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CRTgeeDR: an R Package for Doubly
Robust Generalized Estimating Equations
Estimations in Cluster Randomized Trials
with Missing Data
by Melanie Prague, Rui Wang, and Victor De Gruttola

Abstract Semi-parametric approaches based on generalized estimating equations (GEE) are widely
used to analyze correlated outcomes in longitudinal settings. In this paper, we present a package
CRTgeeDR developed for cluster randomized trials with missing data (CRTs). For use of inverse
probability weighting to adjust for missing data in cluster randomized trials, we show that other
software lead to biased estimation for non-independence working correlation structure. CRTgeeDR
solves this problem. We also extend the ability of existing packages to allow augmented Doubly Robust
GEE estimation (DR). Simulation studies demonstrate the consistency of estimators implemented in
CRTgeeDR compared to packages such as geepack and the gains associated with the use of the DR
for analyzing a binary outcome using a logistic regression. Finally, we illustrate the method on data
from a sanitation CRT in developing countries.

Introduction

We describe the R package CRTgeeDR, for estimating coefficients of regression in a marginal mean
model. The method is designed to analyze data collected in cluster randomized trials (CRTs) where 1)
observations within a cluster may be correlated, 2) observations in separate clusters are independent,
3) a monotone transformation of expectation of the outcome is linearly related to the explanatory
variables, and 4) treatment is randomized at a cluster level. The estimation approach generalizes the
Generalized Estimating Equation (GEE) (Zeger and Liang, 1986) for fitting marginal generalized linear
models to clustered data with possibly informative missingness of the outcome. It combines existing
methods for accommodating missing data that use inverse probability weighting (IPW) (Robins et al.,
1995) and for increasing precision of estimation by appropriate use of baseline covariates (AUG)
(Stephens et al., 2012). We have developed a method for estimating the intervention effect in cluster
randomized trials that combines the IPW and the AUG and is doubly robust (DR), meaning that the
resulting estimator is consistent if either the model predicting the outcome or the model predicting
the missing data is correctly specified—that is, they reflect the true data generation processes (Prague
et al., 2016). Below we illustrate the use of the software on a real dataset and clarify its benefits.

The package CRTgeeDR not only implements the DR estimator but also the standard GEE, the
IPW and the AUG. Regarding IPW, our package differs from most of those currently available in that
it avoids the bias that can result from conventional implementation applied to CRTs. Lin et al. (2015)
pointed out that implementation of GEE for complete longitudinal data in the current version of SAS
(GENMOD procedure) requires use of an independence correlation structure if the observation of the
outcome at one time point depends on covariates obtained at another time point; this problem had been
corrected in the new GEE procedure in SAS/STAT 13.2 (SAS Institute Inc., 2015). Tchetgen Tchetgen
et al. (2012) made a similar comment regarding the analysis of incomplete longitudinal data in which
time-varying covariates and previous outcome values are needed to model the missingness process.
This article clarifies this issue for CRTs and proposes an implementation in R that allows for unbiased
IPW (and thus DR) estimation with non-independence working correlation structure.

GEE-based approaches for estimating the coefficients in marginal models, in particular the marginal
effect of an intervention, have been implemented in only a limited number of R packages and other
software for general use. Of note, most of the available software was initially developed to deal with
correlated longitudinal data rather than data from CRTs. There are three R packages on CRAN, which
will solve GEEs and produce standard errors: whereas gee (Carey et al., 2012) and geepack (Jun, 2002;
Halekoh et al., 2006; Højsgaard and Halekoh, 2016) are computationally demanding, the package
geeM allows a fast estimation through the use of sparse matrix representation (McDaniel et al., 2013).
When interest lies in adjusting for missing outcomes using the IPW, all the packages mentioned above
require specification of weights. These weights can be computed using packages such as ipw (van der
Wal and Geskus, 2011; Geskus and van der Wal, 2015) or directly assigned from a user-defined function.
These approaches require the missing data process to be known or correctly specified. Some packages,
such as drgee (Zetterqvist and Sjölander, 2015), implement doubly robust approaches for uncorrelated
data arising from observational studies. These packages provide estimates that are doubly robust in
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the sense that the consistency of the parameter estimator from the marginal models is guaranteed if the
model linking the outcome to covariates and treatment or the model linking the treatment assignment
to covariates correctly reflects the true data generation process. These methods have been extended to
deal with missing data with IPW approaches in CausalGAM (Glynn and Quinn, 2010a,b), but these
packages are intended for analysis of observational studies, not CRTs. Finally, the targeted maximum
likelihood estimation (tMLE) method allows estimation of the marginal additive effect of a treatment
(van der Laan, 2014a). It is implemented in the packages tmle (Gruber, 2014) and tmlenet (Sofrygin
and van der Laan, 2015) for longitudinal and correlated data. Except for Porter et al. (2011), there has
been little published discussion about the differences between GEE-based and tMLE estimation, and
we do not delve into a comparison of the two methods. The focus of this article is only on software
implementation of the doubly robust GEE for CRTs.

The paper is organized as follows. Section 2.2 introduces the theory of the doubly robust esti-
mator and Section 2.3 describes the features of the CRTgeeDR and the estimating function denoted
GeedrEstimation. Section 2.4 compares the performance of CRTgeeDR to geepack for the IPW in
CRTs and illustrates that the DR is consistent and more efficient than the IPW. Section 2.5 illustrates
the analysis of a dataset on sanitation in developing countries (Guiteras et al., 2015a) and illustrates
the benefit of using the DR approach compared to standard GEE. Section 2.6 presents a discussion.

IPW in CRTs and doubly robust estimation

Notation

Consider a CRT comprised of n clusters or communities, each with ni individuals. The cluster sample
sizes are assumed fixed and non-informative. Let Y i = [Yij]j=1,...,ni denote the outcome vector for
cluster i, some elements of which may be unobserved. Let Rij = 1 if Yij is observed and Rij = 0
otherwise. Let X ij = [Xr

ij]j=1,...,ni ;r=1,...,P denote the P baseline covariates for subject j in cluster i,
which is fully observed. Let Ai be the treatment assigned to cluster i; the indicator for treated condition
is Ai = 1, and Ai = 0 for control condition. We assume that the probability of treatment assignment
is known and fixed to pA = P(Ai = 1). The conditional mean of Yij is denoted µij = E(Yij|Xij, Ai),
and we let µi = [µij]j=1,...,ni denote the full vector of means in the ith cluster. We assume that the
mean structure of Yij depends on the covariate vector for subject j in cluster i (Robins et al., 1999), and
consider a model for the mean as follow:

g(µij) = X ijβX + AiβA,

where g(.) is a monotone differentiable link function and β = (βA, βX) is a (P + 1)× 1 is a vector
of regression coefficients of interest. In this article, we focus on estimation of the marginal effect
of an intervention βA for a binary outcome using the logit link. We assume the variance is vij =
var(Yij|Xij, Ai) = φh(µij), where h(.) is the variance function and φ is the dispersion parameter. Thus
for our specific example, vij = φµij(1− µij) When data are missing at random (MAR), the observation
indicator Rij is a function of covariates, treatment condition, and observed outcomes. For CRTs, we
assume a restricted version of MAR (rMAR), which requires that Rij cannot be a function of observed
outcomes. Although all the theory would hold for classical MAR assumption, it is most of the time
difficult to specify the function linking the observation indicator and the observed outcomes of other
individuals in the same cluster because there is no ordering. Thus, the probability of being observed πij
for individual j in cluster i, called the propensity score (PS), is: πij(X ij, Ai, ηW) = P(Rij = 1|X ij, Ai).
The parameters ηW are nuisance parameters and must be estimated.

IPW in CRTs

In presence of rMAR outcome, as in Robins et al. (1995), we estimate β by using inverse probability
weighted generalized estimating equation (IPW). Therefore, we must include a weight matrix W i to
the usual GEE, that is:

W i(X ij, Ai, ηW) = diag
( Rij

πij(X ij, Ai, ηW)

)
j=1,...,ni

.

This matrix W i(X ij, Ai, ηW), denoted simply as W i in the following, adjusts the contribution of each
individual in a given cluster by upweighting the contribution of individuals who are less likely to
be observed according to their characteristics. Thus, if the propensity score is correctly specified, i.e.,
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correspond to the true missingness process, the IPW equation provides consistent estimates:

0 =
n

∑
i=1

D>i V−1
i W i(Y i − µi), (1)

where Di = ∂µi/∂β is a derivative matrix and V i is the working covariance matrix for the response
Y i. In particular, V i = φF1/2

i C(α)F1/2
i , where F1/2

i = diag(h(µij))j=1,...,ni
and C(α) is the working

correlation structure with non-diagonal terms α. For example, for an independence correlation
structure α is zero; for exchangeable structure, all the elements of α are identical. Parameters α could
also depend on the treatment assignment C(α(Ai)) but we do not consider this possibility in our
implementation. In the package CRTgeeDR, we estimate the α and φ parameters using moment
estimators from the Pearson residuals and the Pearson Chi-Square statistic as in geeM (McDaniel and
Henderson, 2015) also described in McDaniel et al. (2013). In the absence of missing data, W i = I is
set to identity, and the standard GEE is performed by CRTgeeDR.

In existing packages such as geepack, the Equation 1 is implemented as 0 = ∑n
i=1 DiV

−1
i (Y i − µi),

with V−1
i = φF1/2

i W1/2
i C(α)W1/2

i F1/2
i to ensure the fast invertibility of V i. It is easy to verify that

when an independence correlation structure is used, C(α) = I, and the two implementations are
identical. Therefore, one can always use geepack with an independence working correlation structure.
In contrast, if a non-independence working correlation structure is used, the consistency of IPW
estimators do not hold. See the Web-Supplementary Material for a demonstration. Regarding other
packages such as geeM, although the implementation was the same as in geepack up to version 0.8.0,
it is now implemented as in Equation 1 in version 0.10.0. In the SAS GEE procedure, one can use the
option "type=obslevel" (in the missing statement) in order to use the same implementation as in
Equation 1. In general, it is necessary to check the formula used for implementation of the estimating
equation in any desired software to avoid confusion.

Augmentation and doubly robust estimation

Recent advances in methods for analysis of data from CRTs have used augmented GEE to improve
efficiency of inferences by incorporating baseline covariates (Stephens et al., 2012); we denote this
estimator the AUG. They have also been extended to accommodate missing data using an approach
based on the IPW which is doubly robust GEE (DR). The DR properties are described in Prague et al.
(2016) and the estimating equation is given by :

0 =
M

∑
i=1

[
D>i V−1

i W i

(
Y i − Bi(X ij, Ai, ηB)

)

+ ∑
a=0,1

pa
A(1− pA)

1−aD>i V−1
i

(
Bi(X ij, Ai = a, ηB)− µi(β, Ai = a)

)]
(2)

= Φ(Y i, Ri, Ai, X ij, β, ηW , ηB).

Each element of the vector Bi(X i, Ai = a, ηB) = [Bij(X i, Ai = a, ηB)]j=1,...,ni is an arbitrary func-
tion linking Yij with X ij for each treatment arm, which we refer to as the outcome model (OM) The
ηB are nuisance parameters. The estimator in Equation 2 is most efficient if Bij(X i, Ai = a, ηB) =
E(Yij|X ij, Ai = a) (Zhang et al., 2008), that is, the OM is correctly specified. If the OM is not correctly
specified, i.e., does not correspond to the true data generation process, the estimation remains consis-
tent provided that the PS model is correctly specified, but one may have a loss in efficiency. Without
missing data, W i = I is set to identity, and the AUG is performed by CRTgeeDR.

Without missing data or with data missing completely at random, the use of augmentation may
allow a gain in efficiency by incorporating information on baseline covariates. The PS should not
be used because it will be misspecified and therefore may lead to an increase of the variance of the
estimates. In presence of rMAR data, IPW alone can be used but DR should be preferred in order to
increase the chances to have an unbiased estimator. Finally, as mentioned above, for data missing not
at random, none of the methods implemented in CRTgeeDR are adequate.

The R package CRTgeeDR

The main function for estimation in the package CRTgeeDR

The call function for performing estimation is geeDREstimation:
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R> geeDREstimation(formula, id, data = parent.frame(), family = gaussian,
+ corstr = "independence", Mv = 1, corr.mat = NULL, init.beta = NULL,
+ init.alpha = NULL, init.phi = 1, scale.fix = FALSE, maxit = 20,
+ tol=1e-05, print.log = FALSE, nameTRT = "TRT", nameMISS = "MISSING",
+ nameY = "OUTCOME", sandwich = TRUE, sandwich.nuisance = FALSE,
+ fay.adjustment = FALSE, fay.bound = 0.75, aug = NULL, pi.a = 1/2,
+ model.augmentation.trt = NULL, model.augmentation.ctrl = NULL,
+ stepwise.augmentation = FALSE, weights = NULL, typeweights = "VW",
+ model.weights = NULL, stepwise.weights = FALSE)

The marginal model, to be estimated on the R dataframe data, is given in formula. The link
function, g, depends on the nature of the outcome, which is specified in the argument family. The name
of the outcome nameY, the clustering variable id, the binary treatment nameTRT (with the convention 1
is treated and 0 is control), and the missing indicator nameMISS must be specified if they differ from
default values. The algorithm iterates between the estimation the working correlation structure and
regression parameters with a stopping rule based on stabilisation of estimates (tolerance can be set by
the user; default is tol= 10−5 or max.iter=20). Depending on the specification or not of the PS and
the OM, geeDREstimation allows the implementation of standard GEE, the IPW, the AUG and the DR
approaches. The algorithm is defined as follow:

1. Determine the PS: πij(X ij, Ai, ηW) = P(Rij|X ij, Ai), πij for short. Either the πij are known from
prior analysis or by design and the weights can be specified directly in the weights argument.
Alternatively one can compute the PS by fitting a logistic regression of Rij on (X ij, Ai). In this
case, the PS regression formula can be directly entered in model.weights. A glm with logit link
function is internally processed with or without variable selection, depending on the value
of the stepwise.weights argument. If all of the above are set to NULL or default, no IPW
adjustment will be made—GEE or AUG will be used. Finally, if despite our concern about the
implementation of weights, one wants to use the same implementation as in packages geepack
or proc GENMOD in SAS, then one can set typeweights="GENMOD".

2. Determine group-specific OM: Bij(Xij, Ai = a) = E
[
Y ij|Ai = a, Xij

]
. When the Bi are known from

prior analysis, they can be directly entered in aug=c(ctrl=Bij(Xij, Ai = 0),trt=Bij(Xij, Ai = 1)).
Alternatively, we can regress Yij on X ij within each treatment group. In this case, the OM regres-
sion formulas can be directly entered in model.augmentation.trt and model.augmentation.ctrl.
A glm is then internally processed with or without variable selection depending on the value
of the argument stepwise.augmentation. If all of the above are set to NULL or default, no
augmentation adjustment will be made—GEE or IPW will be used. The probability of treatment
assignment, which is known in CRTs, must be specified in the argument pi.a. Of note for steps
1 and 2, when using the stepwise option to compute the OM or the PS, one runs the risk of
overfitting (van der Laan, 2014b). Avoiding this is possible by sparsely including only relevant
variables in the selection and also by running a bootstrap diagnostic using outputs (ps.model,
om.model.trt and om.model.ctrl). The underlying assumption is that the true OM or PS are
selected at the end of the stepwise selection and then held fixed in the estimating equation in
further steps.

3. Determine the working correlation structure. Available structures are independence, exchangeable,
M-dependent (using Mv), unstructured, or user-defined (using corr.mat). Using the scale.fix
argument, the dispersion parameter φ can be either estimated or held fixed to a specified value.

4. Obtain initial values. They are either specified by the user (init.beta, init.alpha, and init.phi)

or internally defined by fitting a glm under independence to obtain initial values for β̂
(0)

and
by setting φ(0) = 1 and α(0) = 0.

5. Enter/continue the iterative procedure :

(a) Use the fit from β̂
(n)

to compute Pearson residuals. Use Pearson residuals based formulas
to compute the scale parameter (φ(n+1), except if scale.fix=TRUE) and the parameters
in the working correlation matrix (α(n+1)).

(b) Construct the augmented equation given in Equation 2 and solve it numerically using

Newton-Raphson algorithm for β̂
(n+1)

:

β̂
(n+1)

= β̂
(n) −

[
∂Φ(Y i, Ri, Ai, X ij, β, ηW , ηB)

∂β

]−1

β̂
(n)

Φ(Y i, Ri, Ai, X ij, β̂
(n)

, ηW , ηB).

(c) If max
∣∣∣ β̂(n+1)−β̂(n)

β̂(n)+prec.machine

∣∣∣ > tol and n + 1 ≤ max.iter go back to 5 else go to 6, where

prec.machine ∼ 10−16.
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6. Compute the requested variances of β̂
(n+1)

. If, sandwich and sandwich.nuisance are set to
TRUE, classical and nuisance-adjusted (for the estimation of parameters ηW in the PS and ηB
in the OM) sandwich estimators of the variance are provided, see Prague et al. (2016) for their
definition. The nuisance-adjusted version is computed using numerical derivatives of score
equations for PS, OM and estimating equations jointly, which are obtained by using the jacobian
function of the package numDeriv (Gilbert and Varadhan, 2015); this is recommended if the
AUG, the IPW or the DR estimator are considered. Finally, a small-sample-adjusted sandwich
estimator of the variance can also be computed using Fay’s adjustment (Fay and Graubard,
2001) setting the argument fay.adjustment to TRUE. Its implementation is derived from the
function gee.var.fg in the package geesmv (Wang, 2015).

Adequacy of the PS and the OM to data

Consistency and efficiency of the DR estimator depend on the correct specification of the PS and
the OM, see Prague et al. (2016) for theoretical demonstrations. The user may want to check the
adequacy of the selected OM model to the data by using the function getOMPlot, which provides
plots to check the glm model assumption. The ”Residuals vs. Fitted" and the "Scale-location" graphics
allow verification of the homogeneity of the variance and the adequacy of the link function. The
”Normal Q-Q" checks for the normal distribution of the residuals. The ”Residuals vs Leverage" plot
allows detection of points that have high leverage on the regression coefficients and that should
be investigated as outliers. In the same spirit, the ”Cook’s distance" and the ”Cook’s distance vs
leverage" provide measures of the effect of deleting a given observation. Of note, these graphs are only
interpretable for a continuous outcome. In addition, for the PS model the function getPSPlot provides
a histogram of the weights. If weights are too large then the IPW and DR approaches are likely to
be unstable. In this case, the user should compute weights externally using, for example, stabilized
weights with the associated package ipw (van der Wal and Geskus, 2011) or other approaches such
as described in Wang and Paik (2011). Finally, the user can access the glm objects created during the
PS and OM initial steps as objects named ps.model, om.model.trt, and om.model.ctrl from the main
function geeDREstimation.

Simulations

The properties of DR to accommodate complex correlation structure, rMAR outcomes, and the presence
of imbalance in baseline covariates have already been demonstrated in Prague et al. (2016). In this
article, we focus on the superiority of implementation of weights in the package CRTgeeDR compared
to package geepack. We focus on a simple example to illustrate that, even in very simple cases,
estimators implemented in broadly used R package geepack for IPW can be inconsistent when using an
exchangeable working correlation structure. This is the case when V−1

i = φF1/2
i W1/2

i C(α)W1/2
i F1/2

i
is used in the estimating equation. We simulate data from a CRT with 100 communities of 90,
100, or 110 individuals with probability 1/3 for each. The treatment A is randomly assigned with
probability pA = 1/2. One covariate is of interest: Xij ∼ N (2, 1). We simulate correlated outcome
with exchangeable structure, and correlation between individuals is set to 0.05. This is done by using a
cluster-level bridge distribution bi ∼ B(0.05). Data generation process is as follow:

logit[P(Yij = 1|Ai, Xij)] = −0.5 + 0.3Ai + 0.4Xij + 0.4Xij Ai + bi,
logit[P(Rij = 1|Ai, Xij)] = 4.0− 0.3Ai − 0.8Xij − 0.8Xij Ai.

(3)

We simulated R=10,000 replicates. The observed average proportion of missing observa-
tions is around 25% and the observed average intraclass correlation is 0.08. Missingness is
associated strongly with individual covariates and, therefore, the weights differ between
individuals in the same cluster. The true value of the odds-ratio for the marginal effect of
treatment is computed for each dataset k without missing data by obtaining the counterfac-
tual values with and without treatment under this model:

ORk =
E(Yij = 1|Ai = 1)/E(Yij = 0|Ai = 1)
E(Yij = 1|A = 0)/E(Yij = 0|Ai = 0)

.

The true OR is given by 1
R ∑R

k=1 ORk=2.56 with associated parameter for marginal interven-
tion effect in the marginal regression βA = 0.941. For each dataset, we first ran the analysis
on the dataset without missing data for the standard GEE and the AUG using CRTgeeDR.
Then we ran the analysis on the dataset with missing data for the IPW using geepack and
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for the standard GEE, the IPW, the AUG, and the DR using CRTgeeDR. Two types of DR
are presented here: DR1 is the estimator using the correct models for the OM and the PS,
and DR2 omits treatment-covariate interaction terms in the PS. The models for the PS and
OM for analysis are described in the Table 1. Table 1 shows the bias, empirical standard
error, sandwich standard error, and coverages for each analysis using independence (-I) and
exchangeable (-E) working correlation structure. The code to replicate this study is available
in Web-Supplementary Material.

Independence (-I) Exchangeable (-E)
Method Bias Emp. SE SE Cov. Bias Emp. SE SE Cov.

No missing data:
GEE CRTgeeDR 0.002 0.102 0.099 94.3 0.002 0.108 0.099 93.2
GEE geepack 0.003 0.102 0.101 94.6 0.003 0.102 0.101 94.6
AUG CRTgeeDR 0.002 0.101 0.099 94.3 0.002 0.109 0.114 95.8

With missing data:
GEE CRTgeeDR -0.257 0.103 0.177 82.0 -0.256 0.104 0.081 18.1
AUG CRTgeeDR 0.249 0.092 0.109 35.7 0.307 0.115 0.139 37.1

With missing data and adjustment for it:
IPW CRTgeeDR 0.003 0.108 0.106 95.0 0.003 0.118 0.110 93.7
IPW geepack 0.008 0.107 0.104 94.8 0.582 0.577 0.357 19.4
DR1 CRTgeeDR 0.003 0.107 0.104 94.5 0.004 0.120 0.125 96.1
DR2 CRTgeeDR 0.003 0.105 0.102 94.4 0.004 0.118 0.123 96.0

Marginal mean model:
logit(µij) = β0 + βA Ai.

PS used for IPW and DR (true):
logit(P(Rij = 1|Ai, Xij)) = γ0 + γA Ai + γXij + γI Xij Ai.

PS used for DR2 (omitting interactions in PS):
logit(P(Rij = 1|Ai, Xij)) = γ0 + γA Ai + γXij.

OM used for AUG, DR1 and DR2 (fitted for each group a):
logit(P(Yij = 1|Ai = a, Xij)) = ξ + ξA Ai + ξXij.

Table 1: Comparison of the standard GEE, the IPW, the AUG and the DR analysis with the packages
CRTgeeDR, geepack, and geeM using independence and exchangeable working correlation structure.
True value for the parameter βA is 0.91 (OR=2.56). The bias, the empirical and the estimated standard
errors (SE), and the coverages for parameter β̂A are computed over 10,000 replicates. The true data
generation process for outcome and missingness is provided in Equation 3. The PS and OM models
for analysis are correctly specified and given in the footnote of the table.

The results for standard GEE are unbiased in the absence of missing data (<0.003 for GEE-
I and GEE-E with all packages) and biased in presence of rMAR outcomes reflecting the fact
that the missingness is informative. Using the IPW-I corrects for this bias (0.008 for geepack).
All packages give a similar estimated standard error leading to acceptable coverage close to
their nominal value of 95%. When using an exchangeable correlation structure, the coverage
(93.7%) remains close to the nominal value for IPW-E using CRTgeeDR, but it drops to 19.4%
using geepack. This is mainly driven by an increase in the bias from 0.003 for CRTgeeDR
to 0.582 for geepack for IPW-E. Using the DR1 version of CRTgeeDR provides consistent
estimates (bias ≤0.004 for DR1-I and DR1-E). DR-1 yields coverage that is close to or greater
than 95% and gains, on average, in efficiency. For example, the empirical standard error
is 0.108 for IPW-I and 0.107 for DR-I. DR2, which omits the term Xij Ai in the PS, yields
consistent and efficient estimates even when the treatment-covariate interactions are not
explicitly specified in the PS. As demonstrated in Prague et al. (2016), DR1 and DR2 have
similar properties.

Illustration on the sanitation data

In this section, we present a step-by-step analysis of data from a CRT to investigate the
efficacy of alternatives policies on the investment in hygienic latrines in developing coun-
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tries. A total of 380 communities in rural Bangladesh were assigned to different marketing
interventions—community motivation, subsidies, supply side-market, a combination of
the three, and a control group. Results of this study were published in (Guiteras et al.,
2015a). All the code and data associated with this study are available on dataverse, see url
in Guiteras et al. (2015b).

Side-Market supply Control All

Cluster structure
M 36 (n = 1651) 66 (n = 3186) 100 (n = 4837)
Ni 49 (15) 48 (16) 48 (16)

Outcome Yij Mean Missing % Mean Missing % Mean Missing %

Hygienic Latrine Ownership 34.8% 4.2% 30.3% 3.1% 31.8% 3.5%

Individual-level XIND
ij Mean Missing % Mean Missing % Mean Missing %

Report diarrhea 4.3% 0% 4.8% 0% 4.6% 0%
Male 91.1% <0.01% 90.0% <0.01% 90.1% <0.01%
Education 49.2% 0% 45.8% 0% 46.9% 0%
Muslim 83.2% <0.01% 86.3% <0.01% 85.2% <0.01%
Bengali 85.6% <0.01% 88.5% <0.01% 87.6% <0.01%
Agricultor 75.0% <0.01% 70.2% <0.01% 71.9% <0.01%
Stoves 58.2% <0.01% 62.9% <0.01% 61.3% <0.01%
Water Pipes 89.9% <0.01% 91.3% <0.01% 90.8% <0.01%
Phone 64.1% <0.01% 57.2% <0.01% 59.5% <0.01%
Age 39 (13) <0.01% 39 (14) <0.01% 39 (14) <0.01%

Cluster-level XC
ij Mean Missing % Mean Missing % Mean Missing %

Village size 230 (120) 0% 270 (190) 0% 256 (170) 0%
Nb doctors 7 (7) 0% 9 (18) 0% 8 (15) 0%
% Landless 41.6 (12) 0% 34.4 (15) 0% 36.9 (15) 0%
% Almost Landless 19.3 (11) 0% 24.0 (8) 0% 22.4 (9) 0%
% Access electricity 59.9 (26) 0% 59.1 (20) 0% 59.4 (22) 0%

Table 2: Description of the Sanitation dataset from (Guiteras et al., 2015a) considering only the Side-
Market supply and the Control group. Percentages are given for qualitative covariates. Means and
standard deviations in parentheses are provided for continuous covariates.

We consider only the comparison of a supply side-market versus control. The published
analysis used a mixed effect model and showed that the supply side-market alone did not
increase the hygienic latrine ownership (+0.3 percentage points, p-value=0.90). We reanalyze
the dataset using the GEE approaches in order to get the marginal effect of intervention.
Description of the outcome and variables for adjustment are available in Table 2. Because
covariates were missing in less than 0.01% of the observations, we assume that covariates are
missing completely at random and exclude individuals with missing covariates. The final
dataset contains 4774 individuals and 380 clusters. We assume the outcomes are rMAR. As
there is some evidence of imbalance in baseline covariates across arms, i.e., the descriptive
distributions of covariates in Table 2 are different between treated and control groups, we
use the DR approach. We assume that the correlation between any pair of individuals in the
same cluster is the same and hence use an exchangeable working correlation structure. In
this example, the PS and OM are fitted using a logistic regression with a linear combination
of all the individual-level and cluster-level covariates described in Table 2. Variables for
these models are selected using a forward stepwise regression before solving the estimating
equation. Adequacy of the model has been verified. The code for analysis is available in the
Web-Supplementary Material. To illustrate the use of the package CRTgeeDR, we provide
instructions for the DR estimator:

R> DR <- geeDREstimation(OUTCOME ~ TRT, id = CLUSTER, data = Sanitation,
+ family = binomial("logit"), corstr = "exchangeable", typeweights = "VW",
+ model.weights = MISSING ~ TRT + DIARRHEA + ... + ELEC_ACCESS,
+ model.augmentation.trt = OUTCOME ~ DIARRHEA + ... + ELEC_ACCESS,
+ model.augmentation.ctrl = OUTCOME ~ DIARRHEA + ... + ELEC_ACCESS,
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+ stepwise.weights = TRUE, stepwise.augmentation = TRUE)
R> summary(DR)

The output displays statistics for estimated coefficients β, α and φ, the number of Newton-
Raphson iterations before convergence, and some description of the size of the clusters.

Estimates Model SE Robust SE wald p
(Intercept) -0.8106 0.09396 0.1088 -7.452 0.000000
TRT 0.4365 0.12890 0.1425 3.062 0.002198

Est. Correlation: 0.07306
Correlation Structure: exchangeable
Est. Scale Parameter: 0.9955

Number of GEE iterations: 2
Number of Clusters: 100 Maximum Cluster Size: 87
Number of observations with nonzero weight: 4612

Table 3 presents the PS and OM for analysis, the estimates, the nuisance-adjusted sand-
wich estimates of the variance, the confidence intervals for the odd-ratios, the p-values, and
the computation times for each of these analysis. For DR the computation time is 20 seconds,
most of which is required for the computation of the nuisance-adjusted sandwich estimator
of the variance (the estimation is < 3 seconds otherwise). Whereas GEE and IPW lead to
non-significant effect of supply side-market, the DR estimates are significantly different
from 0 at the 0.05 level (p=0.025). Using the DR, we conclude that there is 55% [8% - 121%]
greater chance of owning hygienic latrine after one year if there is a supply side-market.
This effect is significant (p<0.05) even using a nuisance-adjusted SE, which is generally
larger than the standard sandwich SE due to incorporation of additional variability from
estimation of the nuisance parameters in the PS and the OM (ηW and ηB). Information about
the PS and the OM can be obtained by using the following commands:

R> summary(DR$ps.model)
R> summary(DR$om.model.trt)
R> summary(DR$om.model.ctrl)
R> getPSPlot(DR)

Sandwich Nuis-adj. exp(βA) p-value time
βA SE SE OR ICmin ICmax Unadj. Nuis-adj. (sec.)

GEE 0.19 0.171 - 1.21 0.87 1.69 0.262 - 1
IPW 0.19 0.182 0.219 1.21 0.79 1.86 0.290 0.386 32
AUG 0.45 0.141 0.176 1.57 1.12 2.22 0.001 0.010 11
DR 0.44 0.143 0.183 1.55 1.08 2.21 0.002 0.016 20

Marginal mean model: logit(µij) = β0 + βA Ai.
PS: logit(P(Rij|Ai, XIND

ij , XC
ij ) = γ0 + γA Ai + ∑10

k=1 γIND
k XIND

ijk + ∑5
k=1 γC

k XC
ijk.

OM: logit(P(Yij|Ai = a, XIND
ij , XC

ij ) = ξ0 + ∑10
k=1 ξaIND

k XIND
ijk + ∑5

k=1 ξaC
k XC

ijk, for each group a.

Table 3: Effects of the supply side-market vs. control on the probability of hygienic latrine ownership
in the sanitation data analysis (Guiteras et al., 2015a) using the standard GEE, the IPW adjustment
(IPW and DR), and the augmentation for imbalance (AUG and DR) assuming outcomes are rMAR.

Description of models for OM, PS and histogram of weights are given in the Web-
Supplementary Material Table 1 and Figure 1. As noted in Table 3, the estimates for IPW are
close to those for GEE, reflecting the fact that only 3.5% of data are missing. We also note
that all of the non-null weights are close to 1 (1.035 [1.02; 1.04]) showing that no covariate of
the PS explains the missingness pattern. Thus, the increased significance of the intervention
in the DR analysis compared to GEE is mainly driven by the augmentation. In both groups,
households with higher education and economic status (as evidenced by stoves, water
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pipes, phones, and other factors) are more likely to have a hygienic latrine. For cluster-level
covariates the patterns differ by intervention group: a high number of doctors is positively
associated with the hygienic latrine ownership only in the intervention group indicating a
potential synergy between the number of doctors and the presence of side-supply markets.

Conclusion

We demonstrated that the IPW can be biased in CRTs if the weights are not implemented as
described in Robins et al. (1995) and a non-independence working correlation structure is
chosen. In particular, we discuss problems that arise in the package geepack implemented
in R. These concerns apply not only for outcome data in CRTs but also to longitudinal
outcome data, when the probability that an observations is missing at a given time depends
on time-varying covariates measured at other times. We recommend to always check the
implementation in the software that has been chosen for analysis. The CRTgeeDR package
protects against this bias and allows for adjustment in imbalance in baseline covariates
in CRTs. The package can accommodate a wide range of outcome types, link functions,
and working correlation structures. The CRTgeeDR package is easy to use and does not
require extensive programming. It therefore makes the augmented GEE (AUG) and the
Doubly robust (DR) methodology for CRTs more accessible to applied researchers. Of
note, although the CRTgeeDR package had been designed for CRTs, it can also be used
for analysis of correlated longitudinal data from a randomized trial. The use of version
2.0 of the CRTgeeDR package to analyze observational clustered data (in which treatment
attribution may be informative) is not straightforward, but updates with these capabilities
are under development.
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