
CONTRIBUTED RESEARCH ARTICLES 455

bnclassify: Learning Bayesian Network
Classifiers
by Bojan Mihaljević, Concha Bielza, and Pedro Larrañaga

Abstract The bnclassify package provides state-of-the art algorithms for learning Bayesian network
classifiers from data. For structure learning it provides variants of the greedy hill-climbing search,
a well-known adaptation of the Chow-Liu algorithm and averaged one-dependence estimators. It
provides Bayesian and maximum likelihood parameter estimation, as well as three naive-Bayes-
specific methods based on discriminative score optimization and Bayesian model averaging. The
implementation is efficient enough to allow for time-consuming discriminative scores on medium-
sized data sets. The bnclassify package provides utilities for model evaluation, such as cross-validated
accuracy and penalized log-likelihood scores, and analysis of the underlying networks, including
network plotting via the Rgraphviz package. It is extensively tested, with over 200 automated tests
that give a code coverage of 94%. Here we present the main functionalities, illustrate them with a
number of data sets, and comment on related software.

Introduction

Bayesian network classifiers (Bielza and Larrañaga, 2014; Friedman et al., 1997) are competitive
performance classifiers (e.g., Zaidi et al., 2013) with the added benefit of interpretability. Their simplest
member, the naive Bayes (NB) (Minsky, 1961), is well-known (Hand and Yu, 2001). More elaborate
models exist, taking advantage of the Bayesian network (Pearl, 1988; Koller and Friedman, 2009)
formalism for representing complex probability distributions. The tree augmented naive Bayes
(Friedman et al., 1997) and the averaged one-dependence estimators (AODE) (Webb et al., 2005) are
among the most prominent.

A Bayesian network classifier is simply a Bayesian network applied to classification, that is, to the
prediction of the probability P(c | x) of some discrete (class) variable C given some features X. The
bnlearn (Scutari and Ness, 2018; Scutari, 2010) package already provides state-of-the art algorithms
for learning Bayesian networks from data. Yet, learning classifiers is specific, as the implicit goal is to
estimate P(c | x) rather than the joint probability P(x, c). Thus, specific search algorithms, network
scores, parameter estimation, and inference methods have been devised for this setting. In particular,
many search algorithms consider a restricted space of structures, such as that of augmented naive
Bayes (Friedman et al., 1997) models. Unlike with general Bayesian networks, it makes sense to omit a
feature Xi from the model as long as the estimation of P(c | x) is no better than that of P(c | x \ xi).
Discriminative scores, related to the estimation of P(c | x) rather than P(c, x), are used to learn both
structure (Keogh and Pazzani, 2002; Grossman and Domingos, 2004; Pernkopf and Bilmes, 2010;
Carvalho et al., 2011) and parameters (Zaidi et al., 2013, 2017). Some of the prominent classifiers (Webb
et al., 2005) are ensembles of networks, and there are even heuristics applied at inference time, such
as the lazy elimination technique (Zheng and Webb, 2006). Many of these methods (e.g., Dash and
Cooper, 2002; Zaidi et al., 2013; Keogh and Pazzani, 2002; Pazzani, 1996) are, at best, just available in
standalone implementations published alongside the original papers.

The bnclassify package implements state-of-the-art algorithms for learning structure and parame-
ters. The implementation is efficient enough to allow for time-consuming discriminative scores on
relatively large data sets. It provides utility functions for prediction and inference, model evaluation
with network scores and cross-validated estimation of predictive performance, and model analysis,
such as querying structure type or graph plotting via the Rgraphviz package (Hansen et al., 2017).
It integrates with the caret (Kuhn et al., 2017; Kuhn, 2008) and mlr (Bischl et al., 2017) packages for
straightforward use in machine learning pipelines. Currently it supports only discrete variables. The
functionalities are illustrated in an introductory vignette, while an additional vignette provides details
on the implemented methods. It includes over 200 unit and integration tests that give a code coverage
of 94 percent (see https://codecov.io/github/bmihaljevic/bnclassify?branch=master).

The rest of this paper is structured as follows. We begin by providing background on Bayesian
network classifiers (Section Background) and describing the implemented functionalities (Functionali-
ties). We then illustrate usage with a synthetic data set (Solving a conic linear optimization problem
with sdpt3r) and compare the methods’ running time, predictive performance and complexity over
several data sets (Properties). Finally, we discuss implementation (Implementation), briefly survey
related software (Related software), and conclude by outlining future work (Conclusion).

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=bnlearn
https://CRAN.R-project.org/package=bnclassify
https://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=mlr
https://codecov.io/github/bmihaljevic/bnclassify?branch=master

CONTRIBUTED RESEARCH ARTICLES 456

Background

Bayesian network classifiers

A Bayesian network classifier is a Bayesian network used for predicting a discrete class variable C. It
assigns x, an observation of n predictor variables (features) X = (X1, . . . , Xn), to the most probable
class:

c∗ = argmax
c

P(c | x) = argmax
c

P(x, c).

The classifier factorizes P(x, c) according to a Bayesian network B = 〈G, θ〉. G is a directed acyclic
graph with a node for each variable in (X, C), encoding conditional independencies: a variable X is
independent of its nondescendants in G given the values pa(x) of its parents. G thus factorizes the
joint into local (conditional) distributions over subsets of variables:

P(x, c) = P(c | pa(c))
n

∏
i=1

P(xi | pa(xi)).

Local distributions P(C | pa(c)) and P(Xi | pa(xi)) are specified by parameters θ(C,pa(c)) and
θ(Xi ,pa(xi)), with θ = {θ(C,pa(c)), θ(X1,pa(x1)), . . . , θ(Xn ,pa(xn))}. It is common to assume each local
distribution has a parametric form, such as the multinomial, for discrete variables, and the Gaussian
for real-valued variables.

Learning structure

We learn B from a data set D = {(x1, c1), . . . , (xN , cN)} of N observations of X and C. There are two
main approaches to learning the structure G from D: (a) testing for conditional independence among
triplets of sets of variables and (b) searching a space of possible structures in order to optimize a
network quality score. Under assumptions such as a limited number of parents per variable, approach
(a) can produce the correct network in polynomial time (Cheng et al., 2002; Tsamardinos et al., 2003).
On the other hand, finding the optimal structure–even with at most two parents per variable–is
NP-hard (Chickering et al., 2004). Thus, heuristic search algorithms, such as greedy hill-climbing, are
commonly used (see e.g., Koller and Friedman, 2009). Ways to reduce model complexity, in order to
avoid overfitting the training data D, include searching in restricted structure spaces and penalizing
dense structures with appropriate scores.

Common scores in structure learning are the penalized log-likelihood scores, such as the Akaike
information criterion (AIC) (Akaike, 1974) and Bayesian information criterion (BIC) (Schwarz, 1978).
They measure the model’s fitting of the empirical distribution P̂(c, x) adding a penalty term that is
a function of structure complexity. They are decomposable with respect to G, allowing for efficient
search algorithms. Yet, with limited N and a large n, discriminative scores based on P(c | x), such
as conditional log-likelihood and classification accuracy, are more suitable to the classification task
(Friedman et al., 1997). These, however, are not decomposable according to G. While one can add a
complexity penalty to discriminative scores (e.g., Grossman and Domingos, 2004), they are instead
often cross-validated to induce preference towards structures that generalize better, making their
computation even more time demanding.

For Bayesian network classifiers, a common (see Bielza and Larrañaga, 2014) structure space is
that of augmented naive Bayes (Friedman et al., 1997) models (see Figure 1), factorizing P(X, C) as

P(X, C) = P(C)
n

∏
i=1

P(Xi | Pa(Xi)), (1)

with C ∈ Pa(Xi) for all Xi and Pa(C) = ∅. Models of different complexity arise by extending or
shrinking the parent sets Pa(Xi), ranging from the NB (Minsky, 1961) with Pa(Xi) = {C} for all Xi,
to those with a limited-size Pa(Xi) (Friedman et al., 1997; Sahami, 1996), to those with unbounded
Pa(Xi) (Pernkopf and O’Leary, 2003). While the NB can only represent linearly separable classes
(Jaeger, 2003), more complex models are more expressive (Varando et al., 2015). Simpler models, with
sparser Pa(Xi), may perform better with less training data, due to their lower variance, yet worse
with more data as the bias due to wrong independence assumptions will tend to dominate the error.

The algorithms that produce the above structures are generally instances of greedy hill-climbing
(Keogh and Pazzani, 2002; Sahami, 1996), with arc inclusion and removal as their search operators.
Some (e.g., Pazzani, 1996) add node inclusion or removal, thus embedding feature selection (Guyon
and Elisseeff, 2003) within structure learning. Alternatives include the adaptation (Friedman et al.,

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 457

1997) of the Chow-Liu (Chow and Liu, 1968) algorithm to find the optimal one-dependence estimator
(ODE) with respect to decomposable penalized log-likelihood scores in time quadratic in n. Some
structures, such as NB or AODE, are fixed and thus require no search.

Learning parameters

Given G, learning θ in order to best approximate the underlying P(C, X) is straightforward. For
discrete variables Xi and Pa(Xi), Bayesian estimation can be obtained in closed form by assuming a
Dirichlet prior over θ. With all Dirichlet hyper-parameters equal to α,

θijk =
Nijk + α

N·j· + riα
, (2)

where Nijk is the number of instances in D such that Xi = k and pa(xi) = j, corresponding to the j-th
possible instantiation of pa(xi), N·j· is the number of instances in which pa(xi) = j, while ri is the
cardinality of Xi. α = 0 in Equation 2 yields the maximum likelihood estimate of θijk. With incomplete
data, the parameters of local distributions are no longer independent and we cannot separately
maximize the likelihood for each Xi as in Equation 2. Optimizing the likelihood requires a time-
consuming algorithm like expectation maximization (Dempster et al., 1977) which only guarantees
convergence to a local optimum.

While the NB can separate any two linearly separable classes given the appropriate θ, learning by
approximating P(C, X) cannot recover the optimal θ in some cases (Jaeger, 2003). Several methods
(Hall, 2007; Zaidi et al., 2013, 2017) learn a weight wi ∈ [0, 1] for each feature and then update θ as

θ
weighted
ijk =

(θijk)
wi

∑ri
k=1(θijk)wi

.

A wi < 1 reduces the effect of Xi on the class posterior, with wi = 0 omitting Xi from the model,
making weighting more general than feature selection. The weights can be found by maximizing a
discriminative score (Zaidi et al., 2013) or computing the usefulness of a feature in a decision tree (Hall,
2007). Mainly applied to naive Bayes models, a generalization for augmented naive Bayes classifiers
has been recently developed (Zaidi et al., 2017).

Another parameter estimation method for the naive Bayes is by means of Bayesian model averaging
over the 2n possible naive Bayes structures with up to n features (Dash and Cooper, 2002). It is
computed in time linear in n and provides the posterior probability of an arc from C to Xi.

Inference

Computing P(c | x) for a fully observed x means multiplying the corresponding θ. With an incomplete
x, however, exact inference requires summing over parameters of the local distributions and is NP-hard
in the general case (Cooper, 1990), yet can be tractable with limited-complexity structures. The AODE
ensemble computes P(c | x) as the average of the Pi(c | x) of the n base models. A special case is the
lazy elimination (Zheng and Webb, 2006) heuristic which omits xi from Equation 1 if P(xi | xj) = 1 for
some xj.

Functionalities

The package has four groups of functionalities:

1. Learning network structure and parameters
2. Analyzing the model
3. Evaluating the model
4. Predicting with the model

Learning is split into two separate steps, the first step is structure learning and the second, optional,
step is parameter learning. The obtained models can be evaluated, used for prediction, or analyzed.
The following provides a brief overview of this workflow. For details on some of the underlying
methods please see the “methods” vignette.

Structures

The learning algorithms produce the following network structures:

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 458

• Naive Bayes (NB) (Figure 1a) (Minsky, 1961)
• One-dependence estimators (ODE)

– Tree-augmented naive Bayes (TAN) (Figure 1b) (Friedman et al., 1997)
– Forest-augmented naive Bayes (FAN) (Figure 1c)

• k-dependence Bayesian classifier (k-DB) (Sahami, 1996; Pernkopf and Bilmes, 2010)
• Semi-naive Bayes (SNB)(Figure 1d) (Pazzani, 1996)
• Averaged one-dependence estimators (AODE) (Webb et al., 2005)

Figure 1 shows some of these structures and their factorizations of P(c, x). We use k-DB in the
sense meant by Pernkopf and Bilmes (2010) rather than that by Sahami (1996), as we impose no
minimum on the number of augmenting arcs. SNB is the only structure whose complexity is not a
priori bounded: the feature subgraph might be complete in the extreme case.

(a) p(c, x) = p(c)p(x1|c)p(x2|c)p(x3|c)p(x4|c)
p(x5|c)p(x6|c)

(b) p(c, x) = p(c)p(x1|c, x2)p(x2|c, x3)p(x3|c, x4)p(x4|c)
p(x5|c, x4)p(x6|c, x5)

(c) p(c, x) = p(c)p(x1|c, x2)p(x2|c)p(x3|c)p(x4|c)
p(x5|c, x4)p(x6|c, x5)

(d) p(c, x) = p(c)p(x1|c, x2)p(x2|c)p(x4|c)
p(x5|c, x4)p(x6|c, x4, x5)

Figure 1: Augmented naive Bayes models produced by the bnclassify package. (a) NB; (b) TAN
(c) FAN (d) SNB. k-DB and AODE not shown. The NB assumes that the features are independent
given the class. ODE allows each predictor to depend on at most one other predictor: the TAN is
a special case with exactly n − 1 augmenting arcs (i.e., inter-feature arcs) while a FAN may have
less than n− 1. The k-DB allows for up to k parent features per feature Xi, with NB and ODE as its
special cases with k = 0 and k = 1, respectively. The SNB does not restrict the number of parents but
requires that connected feature subgraphs be complete (connected, after removing C, subgraphs in (d):
{X1, X2}, and {X4, X5, X6}), also allowing the removal of features (X3 omitted in (d)). The AODE is
not a single structure but an ensemble of n ODE models in which one feature is the parent of all others
(a super-parent).

Algorithms

Each structure learning algorithm is implemented by a single R function. Table 1 lists these algorithms
along with the corresponding structures that they produce, the scores they can be combined with, and
their R functions. Below we provide their abbreviations, references, brief comments, and illustrate
function calls.

Fixed structure

We implement two algorithms:

• NB
• AODE

The NB and AODE structures are fixed given the number of variables, and thus no search is
required to estimate them from data. For example, we can get a NB structure with

n <- nb('class', dataset = car)

where class is the name of the class variable C and car the dataset containing observations of C and
X.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 459

Optimal ODEs with decomposable scores

We implement one algorithm:

• Chow-Liu for ODEs (CL-ODE; Friedman et al. (1997))

Maximizing log-likelihood will always produce a TAN while maximizing penalized log-likelihood
may produce a FAN since including some arcs can degrade such a score. With incomplete data our
implementation does not guarantee the optimal ODE as that would require computing maximum
likelihood parameters. The arguments of the tan_cl() function are the network score to use and,
optionally, the root for features’ subgraph:

n <- tan_cl('class', car, score = 'AIC', root = 'buying')

Greedy hill-climbing with global scores

The bnclassify package implements five algorithms:

• Hill-climbing tree augmented naive Bayes (HC-TAN) (Keogh and Pazzani, 2002)
• Hill-climbing super-parent tree augmented naive Bayes (HC-SP-TAN) (Keogh and Pazzani,

2002)
• Backward sequential elimination and joining (BSEJ) (Pazzani, 1996)
• Forward sequential selection and joining (FSSJ) (Pazzani, 1996)
• Hill-climbing k-dependence Bayesian classifier (k-DB)

These algorithms use the cross-validated estimate of predictive accuracy as a score. Only the
FSSJ and BSEJ perform feature selection. The arguments of the corresponding functions include the
number of cross-validation folds, k, and the minimal absolute score improvement, epsilon, required
for continuing the search:

fssj <- fssj('class', car, k = 5, epsilon = 0)

Structure Search algorithm Score Feature selection Function

NB - - - nb
TAN/FAN CL-ODE log-lik, AIC, BIC - tan_cl
TAN TAN-HC accuracy - tan_hc
TAN TAN-HCSP accuracy - tan_hcsp
SNB FSSJ accuracy forward fssj
SNB BSEJ accuracy backward bsej
AODE - - - aode
kDB kDB accuracy - kdb

Table 1: Implemented structure learning algorithms.

Parameters

The bnclassify package only handles discrete features. With fully observed data, it estimates the
parameters with maximum likelihood or Bayesian estimation, according to Equation 2, with a single
α for all local distributions. With incomplete data it uses available case analysis and substitutes N·j·
in Equation 2 with Nij· = ∑ri

k=1 Nijk, i.e., with the count of instances in which Pa(Xi) = j and Xi is
observed.

We implement two methods for weighted naive Bayes parameter estimation:

• Weighting attributes to alleviate naive Bayes’ independence assumption (WANBIA) (Zaidi et al.,
2013)

• Attribute-weighted naive Bayes (AWNB) (Hall, 2007)

We implement one method for estimation by means of Bayesian model averaging over all NB
structures with up to n features:

• Model averaged naive Bayes (MANB) (Dash and Cooper, 2002)

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 460

It makes little sense to apply WANBIA, MANB, and AWNB to structures other than NB. WANBIA,
for example, learns the weights by optimizing the conditional log-likelihood of the NB. Parameter
learning is done with the lp() function. For example,

a <- lp(n, smooth = 1, manb_prior = 0.5)

computes Bayesian parameter estimates with α = 1 (the smooth argument) for all local distributions,
and updates them with the MANB estimation obtained with a 0.5 prior probability for each class-to-
feature arc.

Utilities

Single-structure-learning functions, as opposed to those that learn an ensemble of structures, return an
S3 object of class "bnc_dag". The following functions can be invoked on such objects:

• Plot the network: plot()
• Query model type: is_tan(), is_ode(), is_nb(), is_aode(), . . .
• Query model properties: narcs(), families(), features(), . . .
• Convert to a gRain object: as_grain()

Ensembles are of type "bnc_aode" and only print() and model type queries can be applied to
such objects. Fitting the parameters (by calling lp()) of a "bnc_dag" produces a "bnc_bn" object. In
addition to all "bnc_dag" functions, the following are meaningful:

• Predict class labels and class posterior probability: predict()
• Predict joint distribution: compute_joint()
• Network scores: AIC(),BIC(),logLik(),clogLik()
• Cross-validated accuracy: cv()
• Query model properties: nparams()
• Parameter weights: manb_arc_posterior(), weights()

The above functions for "bnc_bn" can also be applied to an ensemble with fitted parameters.

Documentation

This vignette provides an overview of the package and background on the implemented methods.
Calling ?bnclassify gives a more concise overview of the functionalities, with pointers to relevant
functions and their documentation. The “usage” vignette presents more detailed usage examples
and shows how to combine the functions. The “methods” vignette provides details on the under-
lying methods and documents implementation specifics, especially where they differ from or are
undocumented in the original paper.

Usage example

The available functionalities can be split into four groups:

1. Learning network structure and parameters
2. Analyzing the model
3. Evaluating the model
4. Predicting with the model

We illustrate these functionalities with the synthetic car data set with six features. We begin with
a simple example for each functionality group and then elaborate on the options in the following
sections. We first load the package and the dataset:

library(bnclassify)
data(car)

Then we learn a naive Bayes structure and its parameters:

nb <- nb('class', car)
nb <- lp(nb, car, smooth = 0.01)

Then we get the number of arcs in the network:

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=gRain

CONTRIBUTED RESEARCH ARTICLES 461

narcs(nb)

[1] 6

Then we get the 10-fold cross-validation estimate of accuracy:

cv(nb, car, k = 10)

[1] 0.8628258

Finally, we classify the entire data set:

p <- predict(nb, car)
head(p)

[1] unacc unacc unacc unacc unacc unacc
Levels: unacc acc good vgood

Learning

The functions for structure learning, shown in Table 1, correspond to the different algorithms. They
all receive the name of the class variable and the data set as their first two arguments, which are
then followed by optional arguments. The following runs the CL-ODE algorithm with the AIC score,
followed by the FSSJ algorithm to learn another model:

ode_cl_aic <- tan_cl('class', car, score = 'aic')
set.seed(3)
fssj <- fssj('class', car, k = 5, epsilon = 0)

The bnc() function is a shorthand for learning structure and parameters in a single step,

ode_cl_aic <- bnc('tan_cl', 'class', car, smooth = 1, dag_args = list(score = 'aic'))

where the first argument is the name of the structure learning function while and optional arguments
go in dag_args.

Analyzing

Printing the model, such as the above ode_cl_aic object, provides basic information about it.

ode_cl_aic

Bayesian network classifier

class variable: class
num. features: 6
num. arcs: 9
free parameters: 131
learning algorithm: tan_cl

While plotting the network is especially useful for small networks, printing the structure in the
deal (Bottcher and Dethlefsen, 2013) and bnlearn format may be more useful for larger ones:

ms <- modelstring(ode_cl_aic)
strwrap(ms, width = 60)

[1] "[class] [buying|class] [doors|class] [persons|class]"
[2] "[maint|buying:class] [safety|persons:class]"
[3] "[lug_boot|safety:class]"

We can query the type of structure–params() lets us access the conditional probability tables
(CPTs), while features() lists the features:

is_ode(ode_cl_aic)

[1] TRUE

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=deal

CONTRIBUTED RESEARCH ARTICLES 462

params(nb)$buying

class
buying unacc acc good vgood
low 0.2132243562 0.2317727320 0.6664252607 0.5997847478
med 0.2214885458 0.2994740131 0.3332850521 0.3999077491
high 0.2677680077 0.2812467451 0.0001448436 0.0001537515
vhigh 0.2975190903 0.1875065097 0.0001448436 0.0001537515

length(features(fssj))

[1] 5

For example, fssj() has selected five out of six features.

The manb_arc_posterior() function provides the MANB posterior probabilities for arcs from the
class to each of the features:

manb <- lp(nb, car, smooth = 0.01, manb_prior = 0.5)
round(manb_arc_posterior(manb))

buying maint doors persons lug_boot safety
1 1 0 1 1 1

With the posterior probability of 0% for the arc from class to doors, and 100% for all others, MANB
renders doors independent from the class while leaving the other features’ parameters unaltered. We
can see this by printing out the CPTs:

params(manb)$doors

class
doors unacc acc good vgood
2 0.25 0.25 0.25 0.25
3 0.25 0.25 0.25 0.25
4 0.25 0.25 0.25 0.25
5more 0.25 0.25 0.25 0.25

all.equal(params(manb)$buying, params(nb)$buying)

[1] TRUE

For more functions for querying a structure with parameters ("bnc_bn") see ?inspect_bnc_bn. For
a structure without parameters ("bnc_dag"), see ?inspect_bnc_dag.

Evaluating

Several scores can be computed:

logLik(ode_cl_aic, car)

'log Lik.' -13307.59 (df=131)

AIC(ode_cl_aic, car)

[1] -13438.59

The cv() function estimates the predictive accuracy of one or more models with a single run of
stratified cross-validation. In the following we assess the above models produced by NB and CL-ODE
algorithms:

set.seed(0)
cv(list(nb = nb, ode_cl_aic = ode_cl_aic), car, k = 5, dag = TRUE)

nb ode_cl_aic
0.8582303 0.9345913

Above, k is the desired number of folds, and dag = TRUE evaluates structure and parameter learning,
while dag = FALSE keeps the structure fixed and evaluates just the parameter learning. The output
gives 86% and 93% accuracy estimates for NB and CL-ODE, respectively. The mlr and caret packages
provide additional options for evaluating predictive performance, such as different metrics, and
bnclassify is integrated with both (see the “usage” vignette).

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 463

Predicting

As shown above, we can predict class labels with predict(). We can also get the class posterior
probabilities:

pp <- predict(nb, car, prob = TRUE)
Show class posterior distributions for the first six instances of car
head(pp)

unacc acc good vgood
[1,] 1.0000000 2.171346e-10 8.267214e-16 3.536615e-19
[2,] 0.9999937 6.306269e-06 5.203338e-12 5.706038e-19
[3,] 0.9999908 9.211090e-06 5.158884e-12 4.780777e-15
[4,] 1.0000000 3.204714e-10 1.084552e-15 1.015375e-15
[5,] 0.9999907 9.307467e-06 6.826088e-12 1.638219e-15
[6,] 0.9999864 1.359469e-05 6.767760e-12 1.372573e-11

Properties

We illustrate the algorithms’ running times, resulting structure complexity and predictive performance
on the datasets listed in Table 2. We only used complete data sets as time-consuming inference with
incomplete data makes cross-validated scores costly for medium-sized or large data sets. The structure
and parameter learning methods are listed in the legends of Figure 2, Figure 3, and Figure 4.

N n rc Dataset

1728 7 4 car
958 10 2 tic-tac-toe
435 17 2 voting
351 35 2 ionosphere
562 36 19 soybean

3196 37 2 kr-vs-kr
3190 61 3 splice

Table 2: Data sets used, from the UCI repository (Lichman, 2013). Incomplete rows have been removed.
The number of classes (i.e., distinct class labels) is rc.

Figure 2 shows that the algorithms with cross-validated scores, followed by WANBIA, are the
most time-consuming. Running time is still not prohibitive: TAN-HC ran for 139 seconds on kr-vs-kp
and 282 seconds on splice, adding 27 augmenting arcs on the former and 7 on the latter (a added arcs
mean a iterations of the search algorithm). Note that their running time is linear in the number of
cross-validation folds k; using k = 10 instead of k = 5 would have roughly doubled the time.

CL-ODE tended to produce the most complex structures (see Figure 3), with FSSJ learning complex
models on car, soybean and splice, yet simple ones, due to feature selection, on voting and tic-tac-toe.
The NB models with alternative parameters, WANBIA and MANB, have as many parameters as the
NB, because we are not counting the length-n weights vector, rather just the parameters θ of the
resulting NB (the weights simply produce an alternative parameterization of the NB).

In terms of accuracy, NB and MANB performed comparatively poorly on car, voting, tic-tac-toe,
and kr-vs-kp, possibly because of many wrong independence assumptions (see Figure 4). WANBIA
may have accounted for some of these violations on voting and kr-vs-kp, as it outperformed NB and
MANB on these datasets, showing that a simple model can perform well on them when adequately
parameterized. More complex models, such as CL-ODE and AODE, performed better on car.

Implementation

With complete data, bnclassify implements prediction for augmented naive Bayes models as well as
for ensembles of such models. It multiplies the corresponding θ in logarithmic space, applying the log-
sum-exp trick before normalizing, to reduce the chance of underflow. On instances with missing entries,
it uses the gRain package (Højsgaard, 2016, 2012) to perform exact inference, which is noticeably
slower. Network plotting is implemented by the Rgraphviz package. Some functions are implemented
in C++ with Rcpp for efficiency. The package is extensively tested, with over 200 unit and integrated
tests that give a 94% code coverage.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 464

10−2

10−1

100

101

102

car tic−tac−toe voting ionosphere soybean kr−vs−kr splice

dataset

tim
e

(s
ec

on
ds

)

names

NB

NB−MANB

NB−WANBIA

CL−ODE

CL−ODE−AIC

AODE

TAN−HC

FSSJ

BSEJ

Figure 2: Running times of the algorithms on a Ubuntu 16.04 machine with 8 GB of RAM and a 2.5
GHz processor, on a log10 scale. We used the default options for all algorithms and k = 5 and epsilon
= 0 for the wrappers. CL-ODE-AIC is CL-ODE with the AIC rather than the log-likelihood score. The
lines have been horizontally and vertically jittered to avoid overlap where identical.

101.5

102

102.5

103

103.5

104

car tic−tac−toe voting ionosphere soybean kr−vs−kr splice

dataset

nu
m

be
r

of
 p

ar
am

et
er

s

names

NB

NB−MANB

NB−WANBIA

CL−ODE

CL−ODE−AIC

TAN−HC

FSSJ

BSEJ

Figure 3: The number of Bayesian network parameters θ of the resulting structures, on a log10 scale.
The lines have been horizontally and vertically jittered to avoid overlap where identical.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 465

0.7

0.8

0.9

car tic−tac−toe voting ionosphere soybean kr−vs−kr splice

dataset

ac
cu

ra
cy

 (
10

−
fo

ld
 c

ro
ss

−
va

lid
at

io
n) names

NB

NB−MANB

NB−WANBIA

CL−ODE

CL−ODE−AIC

AODE

TAN−HC

FSSJ

BSEJ

Figure 4: Accuracy of the algorithms estimated with stratified 10-fold cross-validation. The lines have
been horizontally and vertically jittered to avoid overlap where identical.

Related software

NB, TAN, and AODE are available in general-purpose tools such as bnlearn and Weka. WANBIA
(https://sourceforge.net/projects/rawnaivebayes) and MANB (http://www.dbmi.pitt.edu/content/
manb) are only available in stand-alone software, published along with the original publications. We
are not aware of available implementations of the remaining methods implemented in bnclassify.

The bnlearn package implements algorithms for learning general purpose Bayesian networks.
Among them, algorithms for Markov blanket learning by testing for independencies, such as IAMB
(Tsamardinos and Aliferis, 2003) and GS (Margaritis and Thrun, 2000), can be very useful for classifi-
cation as they can look for the Markov blanket of the class variable. The bnlearn package combines
the search algorithms, such as greedy hill-climbing and tabu search (Glover and Laguna, 2013), only
with generative scores such as penalized log-likelihood. Among classification models, it implements
the discrete NB and CL-ODE. It does not handle incomplete data and provides cross-validation and
prediction only for the NB and TAN models, but not for the unrestricted Bayesian networks.

Version 3.8 of Weka (Hall et al., 2009; Bouckaert, 2004) provides variants of the AODE (Webb
et al., 2005) as well as the CL-ODE and NB. It implements five additional search algorithms, such as
K2 (Cooper and Herskovits, 1992), tabu search, and simulated annealing (Kirkpatrick et al., 1983),
combining them only with generative scores. Except for the NB, Weka only handles discrete data and
uses simple imputation (replacing with the mode or mean) to handle incomplete data. It provides
two constraint-based algorithms, but performs conditional independence tests in an ad-hoc way
(Bouckaert, 2004). Weka provides Bayesian model averaging for parameter estimation (Bouckaert,
1995).

The Java library jBNC (http://jbnc.sourceforge.net/, version 1.2.2) learns ODE classifiers from
Sacha et al. (2002) by optimizing penalized log-likelihood or the cross-validated estimate of accuracy.
The CGBayes (version 7.14.14) package (McGeachie et al., 2014) for MATLAB implements conditional
Gaussian networks (Lauritzen and Wermuth, 1989). It provides four structure learning algorithms,
including a variant of K2 and a greedy hill-climber, all optimizing the marginal likelihood of the data
given the network.

Conclusion

The bnclassify package implements several state-of-the art algorithms for learning Bayesian network
classifiers. It also provides features such as model analysis and evaluation. It is reasonably efficient
and can handle large data sets. We hope that bnclassify will be useful to practitioners as well as
researchers wishing to compare their methods to existing ones.

Future work includes handling real-valued feature via conditional Gaussian models. Straightfor-
ward extensions include adding flexibility to the hill-climbing algorithm, such as restarts to avoid
local minima.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://sourceforge.net/projects/rawnaivebayes
http://www.dbmi.pitt.edu/content/manb
http://www.dbmi.pitt.edu/content/manb
http://jbnc.sourceforge.net/

CONTRIBUTED RESEARCH ARTICLES 466

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under Grant Agreement No. 785907 (HBP SGA2), the Spanish Ministry of Economy and
Competitiveness through the Cajal Blue Brain (C080020-09; the Spanish partner of the EPFL Blue
Brain initiative) and TIN2016-79684-P projects, from the Regional Government of Madrid through
the S2013/ICE-2845-CASI-CAM-CM project, and from Fundación BBVA grants to Scientific Research
Teams in Big Data 2016.

Bibliography

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control,
19(6):716–723, 1974. [p456]

C. Bielza and P. Larrañaga. Discrete Bayesian network classifiers: A survey. ACM Computing Surveys,
47(1), 2014. [p455, 456]

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, Z. Jones, G. Casalicchio, and M. Gallo. mlr:
Machine Learning in R, 2017. URL https://CRAN.R-project.org/package=mlr. R package version
2.11. [p455]

S. G. Bottcher and C. Dethlefsen. deal: Learning Bayesian Networks with Mixed Variables, 2013. URL
https://CRAN.R-project.org/package=deal. R package version 1.2-37. [p461]

R. Bouckaert. Bayesian network classifiers in Weka. Technical Report 14/2004, Department of
Computer Science, University of Waikato, 2004. [p465]

R. R. Bouckaert. Bayesian Belief Networks: From Construction to Inference. PhD thesis, Universiteit
Utrecht, 1995. [p465]

A. M. Carvalho, T. Roos, A. L. Oliveira, and P. Myllymäki. Discriminative learning of Bayesian
networks via factorized conditional log-likelihood. Journal of Machine Learning Research, 12:2181–
2210, 2011. [p455]

J. Cheng, R. Greiner, J. Kelly, D. A. Bell, and W. Liu. Learning Bayesian networks from data: An
information-theory based approach. Artificial Intelligence, 137:43–90, 2002. [p456]

D. M. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian networks is
NP-hard. Journal of Machine Learning Research, 5:1287–1330, 2004. [p456]

C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE
Transactions on Information Theory, 14(3):462–467, 1968. [p457]

G. F. Cooper. The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks.
Artificial Intelligence, 42(2-3):393–405, 1990. [p457]

G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from
data. Machine Learning, 9(4):309–347, 1992. [p465]

D. Dash and G. F. Cooper. Exact model averaging with naive Bayesian classifiers. In 19th International
Conference on Machine Learning (ICML-2002), pages 91–98, 2002. [p455, 457, 459]

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38, 1977. [p457]

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning, 29:
131–163, 1997. [p455, 456, 458, 459]

F. Glover and M. Laguna. Tabu Search. In P. M. Pardalos, D.-Z. Du, and R. L. Graham, editors, Handbook
of Combinatorial Optimization, pages 3261–3362. Springer-Verlag, New York, NY, 2013. [p465]

D. Grossman and P. Domingos. Learning Bayesian Network Classifiers by Maximizing Conditional
Likelihood. In Proceedings of the Twenty-First International Conference on Machine Learning, pages
361–368, 2004. [p455, 456]

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning
Research, 3:1157–1182, 2003. [p456]

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=mlr
https://CRAN.R-project.org/package=deal

CONTRIBUTED RESEARCH ARTICLES 467

M. Hall. A decision tree-based attribute weighting filter for naive Bayes. Knowledge-Based Systems, 20
(2):120–126, 2007. [p457, 459]

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA data mining
software: An update. SIGKDD Explorations Newsletter, 11(1):10–18, 2009. [p465]

D. J. Hand and K. Yu. Idiot’s Bayes - Not so Stupid after All? International Statistical Review, 69(3):
385–398, 2001. [p455]

K. D. Hansen, J. Gentry, L. Long, R. Gentleman, S. Falcon, F. Hahne, and D. Sarkar. Rgraphviz: Provides
Plotting Capabilities for R Graph Objects, 2017. URL https://doi.org/10.18129/B9.bioc.Rgraphviz.
R package version 2.20.0. [p455]

S. Højsgaard. Graphical independence networks with the gRain package for R. Journal of Statistical
Software, 46(10):1–26, 2012. [p463]

S. Højsgaard. gRain: Graphical Independence Networks, 2016. URL https://CRAN.R-project.org/
package=gRain. R package version 1.3-0. [p463]

M. Jaeger. Probabilistic classifiers and the concept they recognize. In Proceedings of the 20th International
Conference on Machine Learning (ICML-2003), pages 266–273, 2003. [p456, 457]

E. J. Keogh and M. J. Pazzani. Learning the structure of augmented Bayesian classifiers. International
Journal on Artificial Intelligence Tools, 11(4):587–601, 2002. [p455, 456, 459]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):
671–680, 1983. [p465]

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT press,
Cambridge, MA, USA, 2009. [p455, 456]

M. Kuhn. Building predictive models in R using the caret package. Journal of Statistical Software, 28(5):
1–26, 2008. [p455]

M. Kuhn, J. Wing, S. Weston, A. Williams, C. Keefer, A. Engelhardt, T. Cooper, Z. Mayer, B. Kenkel, the
R Core Team, M. Benesty, R. Lescarbeau, A. Ziem, L. Scrucca, Y. Tang, C. Candan, and T. Hunt. caret:
Classification and Regression Training, 2017. URL https://CRAN.R-project.org/package=caret. R
package version 6.0-78. [p455]

S. L. Lauritzen and N. Wermuth. Graphical models for associations between variables, some of which
are qualitative and some quantitative. The Annals of Statistics, 17(1):31–57, 1989. [p465]

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml. [p463]

D. Margaritis and S. Thrun. Bayesian network induction via local neighborhoods. In Advances in
Neural Information Processing Systems 12, pages 505–511. MIT Press, 2000. [p465]

M. J. McGeachie, H.-H. Chang, and S. T. Weiss. CGBayesNets: Conditional Gaussian Bayesian network
learning and inference with mixed discrete and continuous data. PLoS Computational Biology, 10(6):
e1003676, 2014. [p465]

M. Minsky. Steps toward artificial intelligence. Transactions on Institute of Radio Engineers, 49:8–30, 1961.
[p455, 456, 458]

M. Pazzani. Constructive induction of Cartesian product attributes. In Proceedings of the Information,
Statistics and Induction in Science Conference, pages 66–77, 1996. [p455, 456, 458, 459]

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco, CA, USA, 1988.
[p455]

F. Pernkopf and J. A. Bilmes. Efficient heuristics for discriminative structure learning of Bayesian
network classifiers. Journal of Machine Learning Research, 11:2323–2360, 2010. [p455, 458]

F. Pernkopf and P. O’Leary. Floating search algorithm for structure learning of Bayesian network
classifiers. Pattern Recognition Letters, 24(15):2839–2848, 2003. [p456]

J. P. Sacha, L. S. Goodenday, and K. J. Cios. Bayesian learning for cardiac spect image interpretation.
Artificial Intelligence in Medicine, 26(1):109–143, 2002. [p465]

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://doi.org/10.18129/B9.bioc.Rgraphviz
https://CRAN.R-project.org/package=gRain
https://CRAN.R-project.org/package=gRain
https://CRAN.R-project.org/package=caret
http://archive.ics.uci.edu/ml

CONTRIBUTED RESEARCH ARTICLES 468

M. Sahami. Learning limited dependence Bayesian classifiers. In Proceedings of the 2nd International
Conference on Knowledge Discovery and Data Mining (KDD-1996), volume 96, pages 335–338, 1996.
[p456, 458]

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978. [p456]

M. Scutari. Learning Bayesian networks with the bnlearn R package. Journal of Statistical Software, 35
(3):1–22, 2010. [p455]

M. Scutari and R. Ness. Bnlearn: Bayesian Network Structure Learning, Parameter Learning and Inference,
2018. URL https://CRAN.R-project.org/package=bnlearn. R package version 4.3. [p455]

I. Tsamardinos and C. F. Aliferis. Towards principled feature selection: Relevancy, filters and wrappers.
In Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics. Morgan Kaufmann
Publishers: Key West, FL, USA, 2003. [p465]

I. Tsamardinos, C. F. Aliferis, and A. Statnikov. Algorithms for large scale Markov blanket discovery.
In Proceedings of the 16th International Florida Artificial Intelligence Research Society Conference (FLAIRS-
2003), pages 376–381. AAAI Press, 2003. [p456]

G. Varando, C. Bielza, and P. Larrañaga. Decision boundary for discrete Bayesian network classifiers.
Journal of Machine Learning Research, 16:2725–2749, 2015. [p456]

G. I. Webb, J. R. Boughton, and Z. Wang. Not so Naive Bayes: Aggregating One-Dependence Estimators.
Machine Learning, 58(1):5–24, 2005. [p455, 458, 465]

N. A. Zaidi, J. Cerquides, M. J. Carman, and G. I. Webb. Alleviating naive Bayes attribute independence
assumption by attribute weighting. Journal of Machine Learning Research, 14:1947–1988, 2013. [p455,
457, 459]

N. A. Zaidi, G. I. Webb, M. J. Carman, F. Petitjean, W. Buntine, M. Hynes, and H. De Sterck. Efficient
Parameter Learning of Bayesian Network Classifiers. Machine Learning, 106(9):1289–1329, 2017.
[p455, 457]

F. Zheng and G. I. Webb. Efficient lazy elimination for averaged one-dependence estimators. In
Proceedings of the 23rd International Conference on Machine Learning, volume 148, pages 1113–1120.
ACM, 2006. [p455, 457]

Bojan Mihaljević
Computational Intelligence Group, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid
Boadilla del Monte, 28660, Spain
ORCiD: 0000-0002-1656-6135
bmihaljevic@fi.upm.es

Concha Bielza
Computational Intelligence Group, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid
Boadilla del Monte, 28660, Spain
ORCiD: 0000-0001-7109-2668
mcbielza@fi.upm.es

Pedro Larrañaga
Computational Intelligence Group, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid
Boadilla del Monte, 28660, Spain
ORCiD: 0000-0003-0652-9872
pedro.larranaga@fi.upm.es

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=bnlearn
mailto:bmihaljevic@fi.upm.es
mailto:mcbielza@fi.upm.es
mailto:pedro.larranaga@fi.upm.es

