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clustMixType: User-Friendly Clustering
of Mixed-Type Data in R
by Gero Szepannek

Abstract Clustering algorithms are designed to identify groups in data where the traditional emphasis
has been on numeric data. In consequence, many existing algorithms are devoted to this kind of
data even though a combination of numeric and categorical data is more common in most business
applications. Recently, new algorithms for clustering mixed-type data have been proposed based on
Huang’s k-prototypes algorithm. This paper describes the R package clustMixType which provides
an implementation of k-prototypes in R.

Introduction

Clustering algorithms are designed to identify groups in data where the traditional emphasis has been
on numeric data. In consequence, many existing algorithms are devoted to this kind of data even
though a combination of numeric and categorical data is more common in most business applications.
For an example in the context of credit scoring, see, e.g. Szepannek (2017). The standard way to
tackle mixed-type data clustering problems in R is to use either (1) Gower distance (Gower, 1971)
via the gower package (van der Loo, 2017) or the daisy(method = "gower") in the cluster package
(Maechler et al., 2018); or (2) Hierarchical clustering through hclust() or the agnes() function in
cluster. Recent innovations include the package CluMix (Hummel et al., 2017), which combines both
Gower distance and hierarchical clustering with some functions for visualization. As this approach
requires computation of distances between any two observations, it is not feasible for large data sets.
The package flexclust (Leisch, 2006) offers a flexible framework for k-centroids clustering through the
function kcca() which allows for arbitrary distance functions. Among the currently pre-implemented
kccaFamilies, there is no distance measure for mixed-type data. Alternative approaches based on
expectation-maximization are given by the function flexmixedruns() in the fpc package (Hennig,
2018) and the package clustMD (McParland, 2017). Both require the variables in the data set to be
ordered according to their data type, and that categorical variables to be preprocessed into integers.
The clustMD algorithm (McParland and Gormley, 2016) also allows ordinal variables but is quite
computationally intensive. The kamila package (Foss and Markatou, 2018) implements the KAMILA
clustering algorithm which uses a kernel density estimation technique in the continuous domain, a
multinomial model in the categorical domain, and the Modha-Spangler weighting of variables in
which categorical variables have to be transformed into indicator variables in advance (Modha and
Spangler, 2003).

Recently, more algorithms for clustering mixed-type data have been proposed in the literature
(Amir and Dey, 2007; Dutta et al., 2012; Foss et al., 2016; He et al., 2005; HajKacem et al., 2016; Ji
et al., 2012, 2013, 2015; Lim et al., 2012; Liu et al., 2017; Pham et al., 2011). Many of these are based
on the idea of Huang’s k-prototypes algorithm (Huang, 1998). The rest of this paper describes the
R package clustMixType (Szepannek, 2018), which provides up to the author’s knowledge the first
implementation of this algorithm in R. The k-modes algorithm (Huang, 1997a) has been implemented
in the package klaR (Weihs et al., 2005; Roever et al., 2018) for purely categorical data, but not for the
mixed-data case. The rest of the paper is organized as follows: A brief description of the algorithm is
followed by the functions in the clustMixType package. Some extensions to the original algorithm are
discussed and as well as a worked example application.

k-prototypes clustering

The k-prototypes algorithm belongs to the family of partitional cluster algorithms. Its objective
function is given by:

E =
n

∑
i=1

k

∑
j=1

uijd
(

xi, µj

)
, (1)

where xi, i = 1, . . . , n are the observations in the sample, µj, j = 1, . . . , k are the cluster prototype
observations, and uij are the elements of the binary partition matrix Un×k satisfying ∑k

j=1 uij = 1, ∀ i.
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The distance function is given by:
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where m is an index over all variables in the data set where the first q variables are numeric and the
remaining p− q variables are categorical. Note that δ(a, b) = 0 for a = b and δ(a, b) = 1 for a 6= b,
and d() corresponds to weighted sum of Euclidean distance between two points in the metric space
and simple matching distance for categorical variables (i.e. the count of mismatches). The trade off
between both terms can be controlled by the parameter λ which has to be specified in advance as well
as the number of clusters k. For larger values of λ, the impact of the categorical variables increases.
For λ = 0, the impact of the categorical variables vanishes and only numeric variables are taken into
account, just as in traditional k-means clustering.

The algorithm iterates in a manner similar to the k-means algorithm (MacQueen, 1967) where for
the numeric variables the mean and the categorical variables the mode minimizes the total within
cluster distance. The steps of the algorithm are:

1. Initialization with random cluster prototypes.

2. For each observation do:

(a) Assign observations to its closest prototype according to d().

(b) Update cluster prototypes by cluster-specific means/modes for all variables.

3. As long as any observations have swapped their cluster assignment in 2 or the maximum
number of iterations has not been reached: repeat from 2.

k-prototypes in R

An implementation of the k-prototypes algorithm is given by the function

kproto(x, k, lambda = NULL, iter.max = 100, nstart = 1, na.rm = TRUE)

where

• x is a data frame with both numeric and factor variables. As opposed to other existing R
packages, the factor variables do not need to be preprocessed in advance and the order of the
variables does not matter.

• k is the number of clusters which has to be pre-specified. Alternatively, it can also be a vector
of observation indices or a data frame of prototypes with the same columns as x. If ever at
the initialization or during the iteration process identical prototypes do occur, the number of
clusters will be reduced accordingly.

• lambda > 0 is a real valued parameter that controls the trade off between Euclidean distance
for numeric variables and simple matching distance for factor variables for cluster assignment.
If no λ is specified the parameter is set automatically based on the data and a heuristic using
the function lambdaest(). Alternatively, a vector of length ncol(x) can be passed to lambda (cf.
Section on Extensions to the original algorithm).

• iter.max sets the maximum number of iterations, just as in kmeans(). The algorithm may stop
prior to iter.max if no observations swap clusters.

• nstart may be set to a value > 1 to run k-prototypes multiple times. Similar to k-means, the
result of k-prototypes depends on its initialization. If nstart > 1, the best solution (i.e. the one
that minimizes E) is returned.

• Generally, the algorithm can deal with missing data but as a default NAs are removed by na.rm
= TRUE.

Two additional arguments, verbose and keep.data, can control whether information on missing
values should be printed and whether the original data should be stored in the output object. The
keep.data=TRUE option is required for the default call to the summary() function, but in case of large x,
it can be set to FALSE to save memory.

The output is an object of class "kproto". For convenience, the elements are designed to be
compatible with those of class "kmeans":

• cluster is an integer vector of cluster assignments

• centers stores the prototypes in a data frame
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• size is a vector of corresponding cluster sizes

• withinss returns the sum over all within cluster distances to the prototype for each cluster

• tot.withinss is their sum over all clusters which corresponds to the objective function E

• dists returns a matrix of all observations’ distances to all prototypes in order to investigate the
crispness of the clustering

• lambda and iter store the specified arguments of the function call

• trace lists the objective function E as well as the number of swapped observations during the
iteration process

Unlike "kmeans", the "kproto" class is accompanied corresponding predict() and summary() meth-
ods. The predict.kproto() method can be used to assign clusters to new data. Like many of its
cousins, it is called by

predict(object, newdata)

The output again consists of two elements: a vector cluster of cluster assignments and a matrix dists
of all observations’ distances to all prototypes.

The investigation resulting from a cluster analysis typically consists of identifying the differences
between the clusters, or in this specific case, those of the k prototypes. For practical applications
besides the cluster sizes, it is of further interest to take into account the homogeneity of the clusters.
For numeric variables, this can be done by calling the R function summary(). For categorical variables
the representativity of the prototypes is given their frequency distribution obtained by prop.table().
The summary.kproto() method applies these methods to the variables conditional to the resulting
clusters and returns a comparative results table of the clusters for each variable.

The summary is not restricted to the training data but it can further be applied to new data by
calling summary(object,data) where data are new data that will be internally passed to the predict()
method on the object of class "kproto". If no new data is specified (default: data = NULL), the function
requires object to contain the original data (argument keep.data = TRUE). In addition, a function

clprofiles(object, x, vars = NULL)

supports the analysis of the clusters by visualization of cluster profiles based on an object of class
"kproto" and data x. Note that the latter may also have different variables compared to the original
data, such as for profiling variables that were not used for clustering. As opposed to summary.kproto(),
no new prediction is done but the cluster assignments of the "kproto" object given by object$cluster
are used. For this reason, the observations in x must be the same as in the original data. Via the vars
argument, a subset of variables can be specified either by a vector of indices or variable names. Note
that clprofiles() is not restricted to objects of class "kproto" but can also be applied to other cluster
objects as long as they are of a "kmeans"-like structure with elements cluster and size.

Extensions to the original algorithm

For unsupervised clustering problems, the user typically has to specify the impact of the specific
variables on the desired cluster solution which is controlled by the parameter λ. Generally, small
values λ ∼ 0 emphasize numeric variables and will lead to results similar to standard k-means
whereas larger values of λ lead to an increased influence of categorical variables. In Huang (1997b),
the average standard deviation σ of the numeric variables is the suggested choice for λ and in some
practical applications in the paper values of 1

3 σ ≤ λ ≤ 2
3 σ are used. The function

lambdaest(x, num.method = 1, fac.method = 1, outtype = "numeric")

provides different data based heuristics for the choice of λ: The average variance σ2 (num.method
= 1) or standard deviation σ (num.method = 2) over all numeric variables is related to the average
concentration hcat of all categorical variables. We compute hcat by averaging either hm = 1−∑c p2

mc
(fac.method = 1) or hm = 1 −maxc pmc (fac.method = 2) over all variables m where c are the
categories of the factor variables. We set λ = σt

hcat
, t ∈ {1, 2} as a user-friendly default choice to prevent

over-emphasizing either numeric or categorical variables. If kproto() is called without specifying
lambda, the parameter is automatically set using num.method = fac.method = 1. Note that this should
be considered a starting point for further analysis; the explicit choice of λ should be done carefully
based on the application context.

Originally, λ is real-valued, but in order to up- or downweight the relevance of single variables in
a specific application context, the function kproto() is extended to accept vectors as input where each
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cluster numeric categorical

1 + +
2 + -
3 - +
4 - -

Table 1: Separation of clusters in the example.

element corresponds to a variable specific weight, λm. The formula for distance computation changes
to:

d(xi, pj) =
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Note that the choice of λ only affects the assignment step for the observations but not the computation
of the prototype given a cluster of observations. By changing the outtype argument into a vector, the
function lambdaest() returns a vector of λms. In order to support a user-specific definition of λ based
on the variables’ variabilities, outtype = "variation" returns a vector of original values of variability
for all variables in terms of the quantities described above.

An issue of great practical relevance is the ability of an algorithm to deal with missing values
which can be solved by an intuitive extension of k-prototypes. During the iterations, cluster prototypes
can be updated by ignoring NAs: Both means for numeric variables as well as modes for factors can be
computed based on the available data. Similarly, distances for cluster assignment can be computed for
each observation based on the available variables only. This not only allows cluster assignment for
observations with missing values, but already takes these observations into account when the clusters
are formed. By using kproto(), this can be obtained by setting the argument na.rm = FALSE. Note
that in practice, this option should be handled with care unless the number of missing values is very
small. The representativeness of a prototype might become questionable if its means and modes do
not represent the major part of the cluster’s observations.

Finally, a modification of the original algorithm presented in Section k-prototypes clustering allows
for vector-wise computation of the iteration steps, reducing computation time. The update of the
prototypes is not done after each new cluster assignment, but once each time the whole data set has
been reassigned. The modified k-prototypes algorithm consists of the following steps:

1. Initialization with random cluster prototypes.

2. Assign all observations to its closest prototype according to d().

3. Update cluster prototypes.

4. As long as any observations have swapped their cluster assignment in 2 or the maximum
number of iterations has not been reached: repeat from 2.

Example

As an example, data x with two numeric and two categorical variables are simulated according to the
documentation in ?kproto: Using set.seed(42), four clusters j = 1, . . . , 4 are designed such that two
pairs can be separated only by their numeric variables and the other two pairs only by their categorical
variables. The numeric variables are generated as normally distributed random variables with cluster
specific means µ1 = µ2 = −µ3 = −µ4 = Φ−1(0.9) and the categorical variables have two levels (A
and B) each with a cluster specific probability p1(A) = p3(A) = 1− p2(A) = 1− p4(A) = 0.9. Table 1
summarizes the clusters. It can be seen that both numeric and categorical variables are needed in
order to identify all four clusters.

Given the knowledge that there are four clusters in the data, a straightforward call for k-prototypes
clustering of the data will be:

kpres <- kproto(x = x, k = 4)
kpres # output 1
summary(kpres) # output 2
library(wesanderson)
par(mfrow=c(2,2))
clprofiles(kpres, x, col = wes_palette("Royal1", 4, type = "continuous")) # figure 1

The resulting output is of the form:
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# Output 1:

Numeric predictors: 2
Categorical predictors: 2
Lambda: 5.52477

Number of Clusters: 4
Cluster sizes: 100 95 101 104
Within cluster error: 332.909 267.1121 279.2863 312.7261

Cluster prototypes:
x1 x2 x3 x4

92 A A 1.4283725 1.585553
54 A A -1.3067973 -1.091794
205 B B -1.4912422 -1.654389
272 B B 0.9112826 1.133724

# Output 2 (only for variable x1 and x3):

x1

cluster A B
1 0.890 0.110
2 0.905 0.095
3 0.069 0.931
4 0.144 0.856

-----------------------------------------------------------------

x3
Min. 1st Qu. Median Mean 3rd Qu. Max.

1 -0.7263 0.9314 1.4080 1.4280 2.1280 4.5110
2 -3.4200 -1.9480 -1.3170 -1.3070 -0.6157 2.2450
3 -4.2990 -2.0820 -1.4600 -1.4910 -0.7178 0.2825
4 -1.5300 0.2788 0.9296 0.9113 1.5000 3.1480

-----------------------------------------------------------------

The first two as well as the last two cluster prototypes share the same mode in the factor variables but
they can be distinguished by their location with respect to the numeric variables. For clusters 1 & 4
(as opposed to 2 & 3), it is vice versa. Note that the order of the identified clusters is not necessarily
the same as in cluster generation. Calling summary() and clprofiles() provides further information
on the homogeneity of the clusters. A color palette can be passed to represent the clusters across the
different variables for the plot; here it is taken from the package wesanderson (Ram and Wickham,
2018).

By construction, taking into account either only numeric (k-means) or only factor variables (k-
modes) will not be able to identify the underlying cluster structure without further preprocessing of
the data in this example. A performance comparison using the Rand index (Rand, 1971) as computed
by the package clusteval (Ramey, 2012) results in rand indices of 0.728 (k-means) and 0.733 (k-modes).
As already seen above, the prototypes as identified by clustMixType do represent the true clusters
quite well, as the corresponding Rand index improves to 0.870.

library(klaR)
library(clusteval)

kmres <- kmeans(x[,3:4], 4) # kmeans using numerics only
kmores <- kmodes(x[,1:2], 4) # kmodes using factors only

cluster_similarity(kpres$cluster, clusid, similarity = "rand")
cluster_similarity(kmres$cluster, clusid, similarity = "rand")
cluster_similarity(kmores$cluster, clusid, similarity = "rand")

The runtime of kproto() is linear in the number of observations (Huang, 1997b) and thus it is also
applicable to large data sets. Figure 2 (left) shows the behaviour of the runtime for 50 repeated
simulations of the example data with an increased number of variables (half of them numeric and

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=wesanderson
https://CRAN.R-project.org/package=clusteval


CONTRIBUTED RESEARCH ARTICLES 205

Figure 1: Cluster profiles for variables x1 and x3.

half of them categorical). It is possible to run kproto() for more than hundred variables which is far
beyond most practical applications where human interpretation of the resulting clusters is desired.
Note that clustMixType is written in R and currently no C++ code is used to speed up computations
which could be a subject of future work.

In order to determine the appropriate number of clusters for a data set, we can use the standard
scree test. In this case, the objective function E is given by the output’s tot.withinss element. The
kproto() function is run multiple times for varying numbers of clusters (but fixed λ) and the number
of clusters is chosen as the minimum k from whereon no strong improvements of E are possible.
In Figure 2 (right), an elbow is visible at the correct number of clusters in the sample data; recall
that we simulatd from four clusters. Note that from a practitioner’s point of view, an appropriate
solution requires clusters that are well represented by their prototypes. For this reason, the choice
of the number of clusters should further take into account a homogeneity analysis of the clusters as
returned by summary(), clprofiles() or the withinss element of the "kproto" output.

Es <- numeric(10)
for(i in 1:10){

kpres <- kproto(x, k = i, nstart = 5)
Es[i] <- kpres$tot.withinss

}
plot(1:10, Es, type = "b", ylab = "Objective Function", xlab = "# Clusters",

main = "Scree Plot") # figure 2

Figure 2: Runtime for increasing number of variables (left) and screeplot (right).
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Summary

The clustMixType package provides a user-friendly way for clustering mixed-type data in R given by
the k-prototypes algorithm. As opposed to other packages, no preprocessing of the data is necessary,
and in contrast to standard hierarchical approaches, it is not restricted to moderate data sizes. Its
application requires the specification of two hyperparameters: the number of clusters k as well as a
second parameter λ that controls the interplay of the different data types for distance computation. As
an extension to the original algorithm, the presented implementation allows for a variable-specific
choice of λ and can deal with missing data. Furthermore, with regard to business purposes, functions
for profiling a cluster solution are presented.

This paper is based on clustMixType version 0.1-36. Future work may focus on the development
of further guidance regarding the choice of the parameter λ, such as using stability considerations
(cf. Hennig, 2007), or the investigation of possible improvements in computation time by integrating
Rcpp (Eddelbuettel et al., 2018; Eddelbuettel and François, 2011).
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