonstrate the
clustered permutation test with the above example where constrained randomization was performed
using cvrall based on the 5 covariates (the selected scheme had a balance score of 6.764). The same
syntax applies to the constrained randomization results obtained from cvrcov and so is not considered
further here. Suppose that the researchers were able to assess 300 children in each county, and the
trial is randomized according to the selected final scheme. For illustration, we chose the covariates to
be adjusted in the test zij as the list of covariates xi balanced by design. This step is in line with the
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recommendation of Li et al. (2017) that adjusting for prognostic factors in the analysis improves the
test power.

To generate the correlated binary outcome of whether the children is eventually up-to-date on
immunizations (1) or not (0), we used a generalized linear mixed model (GLMM) with a logistic link
to induce correlation by including a random intercept at the county level. The intraclass correlation
coefficient (ICC) is usually used to quantify the degree of association between individual outcomes
in a cluster (county). We used the latent response definition of binary ICC defined by variance
components in the GLMM (Eldridge et al., 2009). The ICC was set to be 0.01, which is a reasonable
value for population health studies (Hannan et al., 1994). The outcome variable depends on the
county-level covariates used in performing the constrained randomization, as previously mentioned,
and we simulated a treatment effect so that the collaborative reminder approach increases up-to-
date immunization rates compared to the practice-based reminder approach (odds ratio equals to
e0.5 ≈ 1.649). The binary outcome for each individual child is generated from a Bernoulli model with
event probability specified by the GLMM.

We performed the clustered permutation test using the cptest function for the binary outcome
of the status of up-to-date on immunizations. As indicated in Li et al. (2016), valid permutation test
under constrained randomization should only shuffle the treatment label within the constrained space,
and so it is important to save and input the constrained randomization space in the design stage
(the file named dickinson_constrained.csv). The permutation test is performed by first regressing
the outcome on the five covariates, inciis, uptodateonimmunizations, hispanic, location, and
incomecat. As the last two covariates are categorical, the cptest() function creates dummy variables
and set reference levels according to alphanumerical order, matching the steps in cvrall. Of note,
had different reference levels been selected for the constrained randomization design procedure,
the corresponding dummy coding should be reflected in the analysis phase when the clustered
permutation test is used. We specified outcometype to be “binary” so that logistic regression is
performed to compute the residuals. An example syntax of the function is given as follows.

Analysis_result <- cptest(outcome = Dickinson_outcome$outcome,
clustername = Dickinson_outcome$county,
z = data.frame(Dickinson_outcome[, c("location", "inciis",

"uptodateonimmunizations", "hispanic", "incomecat")]),
cspacedatname = "dickinson_constrained.csv",
outcometype = "binary",
categorical = c("location","incomecat"))

The covariates to be adjusted for in the permutation test is indicated in the z = option, which
matches the covariate matrix used in cvrall for constrained randomization. If one wishes to an
unadjusted permutation test, one could leave out the z = option as it is an optional argument. The
output of Analysis_result includes the final scheme selected by design (FinalScheme object), the
p-value of the test (p-value object) and a sentence to describe the p-value (pvalue_statement object).
We omitted the code output here for brevity, but comment that, in this example, the p-value equals to
0.042, indicating that there is a significant difference in the effect of the interventions on the outcome
of up-to-date on immunizations, if testing is performed at the 5% significance level. Again, if the
constrained randomization is performed by cvrcov, we could use the cptest function in a similar way
once we provided the constrained permutation matrix obtained from cvrcov in the cspacedatname =
argument.

Summary

The cvcrand package contains three main functions for the design and analysis of cluster randomized
trials. Given that it is common for such trials to enroll a small number of clusters and that this gives rise
to chance imbalance in covariates that are predictive of the outcome, the cvrall and cvrcov functions
can be used to implement covariate-constrained randomization in the design phase to ensure better
balance. The cvrall function uses a balance metric to quantify balance across multiple cluster-level
covariates, whereas the cvrcov allows for covariate-by-covariate balance and could potentially be
more flexible. For analysis of the individual-level outcome data collected in the CRT, the cptest
function could help perform the clustered permutation test, which accommodate both continuous and
binary outcomes and should be treated as a flexible alternative to model-based analysis.

There are several limitations of the cvcrand package. First, the cvrall and cvrcov only deal with
two-arm parallel cluster randomized trials and may not be directly applied to balance covariates in
other designs such as the stepped wedge designs (Hussey and Hughes, 2007; Li et al., 2018). Second,
although the cptest function performs a valid analysis for individual-level outcome data when
there is an equal number of clusters per arm, the test may be anti-conservative when there is an
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unequal number of clusters per arm (Gail et al., 1996). Furthermore, our cptest routine does not
provide a confidence interval for the intervention effect estimate, and additional programming is
required to obtain a permutation confidence interval. Essentially, the permutation test will be inverted
to numerically search for the interval limits, as is done in Gail et al. (1996) for an unadjusted test
under simple randomization. For the adjusted test under constrained randomization, the following
steps could be carried out: (i) hypothesize an treatment effect δ on the link function scale; (ii) obtain
the residuals rij = Yij − Ŷij, where Ŷij is estimated from regressing Yij on zij and the hypothesized
treatment effect; (iii) perform the permutation test under the constrained randomization space and
obtain a p-value; (iv) repeat steps (i)-(iii) for different values of δ and the confidence interval is the
collection of δ such that the p-value is at least 0.05. We noticed that few studies were present in the
CRT literature to evaluate the performance of permutation intervals that adjust for covariates under
constrained randomization, and this is an avenue for future research. On the other hand, it is also
important to notice that point and interval estimates could be easily obtained from model-based
approaches, with caveats discussed in Li et al. (2016). In the class of model-based approaches, the
most commonly-used approaches are the generalized linear mixed model (GLMM) model approach,
which estimates the cluster-specific conditional effect, and the generalized estimating equations (GEE)
approach, which estimates the population-averaged or marginal effect (Turner et al., 2017b). In each
case, it has been demonstrated that the model-based analyses should account for the prognostic
covariates used in the design (Li et al., 2016, 2017). Finally, although the cptest function can handle
both continuous and binary outcomes, we have not yet extended the function to accommodate count
outcomes. In summary, these limitations reflect the current research on constrained randomization.
We plan to update the cvcrand package as the theory and knowledge of these procedures develop in
the future.
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