
CONTRIBUTED RESEARCH ARTICLE 308

LP Algorithms for Portfolio Optimization:
The PortfolioOptim Package
by Andrzej Palczewski

Abstract The paper describes two algorithms for financial portfolio optimization with the following
risk measures: CVaR, MAD, LSAD and dispersion CVaR. These algorithms can be applied to discrete
distributions of asset returns since then the optimization problems can be reduced to linear programs.
The first algorithm solves a simple recourse problem as described by Haneveld using Benders de-
composition method. The second algorithm finds an optimal portfolio with the smallest distance
to a given benchmark portfolio and is an adaptation of the least norm solution (called also normal
solution) of linear programs due to Zhao and Li. The algorithms are implemented in R in the package
PortfolioOptim.

Introduction

The construction of an optimal portfolio of financial instruments is one of primal goals in asset
management. Recent advances in risk measurement advocate using risk measures that take into
account the tail behavior of asset return distributions, such as conditional value-at-risk or lower
semi-absolute deviation. For these risk measures, finding optimal portfolios in risk-return setting leads
to convex programming problems. For a finite discrete distribution of returns and many practically
used risk measures the optimization problem can be solved by LP methods. The portfolio optimization
by LP methods leads to two problems: for distributions with a large number of values (for example,
a large sample from a continuous distribution) one obtains a unique solution but the LP problem is
resource demanding; for distributions with a small number of values one often obtains a non-unique
solution, which is of limited use for asset management. In the latter case, a unique optimal portfolio is
obtained by projecting a benchmark portfolio on the whole set of solutions. In the paper we present
an algorithm that solves efficiently the problem with large distributions and an algorithm that finds an
orthogonal projection of the benchmark portfolio on the space of solutions.

The R language and environment for statistical computing offer a large variety of tools for portfolio
optimization. General purpose optimization tools are reviewed by Theussl and Borchers (2016) (R
packages for solving optimization problems) and Koenker and Mizera (2014) (R packages for convex
optimization). The book by Pfaff (2016) provides an overview of specific functions for portfolio
optimization which are embedded in financial packages. Here we mention a selection of R-packages
dedicated primarily to portfolio optimization. The package fPortfolio by Würtz et al. (2009) offers a
large set of functions for financial data analysis and enables portfolio optimization in mean-variance,
mean-MAD and mean-CVaR settings. For these portfolio problems the package employs existing
optimization tools: LP, QP and NLP solvers. The package PortfolioAnalytics by Peterson and Carl
(2015) uses standard linear and quadratic optimization tools (Rglpk and quadprog) and a number of
new packages: stochastic optimization (DEoptim, GenSA) and particle swarm optimization (psoptim).
The package parma by Ghalanos (2016) offers scenario and moment based optimization of portfolios for
a large class of risk and deviation measures using Rglpk, quadprog and, for non-linear optimization
nloptr. The above mentioned packages are very effective in solving medium-size portfolio problems,
however, due to their use of standard optimization tools they cannot deal with large problems either
in the number of assets or the size of the distribution. Moreover, none of these packages is able to
select an optimal portfolio which is closest to a given benchmark portfolio.

The new package PortfolioOptim overcomes the aforementioned limitations solving portfolio
problems in mean-risk setting with linear portfolio constraints and risk measures that make the
problem reducible to a linear program. Attempts to apply LP solvers to more general portfolio
problems (cf. Mansini et al. (2014) and references therein) are not included in the package. Our first
contribution is an efficient search algorithm for optimal portfolios in stochastic programs with a
very large number of scenarios. A large number of scenarios in portfolio optimization appears often
when a continuous distribution of returns is approximated by a discrete one. The goal is to obtain an
optimal portfolio which approximates the optimal portfolio for the continuous distribution. This can
be achieved by performing optimization on a large discrete sample generated from the continuous
distribution under consideration. A large sample leads to a high dimensional LP problem which can
be difficult to solve by general-purpose LP solvers. This problem has been addressed by Künzi-Bay
and Mayer (2006) who solved the portfolio optimization problem in mean-CVaR setting using Benders
decomposition. They have computed accurately CVaR of the optimal portfolio using samples of order
104. Our extension of this result is twofold. First, we design an algorithm that implements Benders
decomposition for a general class of simple recourse problems. Portfolio optimization problems for

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

http://CRAN.R-project.org/package=fPortfolio
http://CRAN.R-project.org/package=PortfolioAnalytics
http://CRAN.R-project.org/package=Rglpk
http://CRAN.R-project.org/package=quadprog
http://CRAN.R-project.org/package=DEoptim
http://CRAN.R-project.org/package=GenSA
http://CRAN.R-project.org/package=psoptim
http://CRAN.R-project.org/package=parma
http://CRAN.R-project.org/package=nloptr
http://CRAN.R-project.org/package=PortfolioOptim

CONTRIBUTED RESEARCH ARTICLE 309

the risk measures mentioned above are special cases of these simple recourse problems. Second, using
an internal point LP solver from GLPK library and appropriately modifying the stopping criterion we
substantially increase the size of discrete samples which can be used in computations. Our algorithm
can perform computations for samples of order 106 on a standard computer in a few seconds.

Our second contribution relates to portfolio optimization problems when only a small number
of random scenarios is available. Small discrete samples in portfolio optimization appear when the
distribution of returns is an empirical distribution of historical returns. Usually one takes 5 or 10 years
of weekly or monthly returns giving between 120 and 500 samples. Solutions to linear programs of
such dimensions are in many cases non-unique and can occupy a whole face of a multidimensional
simplex. In such cases, a standard software finds only one solution, usually an vertex of the solution
simplex. This is often not the optimal portfolio which asset managers consider as the most appropriate.
Asset managers have usually certain beliefs about the composition of optimal portfolios and those can
be expressed as similarity or vicinity of the desired optimal portfolio to some benchmark portfolio.
Therefore, one wants to find an optimal portfolio which has the smallest distance to a given benchmark,
or, equivalently, the orthogonal projection of the benchmark on the space of optimal portfolios.

In the LP literature a special case of the above projection problem has been discussed for a long
time. This is the problem of the least norm LP solution, also called normal solution (cf. Zhao and Li
(2002) and references cited therein). Unfortunately, the algorithms which find normal solutions cannot
be easily adapted to our problem. The reason is that portfolio weights make up only a fraction of all
coordinates of the LP solution (see the examples in Sections LP computable portfolio problems and
Benders decomposition). Contrary to the normal solution which is the projection of the origin onto the
simplex of optimal solutions, we are looking for a projection onto a subspace of portfolio weights. In
addition, we are not looking for a solution with the least norm but for a solution with the smallest
distance to an arbitrary vector (benchmark portfolio). It appears however, that the regularized central
path algorithm due to Zhao and Li (2002) which solves simultaneously primal and dual LP problems
finding the least norm solutions to both problems, can be modified to our purposes. Our contribution
is the extension of this algorithm to the following problem. Given the set S∗ of optimal solutions to an
LP problem, find x∗ ∈ S∗ such that ‖B(x∗ − x̂)‖ ≤ ‖B(x− x̂)‖ for all x ∈ S∗, where x̂ is a given vector
and B is the operator of projection on a subspace. This general algorithm is then adapted to obtain
an optimal portfolio with the smallest distance to a benchmark (see Section Projection algorithm for
portfolio optimization for details).

The rest of the paper is organized as follows. In Section LP computable portfolio problems, we
describe the portfolio optimization problems that can be reduced to LP problems and are considered as
working examples in the rest of the paper. These portfolio optimization problems are also implemented
in the package PortfolioOptim. Section Benders decomposition analyzes Benders decomposition
algorithm applied to simple recourse problems. As an illustration, we present applications to the
portfolio optimization in mean-CVaR and mean-LSAD settings. Section Projection algorithm for
portfolio optimization describes the adaptation of the path-following algorithm of Zhao and Li (2002)
to the construction of an optimal portfolio with the smallest distance to a benchmark portfolio. We
present also the proof of convergence for the modified algorithm. Computational examples and the
analysis of performance of both algorithms are presented in Section Numerical examples. The paper
ends with short Summary.

LP computable portfolio problems

We consider the portfolio optimization problem in mean-risk setting. The risk is measured by a risk
(or deviation) measureR (for the definitions of risk and deviation measures the reader is advised to
consult the paper by Rockafellar et al. (2006)). Let R be a distribution of returns of J risky assets. We
denote by R̂ centered returns, i.e. R̂ = R−E[R]. Consider the problem of finding an optimal portfolio
u which fulfills the conditions

R
(
uT R

)
→ min,

uTE [R] ≥ r0,
u ∈ X,

(1)

where X is a polyhedral set (i.e. given by linear constraints) and r0 is the required return of the
portfolio. The set X is usually the whole space (when no limitations on trading positions are imposed)
or the positive orthant (when short-selling of assets is prohibited).

We will assume that at optimum the constraint uTE[R] ≥ r0 is binding. This is the case when r0 is
not smaller than the return for the minimal risk portfolio, i.e. the portfolio which solves the problem
minu∈XR(uT R).

It appears that for a number of risk measures the optimization problem (1) formulated for a discrete
distribution R can be reduced to a linear program. Let the asset returns R be given by a discrete

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 310

distribution placing weights pn at points rn, n = 1, . . . , N. When the distribution is centered points of
R̂ will be denoted by r̂n.

Consider the risk measured by conditional value at risk (CVaR). For a random outcome X we
define VaRα(X) as

VaRα (X) = − inf {z : P (X ≤ z) > α} .

Then the conditional value at risk is defined as

CVaRα (X) =
1
α

∫ α

0
VaRp (X) dp.

Rockafellar and Uryasev (2000) observed that for X = uT R the minimization of CVaR can be formu-
lated as the following nonlinear problem

min
u,ξ

ξ +
1

1− α
E

[(
−uT R− ξ

)+]
, (2)

where the latent variable ξ corresponds to VaRα(uT R). For discrete distributions and the risk measured
by CVaR, the portfolio optimization problem can therefore be reformulated as the linear program

ξ + 1
1−α ∑N

n=1 pnyn → min,
yn ≥ 0, n = 1, . . . , N,
yn + ξ + rT

n u ≥ 0, n = 1, . . . , N,
µTu ≥ r0,
u ∈ X.

(3)

Here µ = E[R], while yn plays a role of the shortfall of return uTrn below ξ: yn = (−ξ − uTrn)+ =
(ξ + uTrn)−. For deviation CVaR we replace rn by r̂n in (3).

Consider now mean-MAD and mean-LSAD optimization problems. MAD (mean absolute devia-
tion) is defined as (cf. Konno and Yamazaki (1991))

MAD
(

uT R
)
= E

[∣∣∣uT R−E[uT R]
∣∣∣] = E

[
|uT R̂|

]
. (4)

For discrete distributions mean-MAD optimization problem reads
∑N

n=1 pn
∣∣r̂T

n u
∣∣→ min,

µTu ≥ r0,
u ∈ X.

(5)

This problem can be formulated as the linear program

∑N
n=1 pnyn → min,

yn ≥ 0, n = 1, . . . , N
yn + r̂T

n u ≥ 0, n = 1, . . . , N,
yn − r̂T

n u ≥ 0, n = 1, . . . , N,
µTu ≥ r0,
u ∈ X.

(6)

For LSAD (lower semi absolute deviation) as defined by Konno (1990) or Konno et al. (2002)

LSAD
(

uT R
)
= E

[∣∣∣uT R−E[uT R]
∣∣∣
−

]
= E

[
|uT R̂|−

]
, (7)

mean-LSAD optimization has the form
∑N

n=1 pn
∣∣r̂T

n u
∣∣
− → min,

µTu ≥ r0,
u ∈ X.

(8)

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 311

This leads to the following linear program

∑N
n=1 pnyn → min,

yn ≥ 0, n = 1, . . . , N,
yn + r̂T

n u ≥ 0, n = 1, . . . , N,
µTu ≥ r0,
u ∈ X.

(9)

Since LSAD(uT R) = 1
2 MAD(uT R), in what follows we shall consider only one of the above optimiza-

tion problems.

Benders decomposition

Algorithm

In this section, we present a solution to a simple linear recourse problem with random technology
matrix when the distribution of stochastic variable is represented by a large number of scenarios. The
simple recourse problem is a special case of two-stage recourse problem{

cT x + Q (x)→ min,
x ∈ X,

(10)

with the following form of the recourse subproblemQ (x) = E [v (x)] ,

v (x) = min
y

{(
q+
)T y+ +

(
q−
)T y− : y+ − y− = b− Ax, y+, y− ∈ Rm

+

}
. (11)

In this framework, q+ and q− are known penalty costs, matrix A = A(ω) and vector b = b(ω) are
random and X is a bounded, convex subset in Rl .

We see that each pair of recourse variables (y+i , y−i), i = 1, . . . , m , depends only on the i-th row
in the condition b− Ax, so that their optimal values can be determined independently. Thus, the
second-stage value function v(x) is separated into the sum of m functions

v (x) =
m

∑
i=1

min
yi

{
q+i y+i + q−i y−i : y+i − y−i = bi − Aix, y+i , y−i ≥ 0

}
,

where Ai is the ith row of matrix A and bi is the ith element of vector b.

For each optimization problem

min
yi

{
q+i y+i + q−i y−i : y+i − y−i = bi − Aix, y+i , y−i ≥ 0

}
, (12)

the dual problem has the form

sup
λi

{
λi (bi − Aix) : λi ≤ q+i ,−λi ≤ q−i

}
.

The dual problem is feasible only if q+i + q−i ≥ 0. When this condition holds, the solution to the dual
problem is given by

λi =

{
q+i , if bi − Aix > 0,
−q−i , if bi − Aix ≤ 0,

and the optimal solution to problem (12) has the form

y+i = max (0, (bi − Aix)) ,

y−i = max (0,− (bi − Aix)) .

Then the value function Q(x) can be written as

Q (x) =
m

∑
i=1

(
q+i E

[
(bi − Aix)

+
]
+ q−i E

[
(bi − Aix)

−
])

=
m

∑
i=1

(
q+i E

[
(Aix− bi)

−
]
+ q−i E

[
(Aix− bi)

+
])

.
(13)

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 312

Since s+ − s− = s, we have

Q (x) =
m

∑
i=1

(
q−i
(

Āix− b̄i
)
+
(
q+i + q−i

)
E
[
(Aix− bi)

−
])

=
(
q−
)T Āx−

(
q−
)T b̄ + E

[(
q+ + q−

)T
(b− Ax)+

]
,

(14)

where Āi = E[Ai] and b̄i = E[bi].

For a discrete probability space with P(ω = ωn) = pn, n = 1, . . . , N, the simple recourse problem
can be reformulated in the following way

cT x +
(
q−
)T (Āx− b̄

)
+ ∑N

n=1 pnhn → min,
hn ≥

(
q+ + q−

)T
(b (ωn)− A (ωn) x) ,

hn ≥ 0,
x ∈ X.

(15)

This linear program with a large size N of the probability space is difficult to solve due to the number
of constraints. Klein Haneveld and Van der Vlerk (2006) solved it using a special version of the
L-shaped method. Their approach was further extended by Künzi-Bay and Mayer (2006) who applied
directly Benders decomposition (cf., Benders (1962)). In terms of Benders cuts (15) is equivalent to (we
skip (q−)T b̄ which is constant)

minx,w cT x +
(
q−
)T Āx + w,

w ≥ ∑n∈K pn
(
q+ + q−

)T
(b (ωn)− A (ωn) x) , for all K ⊂M,

w ≥ 0,
x ∈ X,

(16)

whereM = {1, . . . , N}.
This problem is even harder than the original linear program (15) as there are 2N constraints, but

Benders (1962) showed that the above problem can be solved through a sequence of expanding relaxed
problems

minx,w cT x +
(
q−
)T Āx + w,

w ≥ ∑n∈Kk
pn
(
q+ + q−

)T
(b (ωn)− A (ωn) x) , k = 1, . . . , ν,

w ≥ 0,
x ∈ X,

(17)

ν is the number of steps, Kk ⊂ M are constraints added in step k with Kk 6= Kl when k 6= l. Hence,
each successive relaxed problem adds more constraints to those already present in the previous steps.

Let
ηk = ∑

n∈Kk

pn
(
q+ + q−

)T A (ωn) , ζk = ∑
n∈Kk

pn
(
q+ + q−

)T b (ωn) .

Then (17) is written as the linear program
minx,w cT x +

(
q−
)T Āx + w,

w ≥ ζk − ηkx, k = 1, . . . , ν,
w ≥ 0,
x ∈ X.

(18)

The complete algorithm is as follows:

Step 1. Initialization: set K1 = M, η1 = ∑N
n=1 pn(q+ + q−)T A(ωn), ζ1 = ∑N

n=1 pn(q+ + q−)Tb(ωn)
and ν = 1. Choose computation accuracy ε.

Step 2. Solve problem (18) and denote the solution by (x∗, w∗). Put

K∗ =
{

n ∈ M :
(
q+ + q−

)T
(b (ωn)− A (ωn) x∗) ≥ 0

}
,

w∗+ = ∑
n∈K∗

pn
(
q+ + q−

)T
(b (ωn)− A (ωn) x∗) , ŵ∗ = ζν − ηνx∗.

Compute
F = cT x∗ +

(
q−
)T Āx∗ + w∗+, F = cT x∗ +

(
q−
)T Āx∗ + ŵ∗.

Step 3. If (F− F) ≤ ε then stop. x∗ is an optimal solution.

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 313

Step 4. Set ν = ν + 1, Kν = K∗. Compute ην = ∑n∈Kν
pn(q+ + q−)T A(ωn)

and ζν = ∑n∈Kν
pn(q+ + q−)Tb(ωn). Add this new constraint to the set of constraints and go to

Step 2.

The algorithm written as an R script can be seen on Fig. 1.

Set ν = 0 and K1 =M.
Put cmat = (c + (q−)T Ā, 1), Amat = NULL, bmat = NULL

repeat
Put ν = ν + 1
Compute ην = ∑n∈Kν

pn(q+ + q−)T A(ωn) and ζν = ∑n∈Kν
pn(q+ + q−)Tb(ωn)

Put Amat = rbind(Amat, (−ην, ζν,−1)), bmat = c(bmat, 0)
Solve the linear problem min(x,w) cmatT ∗ (x, w) with the constraints

Amat ∗ (x, w)T ≤ bmatT and denote its solution by (x∗, w∗).
Put

K∗ =
{

n ∈ M :
(
q+ + q−

)T
(b (ωn)− A (ωn) x∗) ≥ 0

}
,

w∗+ = ∑
n∈K∗

pn
(
q+ + q−

)T
(b (ωn)− A (ωn) x∗) , ŵ∗ = ζν − ηνx∗.

Set Kν+1 = K∗

Compute

F = cTx∗ +
(
q−
)T Āx∗ + w∗+, F = cTx∗ +

(
q−
)T Āx∗ + ŵ∗.

while (F− F) > ε

Output: x∗

Figure 1: Benders decomposition algorithm for a simple recourse problem

Examples

Conditional value at risk (CVaR)

We begin with an example of mean-CVaR optimization for a discrete distribution of returns. Our goal
is to find portfolio u which solves

CVaRα
(
uT R

)
→ min,

uTE [R] ≥ r0,
u ∈ X.

(19)

As is shown in Section LP computable portfolio problems, this problem is reduced to the linear
program

ξ + 1
1−α ∑N

n=1 pnyn → min,
yn ≥ 0, n = 1, . . . , N,
yn + ξ + rT

n u ≥ 0, n = 1, . . . , N,
uTµ ≥ r0,
u ∈ X,

(20)

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 314

where µ = E[R]. Benders decomposition for the above problem leads to the sequence of expanding
relaxed problems

minu,ξ,w ξ + 1
1−α w,

∑n∈Kk
pn
(
ξ + rT

n u
)
+ w ≥ 0, k = 1, . . . , ν,

uTµ ≥ r0,
u ∈ X.

(21)

Using notation from Section Benders decomposition we identify x = (u, ξ), q− = 0, (q+)T A(ωn) =
(rn, 1), b(ωn) = 0 and c = (0J , 1), where 0J is the zero vector of length J. The algorithm can be readily
applied.

Mean absolute deviation(MAD) and lower semi-absolute deviation (LSAD)

Due to the relation LSAD(uT R) = 1
2 MAD(uT R) it is sufficient to consider only the mean-LSAD

portfolio optimization:
LSAD

(
uT R

)
→ min,

uTµ ≥ r0,
u ∈ X.

(22)

As before, for a discrete set of returns that problem can be formulated as a linear program (see equation
(9)) and Benders decomposition can be applied leading to a sequence of expanding relaxed problems.
Introducing the new variable

ηk = ∑
n∈Kk

pn r̂n,

we reduce the problem to the linear program
minu,w w,
ηT

k u + w ≥ 0, k = 1, . . . , ν,
µTu ≥ r0,
u ∈ X.

(23)

Similarly as for CVaR, we recognize in that formulation the Benders problem from Section Benders
decomposition.

Projection algorithm for portfolio optimization

Algorithm

As we have discussed earlier, some mean-risk optimization problems can be transformed into linear
programs. Those linear programs can be written down in the standard form

cT x → min,

Ax ≥ b,

x ≥ 0,

x ∈ Rn.

(24)

In practical computations, it appears that solutions to the above linear program are sometimes
non-unique and form a (multidimensional) simplex. A typical linear solver find only one of the
solutions – usually one of the vertices of the solution simplex. In this section our aim is to find a
solution to the above linear program which is closest to a given vector. It often lies in the interior of a
face of the solution simplex.

Let S∗ denote the set of optimal solutions to (24), B be a given invertible matrix in Rn and x̂ a
vector from Rn. We want to find x∗ ∈ S∗ such that

‖B (x∗ − x̂)‖ ≤ ‖B (x− x̂)‖ for all x ∈ S∗. (25)

The least norm solution to linear program mentioned in the Introduction is a special case of
problem (24–25). It corresponds to x̂ = 0 and B being an identity matrix. Finding an optimal portfolio
closest to a given benchmark in the framework of LP problems can also be reduced, after some
modification, to the solution of problem (24–25). To describe this modification observe that for LP
computable portfolio problems the independent variable x in (24) contains more coordinates that only

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 315

portfolio weights. Let x = (x′, u) where u corresponds to portfolio weights and x′ contains all other
coordinates (for CVaR optimization (3) x = (ξ, y, u), hence x′ = (ξ, y), for MAD optimization (6) and
LSAD optimization (9) x = (y, u)). Given the benchmark portfolio û, the objective is to find an optimal
portfolio which minimizes the distance ‖u− û‖. To achieve that goal by solving problem (24–25) we
have to extend û to a vector x̂ = (x̂′, û) on the whole space Rn taking arbitrary x̂′ and projecting the
difference (x − x̂) on the subspace spanned by the portfolio coordinates. Let B∗ be this projection
operator, then the aim is to minimize ‖B∗(x− x̂)‖. Matrix B∗ is diagonal with entries 1 on the diagonal
positions corresponding to portfolio weights and 0 otherwise. Since B∗ is not invertible the considered
portfolio problem cannot be reduced to the solution of problem (24–25). Hence we introduce a matrix
B replacing in B∗ zero diagonal entries with some small positive number ε. Then B is invertible and
an optimal portfolio close to a benchmark can be found by solving problem (24–25). One can further
improve the accuracy of the computation by redoing the optimization with x̂ = (x′∗, û), where x′∗ is
the solution obtained in the first optimization.

To solve problem (24–25) we follow the approach by Zhao and Li (2002) based on the path-
following algorithm. We begin with the reformulation of (24) as the logarithmic barrier problem

cT x− ρ

(
n

∑
i=1

log xi +
m

∑
i=1

log zi

)
→ min,

Ax− z = b,

x, z > 0,

x ∈ Rn, z ∈ Rm,

(26)

where z is introduced to replace the inequality Ax ≥ b by equality and ρ > 0 is a regularizing
parameter.

The Lagrangian for this problem reads

L (x, y, z) = cT x + yT (z− Ax + b)− ρ

(
n

∑
i=1

log xi +
m

∑
i=1

log zi

)

and the Kuhn-Tucker solvability conditions are

diag (x) s = ρe,

diag (z) y = ρe,

s + ATy− c = 0,

z− Ax + b = 0,

(27)

where diag(u) denotes the diagonal matrix with vector u on diagonal; the new variable s=ρ diag(x)−1e
is introduced to obtain the canonical representation of the central path approach; and e = (1, . . . , 1) (of
an appropriate dimension).

To find the solution to (26) which fulfills the condition ‖B(x− x̂)‖2 → min for a given vector x̂
and matrix B, we modify the Lagrangian

LP (x, y, z) = cT x + yT (z− Ax + b)− ρ

(
n

∑
i=1

log xi +
m

∑
i=1

log zi

)
+

1
2

θ
(
‖B (x− x̂)‖2 − ‖y‖2

)
.

The stationary point of this Lagrangian gives the primal solution for which ‖B(x − x̂)‖2 achieves
minimal value and the dual solution which has minimal norm. The Kuhn-Tucker conditions give

diag (x) s = ρe,

diag (z) y = ρe,

s + ATy− c = θBT B (x− x̂) ,

z− Ax + b = θy.

(28)

To simplify the problem we assume that θ = κρp for given constants κ ∈ (0, 1] and p ∈ (0, 1). We
define the nonlinear mapping

Fρ (x, y, s, z) =

diag (x) s− ρe
diag (z) y− ρe

s + ATy− c− κρpBT B (x− x̂)
z− Ax + b− κρpy

 . (29)

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 316

The problem is now to find (x∗, y∗, s∗, z∗) ≥ 0 which solve the equation

F0 (x∗, y∗, s∗, z∗) = 0. (30)

The solution to this equation is searched by the Newton iterative method

Fρk (xk, yk, sk, zk) +∇Fρk (xk, yk, sk, zk) (∆x, ∆y, ∆s, ∆z) = 0, (31)

where ∇Fρ(x, y, s, z) denotes the gradient of function Fρ given by the expression

∇Fρ (x, y, s, z) =

diag (s) 0 diag (x) 0

0 diag (z) 0 diag (y)
−κρpBT B AT 1 0
−A −κρp1 0 1

 . (32)

These iterative solutions form the path-following algorithm in a neighborhood of the regularized
central path

Nβ (ρ) =
{
(x, y, s, z) :

∥∥Fρ (x, y, s, z)
∥∥

∞ ≤ βρ
}

,

with β ∈ (0, 1).

The complete algorithm is as follows:

Central path projection algorithm

Step 1. Initialization. Set β ∈ (0, 1) and assign scalars b1, b2 and σ in (0, 1). Select (x0, y0, s0, z0) > 0,
κ ∈ (0, 1), p ∈ (0, 1) and ρ0 ∈ (1, ∞) such that (x0, y0, s0, z0) ∈ Nβ(ρ0).

Step 2. Newton’s iterates. If Fρk (xk, yk, sk, zk) = 0 put

(xk+1, yk+1, sk+1, zk+1) = (xk, yk, sk, zk)

and go to Step 3.
Otherwise, find (∆x, ∆y) which solve the following linear system(

diag (sk) + κ (ρk)
p BT B diag (xk) −diag (xk) AT

diag (yk) A diag (zk) + κ (ρk)
p diag (yk)

) (
∆x
∆y

)

=

(
ρke− diag (xk) sk
ρke− diag (zk) yk

)
−
(

c diag (xk)
(
κ (ρk)

p BT B (xk − x̂)− ATyk − sk + c
)

diag (yk)
(

Axk + κ (ρk)
p yk − zk − b

))
.

(33)

Then set (
∆s
∆z

)
=

(
κ (ρk)

p BT B −AT

A κ (ρk)
p 1

) (
∆x
∆y

)
+

(
κ (ρk)

p BT B (xk − x̂)− ATyk − sk + c
Axk + κ (ρk)

p yk − zk − b

)
.

(34)

Find α such that (xk + λ∆x, yk + λ∆y, sk + λ∆s, zk + λ∆z) > 0 for all λ ∈ (0, α). Then find the
maximal improvement step for λ by the Armijo rule: find the smallest j such that λj = αbj

1 and∥∥∥Fρk

(
xk + λj∆x, yk + λj∆y, sk + λj∆s, zk + λj∆z

)∥∥∥
∞

≤
(

1− σλj

)
‖Fρk (xk, yk, sk, zk) ‖∞

(35)

Set
(xk+1, yk+1, sk+1, zk+1) = (xk, yk, sk, zk) + λj (∆x, ∆y, ∆s, ∆z)

and go to Step 3.

Step 3. Reduction of ρ. Find the maximal improvement step for ρk by the Armijo rule: find the smallest
j such that γj = bj

2 and∥∥∥F(1−γj)ρk
(xk+1, yk+1, sk+1, zk+1)

∥∥∥
∞
≤ β

(
1− γj

)
ρk.

Set ρk+1 = (1− γj)ρk and go to Step 2.

We prove now that starting from the initial iterate defined in Step 1, we obtain a convergent
sequence of iterates. The estimate of the norm F creates a difficulty because of the term ρ

p
k which for

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 317

ρk < 1 cannot be estimated by the first power of ρk. That requires such a choice of the starting point
which cancels the terms with ρp. This goal is achieved by a proper choice of constant κ. The following
lemma is an adaptation of Lemma 4.1 from Zhao and Li (2002).

Lemma 2.4.1. The central path projection algorithm is well-defined. The sequence ρk is monotonically
decreasing and (xk, yk, sk, zk) ∈ Nβ(ρk) for all k ≥ 0.

Proof. The proof goes along the lines of the original proof of Zhao and Li (2002). We have only to
remark that the nonsingularity of matrix ∇Fρ follows from the fact that the matrix(

κρpBT B −AT

A κρp1

)
is positive semidefinite for ρ > 0.

For the correctness of Step 3 of the algorithm, we have to show that point (xk+1, yk+1, sk+1, zk+1)
belongs to Nβ(ρk+1). To this end, we have to prove the estimate∥∥Fρk (x, y, s, z)− Fρl (x, y, s, z)

∥∥
∞ ≤ (ρl − ρk) +

(
(ρl)

p − (ρk)
p) ‖(x− x̂, y)‖∞ ,

for ρl ≥ ρk and (x, y, s, z) > 0. Taking into account that κ ≤ 1 that estimate follows from the definition
of F ∥∥Fρk (x, y, s, z)− Fρl (x, y, s, z)

∥∥
∞

≤ (ρl − ρk) + κ
(
(ρl)

p − (ρk)
p) ‖y‖∞ + κ

(
(ρl)

p − (ρk)
p) ∥∥∥BT B (x− x̂)

∥∥∥
∞

≤ (ρl − ρk) +
(
(ρl)

p − (ρk)
p) ‖(x− x̂, y)‖∞ .

The rest of the proof is similar as in Zhao and Li (2002). The boundedness of (xk, yk) follows from
Lemma 2.4.2 below.

The proof of the convergence of the iterative sequence requires some modification of the proof by
Zhao and Li (2002). The modification is formulated in the following lemma.

Lemma 2.4.2. When the solution set to equation (30) is nonempty, then the sequence (xk, yk, sk, zk) obtained
by the central path projection algorithm is bounded.

Proof. We follow the line of the proof of Theorem 4.1 in Zhao and Li (2002). Let (uk, vk, wk, qk) be
defined as

(uk, vk, wk, qk) =
1
ρk

Fρk (xk, yk, sk, zk) .

Then ‖(uk, vk, wk, qk)‖∞ ≤ β by the definition of Nβ(ρk) and the following system of equations holds

diag (xk) sk = ρk (e + uk) ,

diag (yk) zk = ρk (e + vk) ,

sk = −ATyk + c + κ (ρk)
p BT B (xk − x̂) + ρkwk,

zk = Axk − b + κ (ρk)
p yk + ρkqk.

(36)

Let (x∗, y∗, s∗, z∗) be an optimal solution, i.e. a solution to equation (30). Then (x∗, y∗, s∗, z∗) ≥ 0
and (s∗, z∗) is given by the expression(

s∗

z∗

)
=

(
0 −AT

A 0

) (
x∗

y∗

)
+

(
c
−b

)
. (37)

Due to (28) (x∗)Ts∗ = 0 and (y∗)Tz∗ = 0.

In what follows, we use the positive semidefiniteness(
x
y

)T (
κρpBT B −AT

A κρp1

) (
x
y

)
= κρp ‖Bx‖2

2 + κρp ‖y‖2
2 . (38)

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 318

Then we have

0 ≤
(

x∗

y∗

)T (sk
zk

)
+

(
s∗

z∗

)T (xk
yk

)
=

(
x∗ − xk
y∗ − yk

)T ((
κ (ρk)

p BT B −AT

A κ (ρk)
p 1

) (
xk
yk

)
+

(
c
−b

)
+ ρk

(
wk
qk

)
−
(

κ (ρk)
p BT Bx̂
0

))
+

(
s∗

z∗

)T (xk
yk

)
+

(
xk
yk

)T (sk
zk

)
=−

(
xk − x∗

yk − y∗

)T (
κ (ρk)

p BT B −AT

A κ (ρk)
p 1

) (
xk − x∗

yk − y∗

)
−
(

xk − x∗

yk − y∗

)T ((
κ (ρk)

p BT B −AT

A κ (ρk)
p 1

) (
x∗

y∗

)
+

(
c
−b

)
+ ρk

(
wk
qk

)
−
(

κ (ρk)
p BT Bx̂
0

))
+

(
xk
yk

)T (s∗

z∗

)
+

(
xk
yk

)T (sk
zk

)
=− κ (ρk)

p
∥∥∥∥B (xk − x∗)

yk − y∗

∥∥∥∥2

2
− κ (ρk)

p
(

xk − x∗

yk − y∗

)T
(

BT Bx∗ + (ρk)
1−p κ−1wk − BT Bx̂

y∗ + (ρk)
1−p κ−1qk

)

+

(
xk
yk

)T (sk
zk

)
.

(39)

From equation (36) we obtain

(xk)
T sk = ρkeT (e + uk) , (yk)

T zk = ρkeT (e + vk)

and the estimate ∣∣∣∣∣
(

xk
yk

)T (sk
zk

)∣∣∣∣∣ ≤ ρkc

for some positive constant c.

Finally we obtain∥∥∥∥B (xk − x∗)
yk − y∗

∥∥∥∥2

2
≤
∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥
2

∥∥∥∥∥BT B (x∗ − x̂) + (ρk)
1−p κ−1wk

y∗ + (ρk)
1−p κ−1qk

∥∥∥∥∥
2

+ (ρk)
1−p κ−1c. (40)

Since matrix B is invertible, we have

‖x‖2 ≤
∥∥∥B−1

∥∥∥ ‖Bx‖2 .

Taking into account the above estimates and the estimate ρk ≤ ρ0, we obtain∥∥∥∥xk − x∗

yk − y∗

∥∥∥∥
2
≤ c. (41)

The boundedness of (sk, zk) follows from the above estimate and equation (36).

The complete algorithm is presented on Fig. 2. This algorithm requires an appropriate initial
step: ρ0 and a starting point (x0, y0, s0, z0) ∈ Nβ(ρ0). Hence we choose (x0, y0, s0, z0) > 0 such that
‖Fρ0 (x0, y0, s0, z0)‖∞ ≤ βρ0, which guarantees that (x0, y0, s0, z0) ∈ Nβ(ρ0).

The choice of (x0, y0, s0, z0) starts with y0 = e and z0 = κρ
p
0 e. We choose x0 and s0 so that the

term κρ
p
0 BT B(x0 − x̂) is canceled. Taking x0 = max(e, e + x̂) makes x0 > 0. On the other hand,

κρ
p
0 BT B(x0 − x̂) is a vector with nonzero components bounded from above by κρ

p
0 (1 + ‖x̂−‖). Hence

we define s0,init = BT B(x0 − x̂) and compute κ = 1/‖diag(x0)s0,init‖∞. Then we take s0 = κρ
p
0 s0,init.

That procedure eliminates from ‖Fρ0‖∞ the terms with ρ
p
0 and replaces them by constants. We can

now describe the construction of the initial point step-by-step:

1. Set y0 = e.

2. Set x0 = max(e, e + x̂).

3. Take ρ0 = max
(

1,
∥∥∥∥cATy0 − c
−Ax0 + b

∥∥∥∥
∞

)
+ δ

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 319

Input: Select positive constants: p, β, b1, b2, σ ∈ (0, 1). Select initial values ρ0,
κ ∈ (0, 1] and (x0, y0, s0, z0) > 0 such that (x0, y0, s0, z0) ∈ Nβ(ρ0)

Step 1
If Fρk (xk, yk, sk, zk) = 0
set (xk+1, yk+1, sk+1, zk+1) = (xk, yk, sk, zk) and go to Step 3
Otherwise solve the linear system

(
diag (sk) + κρ

p
k diag (xk) BT B −diag (xk) AT

diag (yk) A diag (zk) + κρ
p
k diag (yk)

) (
∆x
∆y

)

=

ρke− diag (xk)
(

κρ
p
k diag (xk) BT B (xk − x̂)− ATyk + c

)
ρke− diag (yk)

(
Axk + κρ

p
k yk − b

)
and set

(
∆s
∆z

)
=

(
κρ

p
k BT B −AT

A κρ
p
k 1

) (
∆x
∆y

)
+

(
κρ

p
k BT B (xk − x̂)− ATyk − sk + c

Axk + κρ
p
k yk − zk − b

)
.

Step 2
Find the step size λk such that
(xk+1, yk+1, sk+1, zk+1) = (xk + λk∆x, yk + λk∆y, sk + λk∆s, zk + λk∆z) ∈ Nβ(ρk)
This is achieved in 2 substeps
substep 1
Find α such that ∀λ ∈ (0, α) (xk + λ∆x, yk + λ∆y, sk + λ∆s, zk + λ∆z) > 0
substep 2

Let λk = αbj
1, where j is the smallest integer such that∥∥Fρk (xk + λk∆x, yk + λk∆y, sk + λk∆s, zk + λk∆z)

∥∥
∞

≤ (1− σλk)
∥∥Fρk (xk, yk, sk, zk)

∥∥
∞ .

Step 3
Find the smallest ρk+1 < ρk such that (xk+1, yk+1, sk+1, zk+1) ∈ Nβ(ρk+1).

Let ρk+1 = (1− bj
2)ρk where j is the smallest integer for which we have∥∥Fρk+1 (xk+1, yk+1, sk+1, zk+1)

∥∥
∞ ≤ βρk+1.

Stopping criterion: ρk+1 ≤ tol or ‖Fρk+1(xk+1, yk+1, sk+1, zk+1)‖∞ ≤ tol.

Figure 2: Regularized central path algorithm with projection

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 320

4. Set s0,init = BT B(x0 − x̂).

5. Compute κ = 1/‖diag(x0)s0,init‖∞.

6. Set z0 = κρ
p
0 e.

7. Set s0 = κρ
p
0 s0,init.

8. Compute

ξ =

∥∥Fρ0 (x0, y0, s0, z0)
∥∥

∞
ρ0

.

9. Set β ∈ (ξ, 1).

Remark 2.4.3. Due to the above choice of the initial point we have the estimates

‖diag (x0) s0 − ρ0e‖∞ ≤
∣∣∣ρ0 − ρ

p
0

∣∣∣ ≤ ρ0,

‖diag (z0) y0 − ρ0e‖∞ ≤ κ
∣∣∣ρ0 − ρ

p
0

∣∣∣+ (1− κ) ρ0 ≤ ρ0,∥∥∥s0 + ATy0 − c− κρ
p
0 BT B (x0 − x̂)

∥∥∥
∞
≤
∥∥∥ATy0 − c

∥∥∥
∞

,∥∥∥z0 − Ax0 + b− κρ
p
0 y0

∥∥∥
∞
≤ ‖−Ax0 + b‖∞ .

Hence ∥∥Fρ0 (x0, y0, s0, z0)
∥∥

∞ ≤ ρ0

and for a properly chosen δ > 0 the above inequality is sharp and ξ < 1. Then taking β ∈ (ξ, 1) we
obtain the desired estimate ‖Fρ0 (x0, y0, s0, z0)‖∞ ≤ βρ0.

The computational complexity of our algorithm arises from the solution of the (n+m)-dimensional
system (33). We can reduce the dimension of this system observing that it can be written as(

diag (sk) + κ (ρk)
p BT B diag (xk)

)
∆x− diag (xk) AT∆y

= ρke− diag (xk)
(

κ (ρk)
p BT B (xk − x̂)− ATyk + c

)
,

diag (yk) A∆x +
(
diag (zk) + κ (ρk)

p diag (yk)
)

∆y

= ρke− diag (yk)
(

Axk + κ (ρk)
p yk − b

)
.

(42)

When n ≥ m eliminating ∆x gives the equation

Hk∆y =ρke− diag (yk)
(

Axk + κ (ρk)
p yk − b

)
− diag (yk) A

×
(

diag (sk) + κ (ρk)
p diag (xk) BT B

)−1

×
(

ρke− diag (xk)
(

κ (ρk)
p BT B (xk − x̂)− ATyk + c

))
,

(43)

where

Hk =diag (zk) + κ (ρk)
p diag (yk)

+ diag (yk) A
(

diag (sk) + κ (ρk)
p diag (xk) BT B

)−1
diag (xk) AT .

(44)

For ∆x we obtain then

∆x =
(

diag (sk) + κ (ρk)
p diag (xk) BT B

)−1

×
(

diag (xk) AT∆y + ρke− diag (xk)
(

κ (ρk)
p BT B (xk − x̂)− ATyk + c

))
.

(45)

For m > n we can eliminate ∆y to obtain

Mk∆x =ρke− diag (xk)
(

κ (ρk)
p BT B (xk − x̂)− ATyk + c

)
+ diag (xk) AT

×
(
diag (zk) + κ (ρk)

p diag (yk)
)−1 (

ρke− diag (yk)
(

Axk + κ (ρk)
p yk − b

))
,

(46)

where

Mk =diag (sk) + κ (ρk)
p BT B diag (xk)

+ diag (xk) AT (diag (zk) + κ (ρk)
p diag (yk)

)−1 diag (yk) A.
(47)

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 321

For ∆y we obtain then

∆y =
(
diag (zk) + κ (ρk)

p diag (yk)
)−1

×
(
−diag (yk) A∆x + ρke− diag (yk)

(
Axk + κ (ρk)

p yk − b
))

.
(48)

Examples

We show now how the general projection algorithm described above can be used to find an optimal
portfolio with the smallest distance to a given benchmark portfolio. We begin with the mean-CVaR
optimization of Section LP computable portfolio problems. For simplicity, we take X = {u : u ≥ 0}.
Then the linear program corresponding to this problem reads

ξ + 1
1−α ∑N

n=1 pnyn → min,
yn ≥ 0, n = 1, . . . , N,
yn + ξ + rT

n u ≥ 0, n = 1, . . . , N,
uTµ ≥ r0,
u ≥ 0.

(49)

Given the benchmark portfolio wb, we are looking for a solution of the above linear program with the
additional constraint

‖u− wb‖2 → min . (50)

A solution to this problem can be obtained by the central path projection algorithm. To this end,
we define x = (u, ξ, y), c = (0J , 1, p), where 0J is the zero vector of length J and p is the N dimensional
vector with entries pn. Matrix A and vector b are given by the expressions

A =

(
r 0T

N diag (eN)
µ 0 0N

)
, b =

(
c0T

N
r0

)
, (51)

where r is the N× J matrix of discrete returns, 0N denotes the row vector of length N with zero entries
and eN – the row vector of length N with all entries equal 1. We take x̂ = (wb, 0, 0N) and

B =

(
diag

(
eJ
)

0
0 diag (εN+1)

)
, (52)

where εk is the row vector of length k with all entries equal ε.

With the above definitions, the solution obtained by the central path projection algorithm is an
optimal solution to problem (49) with constraint (50).

For the mean-LSAD problem with X = {u : u ≥ 0}, the linear program is

∑N
n=1 pnyn → min,

yn ≥ 0, n = 1, . . . , N,
yn + r̂T

n u ≥ 0, n = 1, . . . , N,
uTµ ≥ r0,
u ≥ 0.

(53)

To reduce this problem to the standard form appropriate for the central path projection algorithm, we
define x = (u, y), c = (0J , p), x̂ = (wb, 0N) and matrices

A =

(
r̂ diag (eN)
µ 0N

)
, b =

(
0T

N
r0

)
, B =

(
diag

(
eJ
)

0
0 diag (εN)

)
, (54)

where r̂ is the N × J matrix of discrete centered returns. Running the central path projection algorithm
with the above defined vectors and matrices, we obtain an optimal solution to problem (53) with
constraint (50).

Numerical examples

The algorithms described in Sections Benders decomposition and Projection algorithm for portfolio
optimization are implemented in R in the package PortfolioOptim. The package offers two public
functions:

• BDportfolio_optim – which performs portfolio optimization using Benders decomposition;

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 322

• PortfolioOptimProjection – which implements the projection algorithm described in Section
Projection algorithm for portfolio optimization.

For solving LP subproblems in BDportfolio_optim, we use function Rglpk_solve_LP from the
R-package Rglpk. All computations are carried out on a computer with Intel Core i5-5200U processor
with 8 GB RAM running Linux operating system.

Benders decomposition algorithm

It has been already observed by Künzi-Bay and Mayer (2006) that a good discrete approximation of a
continuous distribution of returns requires large samples. The size of the sample depends on the goal
of optimization procedure. It has been shown in Künzi-Bay and Mayer (2006) that the value of the
objective function is accurately estimated with samples of size 10 000–20 000. Our experience shows
that estimation of the optimal portfolio weights requires much larger samples.

Consider first the model used in Künzi-Bay and Mayer (2006): they provide the vector of mean µ
and the covariance matrix Σ for monthly returns of 5 assets (MSCI.CH, MSCI.E, MSCI.W, Pictet.Bond
and JPM.Global), and assume that the asset returns have joint normal distribution. We represent
this distribution by a random sample of size N and solve the optimization problem (21) in which we
impose additional constrains taking X = {u : ∑K

k=1 uk = 1, u ≥ 0}. In all computations we take the
target portfolio return r0 = 0.005 and the CVaR confidence level α = 0.95.

First we initialize computations with Künzi-Bay and Mayer (2006) data.

library(mvtnorm)
library(PortfolioOptim)

generate_data_normal <- function (means, covmat, num)
{

k <- ncol(covmat)
sim_data <- rmvnorm (n=num, mean = means, sigma=covmat)
sim_data <- matrix(num, k, data = sim_data)
colnames(sim_data) <- colnames(covmat)
prob <- matrix(1/num,num,1)
mod_returns <- cbind(sim_data, prob)
return (mod_returns)

}

prepare_data_KM <- function ()
{
sample_cov <- matrix(5,5, data = c(0.003059 , 0.002556 , 0.002327 , 0.000095 , 0.000533,
0.002556 , 0.003384 , 0.002929 , 0.000032 , 0.000762,
0.002327 , 0.002929 , 0.003509 , 0.000036 , 0.000908,
0.000095 , 0.000032 , 0.000036 , 0.000069 , 0.000048 ,
0.000533 , 0.000762 , 0.000908 , 0.000048 , 0.000564))
sample_mean <- c(0.007417, 0.005822, 0.004236, 0.004231, 0.005534)
colnames(sample_cov) <- c("MSCI.CH", "MSCI.E", "MSCI.W", "Pictet.Bond", "JPM.Global")
return(list(sample_mean = sample_mean, sample_cov = sample_cov))
}

We perform two tests (both tests are run simultaneously). In the first test, we compare computa-
tional time for different sample sizes. In the second test, we compare the accuracy of the obtained
optimal portfolios. We perform computations for different sample sizes; for each sample size we
generate 10 independent samples and assess the mean and the variance of the running time and
portfolio weights. The R code for these tests is as follows.

data_nA <- prepare_data_KM()
sample_cov <- data_nA$sample_cov
sample_mean <- data_nA$sample_mean
k <- ncol(sample_cov)
a0 <- rep(1,k)
Aconstr <- rbind(a0,-a0)
bconstr <- c(1+1e-8, -1+1e-8)
lbound <- rep(0,k)
ubound <- rep(1,k)
R0 = 0.005

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 323

ET <- NULL
weights <- NULL
repetition = 10
sample_size = 10 000 # also run for 100 000 and 1 000 0000

ptm <- proc.time()[3]
for (i in 1:repetition){
mod_returns <- generate_data_normal (sample_mean, sample_cov, sample_size)
res <- BDportfolio_optim (mod_returns, R0, risk = "CVAR", alpha = 0.95,

Aconstr, bconstr,lbound, ubound, maxiter = 200, tol = 1e-10)
ET <- c(ET, proc.time()[3] - ptm)
ptm <- proc.time()[3]
weights <- rbind(weights, t(res$theta))

}

cat(''running time and its standard deviation \n'')
print(mean(ET))
print(sqrt(var(ET)))

cat(''optimal portfolio and confidence intervals of its weights \n'')
print((colMeans(weights))*100)
print(sqrt(apply(weights, 2, var))*100*4/sqrt(repetition))

Since standard LP solvers (used for comparison by Künzi-Bay and Mayer (2006)) are too memory
demanding to run on our hardware, we report computational time only for our BDportfolio_optim
function. Table 1 contains the average running times for 10 different realizations together with the
standard deviations.

sample size mean st. dev.

10 000 0.0663 0.0085
100 000 0.4953 0.0363
1 000 000 4.518 0.1086

Table 1: Averaged running time (in sec.) and its standard deviation for computations with different
sample sizes.

The average running time for samples of size 10 000 is slightly smaller than the value reported by
Künzi-Bay and Mayer (2006) (they give the value 0.088 sec.) but it can be attributed to a slightly faster
CPU. It is also visible from Table 1 that even for samples of size 1 000 000 the computational time is
small enough for such sample sizes to be used in practical computations.

The estimates of optimal portfolio weights for different sample sizes are collected in Table 2. The
95% confidence intervals of portfolio weights are reported in brackets. If the difference between
portfolio weights is larger that two standard deviations we conclude that the difference is statistically
significant (this corresponds to 95% two-sided Student-t test whose critical value for the sample of
size 10 is 2.228). The results of Table 2 show that samples of size 10 000 are much to small to produce
reliable portfolio weights. The values for that sample size are statistically significantly different from
the values for 1 000 000 samples. From the values of confidence intervals of portfolio weights we
can conclude that the computation of optimal portfolio weights from samples of size 10 000 can give
values with an error up to 50% (for all non-zero weights and the sample of size 10 000 the confidence
intervals are of order of one half of the corresponding weights). This is a clear indication that to obtain
reliable values of portfolio weights we have to use samples of size 1 000 000 or take the average of a
large number of repetitions, which is computationally equivalent.

We analyze now the effect of the number of assets in portfolio on the accuracy of computations. To
this end, we use the data-set etfdata from the R-package parma. For comparison we take two subsets:
etfdata[1:500,1:5](with 5 assets) and etfdata[1:500,1:10] (with 10 assets). We add to our code a
new function computing the vector of means and covariance matrix for a data set with k assets and
perform computations with k = 5 and k = 10.

library(parma)
library(xts)

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 324

sample size
assets 10 000 100 000 1 000 000

MSCI.CH 9.6 11.2 10.9
(4.33) (1.45) (0.39)

MSCI.E 0.0 0.0 0.0
(0.00) (0.00) (0.00)

MSCI.W 0.0 0.0 0.0
(0.00) (0.00) (0.00)

Pictet.Bond 53.6 56.2 56.8
(13.24) (2.33) (0.83)

JPM.Global 36.8 32.6 32.3
(11.41) (2.37) (0.74)

Table 2: Optimal portfolios for different sample sizes. 95% confidence intervals of portfolio weights
given in parentheses (all values are in percentage points).

library(quantmod)

data(etfdata)
prepare_data <- function (k)
{

quotData <- as.xts(etfdata[1:500, 1:k])
retData = NULL
for (i in 1:k)
retData <- cbind(retData,weeklyReturn(quotData[,i], type='arithmetic'))

colnames(retData) <- colnames(quotData)
sample_cov <- cov(retData)
sample_mean <- colMeans(retData)
return(list(sample_mean = sample_mean, sample_cov = sample_cov))

}

data_nA <- prepare_data(5) # also run with prepare_data(10)
sample_cov <- data_nA$sample_cov
sample_mean <- data_nA$sample_mean
k <- ncol(sample_cov)
a0 <- rep(1,k)
Aconstr <- rbind(a0,-a0)
bconstr <- c(1+1e-8, -1+1e-8)
lbound <- rep(0,k)
ubound <- rep(1,k)

R0 = 0.004
sample_size = 10 000 # also run for 100 000 and 1 000 0000
repetition = 100
weights <- NULL
for (i in 1:repetition){

returns <- generate_data_normal(sample_mean, sample_cov, sample_size)
res <- BDportfolio_optim (returns, R0, risk = "CVAR", alpha = 0.95,

Aconstr, bconstr, lbound, ubound, maxiter = 200, tol = 1e-10)
weights <- rbind(weights, t(res$theta))

}
print(sum(sqrt(apply(weights, 2, var))*100*4/sqrt(repetition))/k)

For each data set we generate samples of size 10 000, 100 000 and 1 000 000. For each sample size
and data set we compute optimal portfolios. These computations are repeated 100 times and the
empirical variances of portfolio weights are calculated. Using these results we compute widths of
95% confidence intervals of portfolio weights. To facilitate comparison of results between 5 and 10
assets we report in Table 3 the average width of 95% confidence interval per asset, i.e. the sum of
widths for each asset divided by the number of assets. Notice that there is no significant difference in

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 325

accuracy between portfolios of 5 and 10 assets. It can be interpreted as a kind of robustness of Benders
decomposition algorithm. The results fit almost perfectly to the theoretical picture of the square root
dependence of confidence intervals on sample size. The values in Table 3 for 1 000 000 samples confirm
that with that sample size we can get almost perfect estimate of portfolio weights with the average
confidence interval of 0.1–0.2% which is more than sufficient for practitioners.

sample size
assets number 10 000 100 000 1 000 000

5 0.97 0.29 0.09
10 1.18 0.42 0.15

Table 3: The average width of 95% confidence interval of portfolio weights (values are in percentage
points).

Projection algorithm

In testing the projection algorithm described in Section Projection algorithm for portfolio optimization
the following values of parameters are used δ = 0.5, p = 0.8, σ = 10−3, b1 = 0.9 and b2 = 0.9.
The starting point in all computations is calculated by the procedure described in that Section. The
algorithm is tested on simulated data generated from a normal distribution using the vectors of
means and covariance matrices estimated from the previously used data sets etfdata[1:500,1:5] and
etfdata[1:500,1:10] from the package parma. Samples of 125, 250 and 500 returns are generated
assuming they are weekly returns (the vector of means and covariance matrix appropriately scaled)
which corresponds to 2.5, 5 and 10 years of weekly data. For each sample we compute the vector
of portfolio weights using the function PortfolioOptimProjection with tol = 1e-6 and taking as the
benchmark the portfolio 1/J, i.e. the portfolio with all weights equal to 1/J, where J is the number of
assets in the portfolio. The computation for each sample size and asset set is repeated 10 times.

The code is as follows

data_nA <- prepare_data(5) # also run with prepare_data(10)
sample_cov <- data_nA$sample_cov
sample_mean <- data_nA$sample_mean
k <- ncol(sample_cov)
a0 <- rep(1,k)
Aconstr <- rbind(a0,-a0)
bconstr <- c(1+1e-8, -1+1e-8)
lbound <- rep(0,k)
ubound <- rep(1,k)

w_m = rep(1/k,k)
R0 = 0.005
returns_size =125 # also run for 250 and 500
ET <- NULL
ptm <- proc.time()[3]
for (i in 1:10){
mod_returns <- generate_data_normal(sample_mean, sample_cov, returns_size)
res <- PortfolioOptimProjection (mod_returns, R0 , risk = "CVAR", alpha = 0.95,

w_m, Aconstr, bconstr,lbound, ubound, 800, tol = 1e-6)
ET <- c(ET, proc.time()[3] - ptm)
ptm <- proc.time()[3]
}
cat(''Mean running time and its standard deviation \n'')
print(c(mean(ET), sqrt(var(ET))))

The average running time per one computation and its standard deviation is reported in Table 4.

Taking into account that the sample of size n corresponds to the matrix A of approximate dimension
n× n the results of Table 4 are compatible with the results reported in Table 6.1 of Zhao and Li (2002).
The observation which is missed in Zhao and Li (2002) is the standard deviation of the running time.
This standard deviation is of the same order of magnitude as the average running time. We can
conclude that the computational time depends not only on the size of matrix A but also on the entries,

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 326

number of assets sample size mean sd. deviation

5
125 6.8618 5.7377
250 35.1910 30.2499
500 134.9312 95.2407

10
125 3.1451 1.6976
250 30.0261 22.5226
500 125.1935 104.7991

Table 4: Average running time and its standard deviation for the computation of optimal portfolios
by the central path projection algorithm for different number of assets and different sample sizes (all
values in sec. of CPU time).

which is particularly surprising since samples are drawn from the same distribution. Of course, the
sample of size 125 can be considered as small even for returns of 5 assets. But the sample of size 500 is
already quite large. In addition, the averaged running time is increasing with the sample size, however
that increase is very irregular. At the same time, the standard deviation behaves also irregularly
(similarly as for the averaged running time). All these observations show that the computation time
is very sensitive not only to the dimensionality of the problem but also to a particular realization of
the data. However we can still conclude that on average the algorithm is efficient for moderate-size
portfolio optimization problems. Indeed, Zhao and Li (2002) already observed that the convergence
rate of their algorithm was slow. The same is valid for our extension of their algorithm, which makes
the algorithm not practically applicable for portfolio optimization problems when the size of the
discrete distribution of returns is larger than 103. There is no clear indication which part of the
algorithm has the main effect on slowing down the convergence.

Summary

We presented two optimization algorithms for financial portfolios. These algorithms find optimal
portfolios in problems when the nonlinear optimization in mean-risk setting can be reformulated as a
linear programming problem. The algorithm implementing Benders cuts allows for large samples.
Our experience with very large data samples obtained by simulation from a given distribution shows
that the algorithm is robust and estimated optimal portfolios are very stable (the standard deviation of
portfolio weights is below 0.5 %). The second algorithm based on the central path projection can be
useful for small data samples where solutions are not unique and form a multidimensional simplex.
Extracting from this simplex a point with the smallest distance to a given benchmark portfolio can be
used to improve the decision process in asset management. However, the second algorithm which
implements the central path projection requires further analysis. In particular, we would like to make
the algorithm’s performance and running time less dependent on the realization of the data.

Acknowledgments

The author gratefully acknowledges financial support from National Science Centre, Poland, project
2014/13/B/HS4/00176.

Bibliography

J. F. Benders. Partitioning procedures for solving mixed-variables programming problems. Numerische
Mathematik, 4:238–252, 1962. URL https://doi.org/10.1007/BF01386316. [p312]

A. Ghalanos. parma: Portfolio Allocation and Risk Management Applications, 2016. URL https://cran.r-
project.org/web/packages/parma/parma.pdf. R package version 1.5-3. [p308]

W. K. Klein Haneveld and M. H. Van der Vlerk. Integrated chance constraints: Reduced forms and
an algorithm. Computational Management Science, 3:245–269, 2006. URL https://doi.org/10.1007/
s10287-005-0007-3. [p312]

R. Koenker and I. Mizera. Convex optimization in R. Journal of Statistical Software, 60(5):1–23, 2014.
URL https://doi.org/10.18637/jss.v060.i05. [p308]

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://doi.org/10.1007/BF01386316
https://cran.r-project.org/web/packages/parma/parma.pdf
https://cran.r-project.org/web/packages/parma/parma.pdf
https://doi.org/10.1007/s10287-005-0007-3
https://doi.org/10.1007/s10287-005-0007-3
https://doi.org/10.18637/jss.v060.i05

CONTRIBUTED RESEARCH ARTICLE 327

H. Konno. Piecewise linear risk function and portfolio optimization. Journal of the Operations Research
Society of Japan, 33:139–156, 1990. URL https://doi.org/10.15807/jorsj.33.139. [p310]

H. Konno and H. Yamazaki. Mean-absolute deviation portfolio optimization model and its application
to Tokyo stock market. Management Science, 37:519–531, 1991. URL https://doi.org/10.1287/
mnsc.37.5.519. [p310]

H. Konno, H. Waki, and A. Yuuki. Portfolio optimization under lower partial risk measures. Asia-Pacific
Financial Markets, 9:127–140, 2002. URL https://doi.org/10.1023/A:1022238119491. [p310]

A. Künzi-Bay and J. Mayer. Computational aspects of minimizing conditional value at risk. Com-
putational Management Science, 3:3–27, 2006. URL https://doi.org/10.1007/s10287-005-0042-0.
[p308, 312, 322, 323]

R. Mansini, W. Ogryczak, and M. G. Speranza. Twenty years of linear programming based portfolio
optimization. European Journal of Operational Research, 234:518–535, 2014. URL https://doi.org/10.
1016/j.ejor.2013.08.035. [p308]

B. G. Peterson and P. Carl. Portfolio Analysis, Including Numerical Methods for Optimiza-
tion of Portfolios, 2015. URL https://cran.r-project.org/web/packages/PortfolioAnalytics/
PortfolioAnalytics.pdf. R package version 1.0.3636. [p308]

B. Pfaff. Financial Risk Modelling and Portfolio Optimization with R, 2nd Ed. John Wiley & Sons, 2016.
ISBN 978-1-119-11966-1. [p308]

R. T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of Risk, 2:21–42,
2000. URL https://doi.org/10.21314/JOR.2000.038. [p310]

R. T. Rockafellar, S. Uryasev, and M. Zabarankin. Master funds in portfolio analysis with general
deviation measures. Journal of Banking and Finance, 30:743–778, 2006. URL https://doi.org/10.
1016/j.jbankfin.2005.04.004. [p309]

S. Theussl and H. W. Borchers. CRAN Task View: Optimization and Mathematical Programming. CRAN,
2016. URL http://cran.r-project.org/web/views/Optimization.html. [p308]

D. Würtz, Y. Chalabi, W. Chen, and A. E. Pfaff. Portfolio Optimization with R/Rmetrics. Rmetrics
Association & Finance Online, 2009. [p308]

Y.-B. Zhao and D. Li. Locating the least 2-norm solution of linear programs via a path-following
method. SIAM Journal on Optimization, 12(4):893–912, 2002. URL https://doi.org/10.1137/
S1052623401386368. [p309, 315, 317, 325, 326]

Andrzej Palczewski
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
Banacha 2, 02-097 Warsaw
Poland
A.Palczewski@mimuw.edu.pl

The R Journal Vol. 10/1, July 2018 ISSN 2073-4859

https://doi.org/10.15807/jorsj.33.139
https://doi.org/10.1287/mnsc.37.5.519
https://doi.org/10.1287/mnsc.37.5.519
https://doi.org/10.1023/A:1022238119491
https://doi.org/10.1007/s10287-005-0042-0
https://doi.org/10.1016/j.ejor.2013.08.035
https://doi.org/10.1016/j.ejor.2013.08.035
https://cran.r-project.org/web/packages/PortfolioAnalytics/PortfolioAnalytics.pdf
https://cran.r-project.org/web/packages/PortfolioAnalytics/PortfolioAnalytics.pdf
https://doi.org/10.21314/JOR.2000.038
https://doi.org/10.1016/j.jbankfin.2005.04.004
https://doi.org/10.1016/j.jbankfin.2005.04.004
http://cran.r-project.org/web/views/Optimization.html
https://doi.org/10.1137/S1052623401386368
https://doi.org/10.1137/S1052623401386368
mailto:A.Palczewski@mimuw.edu.pl

	LP Algorithms for Portfolio Optimization: The PortfolioOptim Package
	Introduction
	LP computable portfolio problems
	Benders decomposition
	Algorithm
	Examples

	Projection algorithm for portfolio optimization
	Algorithm
	Examples

	Numerical examples
	Benders decomposition algorithm
	Projection algorithm

	Summary

