
CONTRIBUTED RESEARCH ARTICLE 1

mmpf: Monte-Carlo Methods for
Prediction Functions
by Zachary M. Jones

Abstract Machine learning methods can often learn high-dimensional functions which generalize well
but are not human interpretable. mmpf marginalizes prediction functions using Monte-Carlo methods,
allowing users to investigate the behavior of these learned functions as on a lower dimensional subset
of input features: partial dependence and variations thereof. This makes machine learning methods
more useful in situations where accurate prediction is not the only goal, such as in the social sciences
where linear models are commonly used because of their interpretability.

Many methods for estimating prediction functions produce estimated functions which are not
directly human-interpretable because of their complexity: they may include high-dimensional inter-
actions and/or complex nonlinearities. While a learning method’s capacity to automatically learn
interactions and nonlinearities is attractive when the goal is prediction, there are many cases where
users want good predictions and the ability to understand how predictions depend on the features.
mmpf implements general methods for interpreting prediction functions using Monte-Carlo methods.
These methods allow any function which generates predictions to be be interpreted. mmpf is currently
used in other packages for machine learning like edarf and mlr (Jones and Linder, 2016; Bischl et al.,
2016).

Marginalizing Prediction Functions

The core function of mmpf, marginalPrediction, allows marginalization of a prediction function so
that it depends on a subset of the features. Say the matrix of features X is partitioned into two subsets,
Xu and X−u, where the former is of primary interest. A prediction function f which in the regression
case maps X → y, where y is a real-valued vector might not be additive or linear in the columns of
Xu, making f difficult to interpret directly. To obtain the marginal relationship between Xu and f we
could marginalize the joint distribution so that we obtain a function fu which only depends on the
relevant subset of the features.

fu(Xu) =
∫

f (Xu, X−u)P(Xu|X−u)P(X−u)dX−u

This however, can distort the relationship between Xu and f because of the inclusion of dependence
between Xu and X−u (specifically Xu|X−u), which is unrelated to f . An alternative is to instead
integrate against the marginal distribution of X−u as in 2.1, as suggested by (Friedman, 2001).

f̃u(Xu) =
∫

f (Xu, X−u)P(X−u)dX−u

To illustrate this point, suppose data are generated from an additive model, f (·) = x1 + x2 and
(x1, x2) ∼ MVN(0, Σ) where the diagonal entries of Σ are 1 and the off-diagonals are .5. That is,
(x1, x2) are correlated by construction. Now if we want to understand how f depends on x1 we could
integrate against the true joint distribution as in 2.1. However, this distorts the relationship between
x1 and f because the conditional probability of x1 given x2 is higher at values of (x1, x2) which are
more extreme (due to their correlation). Since x2 is related to f this has the effect of distorting the
relationship between x1 and f , and, in this case, makes the relationship appear more extreme than it is,
as can be seen in the left panel of Figure 1. This distortion of the relationship between x1 and f can be
made more misleading if x2 interacts with x1 to produce f , or if x2 has a nonlinear relationship with f ,
as can be seen in the right panel of Figure 1.

Integrating against the marginal distribution of x1 recovers the true additive effect (left panel) and
the average marginal effect (x1 + .5x1x̄2, in the right panel) respectively.

Using mmpf

In practical settings we do not know P(X) or f . We can use f̂ , estimated from (X, y) as a plug-in
estimator for f and can estimate P(X−u) from the training data, allowing us to estimate the partial
dependence of Xu on f̂ Friedman (2001).

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 2

Figure 1: The marginal relationship between x1 and f as estimated by integrating against the marginal
distribution of x2 (the blue line) or the joint distribution of (x1, x2) (the red line). The true relationship
is shown by the dashed line. In the left panel f is an additive function of x1 and x2 and in the right
panel x1 and x2 interact via multiplication to produce f .

f̂u(Xu) =
N

∑
i=1

f̂ (Xu, X(i)
−u)

This the behavior of the prediction function at a vector or matrix of values for Xu, averaged over
the empirical marginal distribution of X−u.

The core function of mmpf, marginalPrediction, allows users to compute partial dependence and
many variations thereof easily. The key arguments of marginalPrediction are the prediction function
(predict.fun), the training data (data), the names of the columns of the training data which are of
interest (vars), the number of points to use in the grid for Xu and the number of points to sample from
X−u (n, an integer vector of length 2). Additional arguments control how the grid is constructed (e.g.,
uniform sampling, user chosen values, non-uniform sampling), allow the use of weights, and how
aggregation is done (e.g., deviations from partial dependence). Below is an example using the Iris
data (Anderson, 1936).

library(mmpf)
library(randomForest)

data(iris)
iris.features = iris[, -ncol(iris)] # exclude the species column
fit = randomForest(iris.features, iris$Species)

mp = marginalPrediction(data = iris.features,
vars = "Petal.Width",
n = c(10, nrow(iris)), model = fit, uniform = TRUE,
predict.fun = function(object, newdata) predict(object, newdata, type = "prob"))

print(mp)
Petal.Width setosa versicolor virginica
1: 0.1000000 0.6374133 0.2337733 0.1288133
2: 0.3666667 0.6374133 0.2337733 0.1288133
3: 0.6333333 0.6356267 0.2350533 0.1293200
4: 0.9000000 0.1707200 0.5997333 0.2295467
5: 1.1666667 0.1688267 0.6016267 0.2295467
6: 1.4333333 0.1688133 0.5880800 0.2431067
7: 1.7000000 0.1640400 0.4242800 0.4116800
8: 1.9666667 0.1619867 0.2066667 0.6313467
9: 2.2333333 0.1619867 0.2047867 0.6332267
10: 2.5000000 0.1619867 0.2047867 0.6332267

In this case f̂ returns a probability of membership in each class for each values of the variable

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 3

Figure 2: The expected value of f̂ estimated by a random forest and marginalized by Monte-Carlo
integration to depend only on “Petal.Width.”

“Petal.Width” which is computed based on the average prediction for each value of “Petal.Width”
shown and all the observed values of the other variables in the training data. As can be readily
observed, partial dependence can be easily visualized, as in Figure 2.

In fact, any function of the marginalized function f̂u can be computed, including vector-valued
functions. For example the expectation and variance of f̂u can be simultaneously computed, the
results of which are shown in Figures 3 and 4. Computing the variance of f̂u can be used for detecting
interactions between Xu and X−u (Goldstein et al., 2015). If the variance of f̂u(Xu) is constant then
this indicates that X−u does not interact with Xu, since, if it did, this would make f̂ more variable in
regions of the joint distribution wherein there is interaction between Xu and X−u.

mp.int = marginalPrediction(data = iris.features,
vars = c("Petal.Width", "Petal.Length"),
n = c(10, nrow(iris)), model = fit, uniform = TRUE,
predict.fun = function(object, newdata) predict(object, newdata, type = "prob"),
aggregate.fun = function(x) list("mean" = mean(x), "variance" = var(x)))

head(mp.int)
Petal.Width Petal.Length setosa.mean setosa.variance versicolor.mean
1: 0.1 1.000000 0.9549867 0.0011619193 0.04448000
2: 0.1 1.655556 0.9549867 0.0011619193 0.04448000
3: 0.1 2.311111 0.9530933 0.0011317899 0.04637333
4: 0.1 2.966667 0.4574667 0.0003524653 0.52818667
5: 0.1 3.622222 0.4550400 0.0002619447 0.53061333
6: 0.1 4.277778 0.4550400 0.0002619447 0.52472000
versicolor.variance virginica.mean virginica.variance
1: 0.001141889 0.0005333333 0.00000239821
2: 0.001141889 0.0005333333 0.00000239821
3: 0.001112236 0.0005333333 0.00000239821
4: 0.001154918 0.0143466667 0.00054076492
5: 0.001016158 0.0143466667 0.00054076492
6: 0.001556364 0.0202400000 0.00093196886

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 4

Figure 3: The expected value of f̂ estimated by a random forest and marginalized by Monte-Carlo
integration to depend only on “Petal.Width” and “Petal.Length.”

Figure 4: The variance of f̂ estimated by a random forest and marginalized by Monte-Carlo integration
to depend only on “Petal.Width” and “Petal.Length.” Non-constant variance indicates interaction
between these variables and those marginalized out of f̂ .

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 5

Bibliography

E. Anderson. The species problem in iris. Annals of the Missouri Botanical Garden, 23(3):457–509, 1936.
[p2]

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, and Z. M. Jones.
Mlr: Machine learning in r. Journal of Machine Learning Research, 17(170):1–5, 2016. URL http:
//jmlr.org/papers/v17/15-066.html. [p1]

J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics,
pages 1189–1232, 2001. [p1]

A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking inside the black box: Visualizing statistical
learning with plots of individual conditional expectation. Journal of Computational and Graphical
Statistics, 24(1):44–65, 2015. [p3]

Z. M. Jones and F. J. Linder. Edarf: Exploratory data analysis using random forests. The Journal of Open
Source Software, 1(6), 2016. URL https://doi.org/10.21105/joss.00092. [p1]

Zachary M. Jones
Pennsylvania State University
University Park, Pennsylvania
United States
zmj@zmjones.com

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

http://jmlr.org/papers/v17/15-066.html
http://jmlr.org/papers/v17/15-066.html
https://doi.org/10.21105/joss.00092
mailto:zmj@zmjones.com

	mmpf: Monte-Carlo Methods for Prediction Functions
	Marginalizing Prediction Functions
	Using ````mmpf

