
CONTRIBUTED RESEARCH ARTICLE 219

The NoiseFiltersR Package: Label Noise
Preprocessing in R
by Pablo Morales, Julián Luengo, Luís P.F. Garcia, Ana C. Lorena, André C.P.L.F. de Carvalho and
Francisco Herrera

Abstract In Data Mining, the value of extracted knowledge is directly related to the quality of the
used data. This makes data preprocessing one of the most important steps in the knowledge discovery
process. A common problem affecting data quality is the presence of noise. A training set with label
noise can reduce the predictive performance of classification learning techniques and increase the
overfitting of classification models. In this work we present the NoiseFiltersR package. It contains the
first extensive R implementation of classical and state-of-the-art label noise filters, which are the most
common techniques for preprocessing label noise. The algorithms used for the implementation of the
label noise filters are appropriately documented and referenced. They can be called in a R-user-friendly
manner, and their results are unified by means of the "filter" class, which also benefits from adapted
print and summary methods.

Introduction

In the last years, the large quantity of data of many different kinds and from different sources has
created numerous challenges in the Data Mining area. Not only their size, but their imperfections
and varied formats are providing the researchers with plenty of new scenarios to be addressed.
Consequently, Data Preprocessing (García et al., 2015) has become an important part of the KDD
(Knowledge Discovery from Databases) process, and related software development is also essential to
provide practitioners with the adequate tools.

Data Preprocessing intends to process the collected data appropriately so that subsequent learning
algorithms can not only extract meaningful and relevant knowledge from the data, but also induce
models with high predictive or descriptive performance. Data preprocessing is known as one of
the most time-consuming steps in the whole KDD process. There exist several aspects involved in
data preprocessing, like feature selection, dealing with missing values and detecting noisy data. Feature
selection aims at extracting the most relevant attributes for the learning step, thus reducing the
complexity of models and the computing time taken for their induction. The treatment of missing
values is also essential to keep as much information as possible in the preprocessed dataset. Finally,
noisy data refers to values that are either incorrect or clearly far from the general underlying data
distribution.

All these tasks have associated software available. For instance, the KEEL tool (Alcalá et al., 2010)
contains a broad collection of data preprocessing algorithms, which covers all the aforementioned
topics. There exist many other general-purpose Data Mining software with data preprocessing
functionalities, like WEKA (Witten and Frank, 2005), KNIME (Berthold et al., 2009), RapidMiner
(Hofmann and Klinkenberg, 2013) or R.

Regarding the R statistical software, there are plenty of packages available in the Comprehensive R
Archive Network (CRAN) repository to address preprocessing tasks. For example, MICE (van Buuren
and Groothuis-Oudshoorn, 2011) and Amelia (Honaker et al., 2011) are very popular packages for
handling missing values, whereas caret (Kuhn, 2008) or FSelector (Romanski and Kotthoff, 2014)
provide a wide range of techniques for feature selection. There are also general-purpose packages for
decting outliers and anomalies, like mvoutlier (Filzmoser and Gschwandtner, 2015). If we examine
software in CRAN developed to tackle label noise, there already exist non-preprocessing packages
that provide label noise robust classifiers. For instance, robustDA implements a robust mixture
discriminant analysis Bouveyron and Girard (2009), while probFDA package provides a probabilistic
Fisher discriminant analysis related to the seminal work in Lawrence and Schölkopf (2001).

However, to the best of our knowledge, CRAN lacks an extensive collection of label noise prepro-
cessing algorithms for classification (Sáez et al., 2016; Garcia et al., 2015), some of which are among
the most influential preprocessing techniques (García et al., 2016). This is the gap we intend to fill
with the release of the NoiseFiltersR package, whose taxonomy is inspired on the recent survey on
label noise by B. Frénay and M. Verleysen (Frénay and Verleysen, 2014). Yet, it should be noted that
there are other packages that include some isolated implementations of label noise filters, since they
are sometimes needed as auxiliary functions. This is the case of the unbalanced (Pozzolo et al., 2015)
package, which deals with imbalanced classification. It contains basic versions of classical filters, such
as Tomek-Links (Tomek, 1976) or ENN (Wilson, 1972), which are tipically applied after oversampling an
imbalanced dataset (which is the main purpose of the unbalanced package).

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=MICE
https://CRAN.R-project.org/package=Amelia
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=FSelector
https://CRAN.R-project.org/package=mvoutlier
https://CRAN.R-project.org/package=robustDA
https://CRAN.R-project.org/package=probFDA
https://CRAN.R-project.org/package=NoiseFiltersR
https://CRAN.R-project.org/package=unbalanced

CONTRIBUTED RESEARCH ARTICLE 220

In the following section we briefly introduce the problem of classification with label noise, as
well as the most popular techniques to overcome this problem. Then, we show how to use the
NoiseFiltersR package to apply these techniques in a unified and R-user-friendly manner. Finally, we
present a general overview of this work and potential extensions.

Label noise preprocessing

Data collection and preparation processes are usually subject to errors in Data Mining applications
(Wu and Zhu, 2008). Consequently, real-world datasets are commonly affected by imperfections or
noise. In a classification problem, several effects of this noise can be observed by analyzing its spatial
characteristics: noise may create small clusters of instances of a particular class in the instance space
corresponding to another class, displace or remove instances located in key areas within a concrete
class, or disrupt the boundaries of the classes resulting in an increased boundaries overlap. All these
imperfections may harm interpretation of data, the design, size, building time, interpretability and
accuracy of models, as well as the making of decisions (Zhong et al., 2004; Zhu and Wu, 2004).

In order to alleviate the effects of noise, we need first to identify and quantify the components of
the data that can be affected. As described by Wang et al. (1995), from the large number of components
that comprise a dataset, class labels and attribute values are two essential elements in classification
datasets (Wu, 1996). Thus, two types of noise are commonly differentiated in the literature (Zhu and
Wu, 2004; Wu, 1996):

• Label noise, also known as class noise, is when an example is wrongly labeled. Several causes
may induce label noise, including subjectivity during the labeling process, data entry errors, or
inadequacy of the information used to label each instance. Label noise includes contradictory
examples (Hernández and Stolfo, 1998) (examples with identical input attribute values having
different class labels) and misclassifications (examples which are incorrectly labeled Zhu and
Wu, 2004). Since detecting contradictory examples is easier than identifying misclassifications
(Zhu and Wu, 2004), most of the literature is focused on the study of misclassifications, and the
term label noise usually refers to this type of noise (Teng, 1999; Sáez et al., 2014).

• Attribute noise refers to corruptions in the values of the input attributes. It includes erroneous
attribute values, missing values and incomplete attributes or “do not care” values. Missing
values are usually considered independently in the literature, so attribute noise is mainly used
for erroneous values (Zhu and Wu, 2004).

The NoiseFiltersR package (and the rest of this manuscript) focuses on label noise, which is known
to be the most disruptive one, since label quality is essential for the classifier training (Zhu and
Wu, 2004). In Frénay and Verleysen (2014) the mechanisms that generate label noise are examined,
relating them to the appropriate treatment procedures that can be safely applied. In the specialized
literature there exist two main approaches to deal with label noise, and both are surveyed in Frénay
and Verleysen (2014):

• On the one hand, algorithm level approaches attempt to create robust classification algorithms
that are little influenced by the presence of noise. This includes approaches where existing
algorithms are modified to cope with label noise by either modeling it in the classifier construc-
tion (Lawrence and Schölkopf, 2001; Li et al., 2007), by applying pruning strategies to avoid
overfiting as in Quinlan (1993) or by diminishing the importance of noisy instances with respect
to clean ones (Miao et al., 2016). There exist recent proposals that combine these two approaches,
which model the noise and give less relevance to potentially noisy instances in the classifier
building process (Bouveyron and Girard, 2009).

• On the other hand, data level approaches (also called filters) try to develop strategies to cleanse
the dataset as a previous step to the fitting of the classifier, by either creating ensembles of
classifiers (Brodley and Friedl, 1999), iteratively filtering noisy instances (Khoshgoftaar and
Rebours, 2007), computing metrics on the data or even hybrid approaches that combine several
of these strategies.

The NoiseFiltersR package follows the data level approaches, since this allows the data preprocess-
ing to be carried out just once, and apply any classifier thereafter, whereas algorithm level approaches
are specific for each classification algorithm1. Regarding data-level handling of label noise, we take
the aforementioned survey by Frénay and Verleysen (2014) as the basis for our NoiseFiltersR package.

1Of course, in R there exist implementations of very popular label noise robust classifiers (the aforementioned
algorithm-level approach), such as C4.5 and RIPPER, which are called J48 and JRip respectively in the RWeka
package (Hornik et al., 2009), which is a R interface to WEKA software (Witten and Frank, 2005), or the method
described in Bouveyron and Girard (2009) in its own package.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=RWeka

CONTRIBUTED RESEARCH ARTICLE 221

That work provides an overview and references for the most popular classical and state-of-the-art
filters, which are organized and classified taking into account several aspects:

• Considering how noisy instances are identified, ensemble based, similarity based and data complex-
ity based algorithms are distinguished. The first type makes use of predictions from ensembles
of classifiers built over different partitions or resamples of training data. The second is based on
label distribution from the nearest neighbors of each instance. And the third attempts to reduce
complexity metrics which are related to the presence of noise. As we will explain in the next
section (see Table 1), the NoiseFiltersR package contains implementations of all these types of
algorithms, and the explicit distinction is indicated in the documentation page of each function.

• Regarding how to deal with the identified noise, noise removal and noise reparation strategies are
considered. The first option removes the noisy instances, whereas the second relabels these
instances with the most likely label on the basis of the available information. There also exist
hybrid approaches, which only carry out relabelling when they have enough confidence on the
new label. Otherwise, they remove the noisy instance. The discussion between noise removal,
noise reparation and their possible sinergies is an active and open field of research (Frénay
and Verleysen, 2014, Section VI.H): most works agree on the potential damages of incorrect
relabeling (Miranda et al., 2009), although other studies also point out the dangers of removing
too many instances and advocate hybrid approaches (Teng, 2005). As we will see in the next
section, the NoiseFiltersR package includes filters which implement all these possibilities, and
the specific behaviour is explicitly indicated in the documentation page of the corresponding
function.

The NoiseFiltersR package

The released package implements, documents, explains and provides references for a broad collection
of label noise filters surveyed in (Frénay and Verleysen, 2014). To the best of our knowledge, it is the
first comprehensive review and implementation of this topic for R, which has become an essential tool
in Data Mining in the last years.

Namely, the NoiseFiltersR package includes a total of 30 filters, which were published in 24
research papers. Each one of these papers is referenced in the corresponding filter documentation
page, as shown in the next Documentation section (and particularly in Figure 1). Regarding the noise
detection strategy, 13 of them are ensemble based filters, 14 can be cataloged as similarity based, and
the other 3 are based on data complexity measures. Taking into account the noise handling approach,
4 of them integrate the possibility of relabelling, whereas the other 26 only allow for removing (which
clearly evidences a general preference for data removal in the literature). The full list of implemented
filters and its distribution according to the two aforementioned criterions is displayed in Table 1, which
provides a general overview of the package.

Noise Identification
Ensemble Similarity Data Complexity

N
oi

se
H

an
dl

in
g

R
em

ov
e

C45robustFilter AENN
C45votingFilter BBNR

C45iteratedVotingFilter CNN
CVCF DROP1

dynamicCF DROP2 saturationFilter
edgeBoostFilter DROP3 consensusSF

EF ENG classifSF
HARF ENN
INFFC PRISM

IPF RNN
ORBoostFilter TomekLinks

PF

R
ep

ai
r/

H
yb

ri
d EWF

hybridRepairFilter GE
ModeFilter

Table 1: Names and taxonomy of available filters in the NoiseFiltersR package. Every filter is
appropriately referenced in its documentation page, where the original paper is provided.

The rest of this section is organized as follows. First, a few lines are devoted to the installation
process. Then, we present the documentation page for the filters, where further specific details can be

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 222

looked up. After that, we focus on the two implemented methods to call the filters (default and formula).
Finally, the "filter" class, which unifies the return value of the filters in NoiseFiltersR package, is
presented.

Installation

The NoiseFiltersR package is available at CRAN servers, so it can be downloaded and installed
directly from the R command line by typing:

> install.packages("NoiseFiltersR")

In order to easily access all the package’s functions, it must be attached in the usual way:

> library(NoiseFiltersR)

Documentation

Whereas this paper provides the user with an overview of the NoiseFiltersR package, it is also
important to have access to specific information for each available filter. This information can be
looked up in the corresponding documentation page, that in all cases includes the following essential
items (see Figure 1 for an example):

• A description section, which indicates the type of filter according to the taxonomy explained in
Table 1.

• A details section, which provides the user with a general explanation of the filter’s behaviour
and any other usage particularity or warning.

• A references section that points to the original contribution where the filter was proposed, where
further details, motivations or contextualization can be found.

Figure 1: Extract from GE filter’s documentation page, showing the highlighted above aspects.

As usually in R, the function documentation pages can be either checked in the CRAN website for
the package or loaded from the command line with the orders ? or help:

> ?GE
> help(GE)

Calling the filters

When one wants to use a label noise filter in Data Mining applications, all we need to know is the
dataset to be filtered and its class variable (i.e. the one that contains the label for each available instance).
The NoiseFiltersR package provides two standard ways for tagging the class variable when calling
the implemented filters (see also Figure 2 and the example below):

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 223

• The default method receives the dataset to be filtered in the x argument, and the number for the
class column through the classColumn argument. If the latter is not provided, the last column
of the dataset is assumed to contain the labels.

• The formula method is intended for regular R users, who are used to this approach when fitting
regression or classification models. It allows for indicating the class variable (along with the
attributes to be used) by means of an expression like Class~Attr1+...+AttrN (recall that Class~.
makes use of all attributes).

Next, we provide an example on how to use these two methods for filtering out the iris dataset with
edgeBoostFilter (we did not change the default parameters of the filter):

Checking the structure of the dataset (last variable is the class one)
> data(iris)
> str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 ...

Using the default method:
> out_Def <- edgeBoostFilter(iris, classColumn = 5)
Using the formula method:
> out_For <- edgeBoostFilter(Species~., iris)
Checking that the filtered datasets are identical:
> identical(out_Def$cleanData, out_For$cleanData)
[1] TRUE

Figure 2: Extract from edgeBoostFilter’s documentation page, which shows the two methods for
calling filters in NoiseFiltersR package. In both cases, the parameters of the filter can be tunned
through additional arguments.

Notice that, in the last command of the example, we used the $ operator to access the objects
returned from the filter. In next section we explore the structure and contents of these objects.

The "filter" class

The S3 class "filter" is designed to unify the return value of the filters inside the NoiseFiltersR
package. It is a list that encapsulates seven elements with the most relevant information of the process:

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 224

• cleanData is a data.frame containing the filtered dataset.

• remIdx is a vector of integers indicating the indexes of removed instances (i.e. their row number
with respect to the original data.frame).

• repIdx is a vector of integers indicating the indexes of repaired/relabelled instances (i.e. their
row number with respect to the original data.frame).

• repLab is a factor containing the new labels for repaired instances.

• parameters is a list that includes the adopted parameters for the filter.

• call is an expression that contains the original call to the filter.

• extraInf is a character vector including additional information not covered by previous items.

As an example, we can check the structure of the above out_For object, which was the return value of
egdeBoostFilter function:

> str(out_For)
List of 7
$ cleanData :'data.frame': 142 obs. of 5 variables:
..$ Sepal.Length: num [1:142] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
..$ Sepal.Width : num [1:142] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
..$ Petal.Length: num [1:142] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
..$ Petal.Width : num [1:142] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
..$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 ...
$ remIdx : int [1:8] 58 78 84 107 120 130 134 139
$ repIdx : NULL
$ repLab : NULL
$ parameters:List of 3
..$ m : num 15
..$ percent : num 0.05
..$ threshold: num 0
$ call : language edgeBoostFilter(formula = Species ~ ., data = iris)
$ extraInf : chr "Highest edge value kept: 0.0669358381115568"
- attr(*, "class")= chr "filter"

In order to cleanly display this "filter" class in the R console, two specific print and summary
methods were implemented. The appearance of the first one is as follows

> print(out_For)

Call:
edgeBoostFilter(formula = Species ~ ., data = iris)

Parameters:
m: 15
percent: 0.05
threshold: 0

Results:
Number of removed instances: 8 (5.333333 %)
Number of repaired instances: 0 (0 %)

and contains three main blocks:

• The original call to the filter.

• The parameters used for the filter.

• An overview of the results, with the absolute number (and percentage of the total) of removed
and repaired instances.

The summary method displays some extra blocks:

• It always adds a title that summarizes the filter and dataset used.

• If there exists additional information in the extraInf component of the object, it is displayed
under a homonymous block.

• If the argument explicit is set to TRUE (it defaults to FALSE), the explicit results (i.e. the indexes
for removed and repaired instances and the new labels for the latters) are displayed.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 225

In the case of the previous out_For object, the summary command gets the following format:

> summary(out_For, explicit = TRUE)

Filter edgeBoostFilter applied to dataset iris

Call:
edgeBoostFilter(formula = Species ~ ., data = iris)

Parameters:
m: 15
percent: 0.05
threshold: 0

Results:
Number of removed instances: 8 (5.333333 %)
Number of repaired instances: 0 (0 %)

Additional information:
Highest edge value kept: 0.0669358381115568

Explicit indexes for removed instances:
58 78 84 107 120 130 134 139

Summary

In this paper, we introduced the NoiseFiltersR package, which is the first R extensive implementation
of classification-oriented label-noise filters. To set a context and motivation for this work, we presented
the problem of label noise and the main approaches to deal with it inside data preprocessing, as well
as the related software. As previously explained, the released package unifies the return value of
the filters by means of the "filter" class, which benefits from specific print and summary methods.
Moreover, it provides a R-user-friendly way to call the implemented filters, whose documentation is
worth reading and points to the original reference where they were first published.

Regarding the potential extensions of this package, there exist several aspects which can be
adressed in future releases. For instance, there exist some other label noise filters reviewed in the
main reference (Frénay and Verleysen, 2014) whose noise identification strategy does not belong to the
ones covered here: ensemble based, similarity based and data complexity based (as shown in Table 1).
Other relevant extension would be the inclusion of some datasets with different levels of artificially
introduced label noise, in order to ease the experimentation workflow2.

Acknowledgements

This work was supported by the Spanish Research Project TIN2014-57251-P, the Andalusian Research
Plan P11-TIC-7765, and the Brazilian grants CeMEAI-FAPESP 2013/07375-0 and FAPESP 2012/22608-8.
Luís P. F. Garcia was supported by FAPESP 2011/14602-7.

Bibliography

J. Alcalá, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez, and F. Herrera. Keel data-mining
software tool: Data set repository, integration of algorithms and experimental analysis framework.
Journal of Multiple-Valued Logic and Soft Computing, 17(2-3):255–287, 2010. [p219]

M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, K. Thiel, and B. Wiswedel.
KNIME - the Konstanz information miner: Version 2.0 and beyond. SIGKDD Explorations Newsletter,
11(1):26–31, 2009. URL https://doi.org/10.1145/1656274.1656280. [p219]

C. Bouveyron and S. Girard. Robust supervised classification with mixture models: Learning from
data with uncertain labels. Pattern Recognition, 42(11):2649–2658, 2009. URL https://doi.org/10.
1016/j.patcog.2009.03.027. [p219, 220]

2A wide variety of such datasets can be downloaded from the KEEL dataset repository in the website http:
//www.keel.es/, and then loaded from R.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1016/j.patcog.2009.03.027
https://doi.org/10.1016/j.patcog.2009.03.027
http://www.keel.es/
http://www.keel.es/

CONTRIBUTED RESEARCH ARTICLE 226

C. E. Brodley and M. A. Friedl. Identifying mislabeled training data. Journal of Artificial Intelligence
Research, 11:131–167, 1999. URL https://doi.org/10.1613/jair.606. [p220]

P. Filzmoser and M. Gschwandtner. Mvoutlier: Multivariate Outlier Detection Based on Robust Methods,
2015. URL https://CRAN.R-project.org/package=mvoutlier. R package version 2.0.6. [p219]

B. Frénay and M. Verleysen. Classification in the presence of label noise: a survey. IEEE transactions
on neural networks and learning systems, 25(5):845–869, 2014. URL https://doi.org/10.1109/TNNLS.
2013.2292894. [p219, 220, 221, 225]

L. P. Garcia, J. A. Sáez, J. Luengo, A. C. Lorena, A. C. de Carvalho, and F. Herrera. Using the
One-vs-One decomposition to improve the performance of class noise filters via an aggregation
strategy in multi-class classification problems. Knowledge-Based Systems, 90:153–164, 2015. URL
https://doi.org/10.1016/j.knosys.2015.09.023. [p219]

S. García, J. Luengo, and F. Herrera. Data Preprocessing in Data Mining. Springer-Verlag, 2015. URL
https://doi.org/10.1007/978-3-319-10247-4. [p219]

S. García, J. Luengo, and F. Herrera. Tutorial on practical tips of the most influential data preprocessing
algorithms in data mining. Knowledge-Based Systems, 98:1–29, 2016. URL https://doi.org/10.
1016/j.knosys.2015.12.006. [p219]

M. A. Hernández and S. J. Stolfo. Real-World Data Is Dirty: Data Cleansing and The Merge/Purge
Problem. Data Mining and Knowledge Discovery, 2:9–37, 1998. URL https://doi.org/10.1023/A:
1009761603038. [p220]

M. Hofmann and R. Klinkenberg. RapidMiner: Data Mining Use Cases and Business Analytics Applications.
Chapman & Hall/CRC, 2013. ISBN 1482205491, 9781482205497. [p219]

J. Honaker, G. King, and M. Blackwell. Amelia II: A program for missing data. Journal of Statistical
Software, 45(7):1–47, 2011. URL https://doi.org/10.18637/jss.v045.i07. [p219]

K. Hornik, C. Buchta, and A. Zeileis. Open-source machine learning: R meets Weka. Computational
Statistics, 24(2):225–232, 2009. URL https://doi.org/10.1007/s00180-008-0119-7. [p220]

T. M. Khoshgoftaar and P. Rebours. Improving software quality prediction by noise filtering techniques.
Journal of Computer Science and Technology, 22(3):387–396, 2007. URL https://doi.org/10.1007/
s11390-007-9054-2. [p220]

M. Kuhn. Building predictive models in R using the caret package. Journal of Statistical Software, 28(5),
2008. URL https://doi.org/10.18637/jss.v028.i05. [p219]

N. D. Lawrence and B. Schölkopf. Estimating a kernel Fisher discriminant in the presence of label
noise. In Proceedings of the Eighteenth International Conference on Machine Learning, ICML ’01, pages
306–313, 2001. [p219, 220]

Y. Li, L. F. A. Wessels, D. de Ridder, and M. J. T. Reinders. Classification in the presence of class
noise using a probabilistic kernel Fisher method. Pattern Recognition, 40(12):3349–3357, 2007. URL
https://doi.org/10.1016/j.patcog.2007.05.006. [p220]

Q. Miao, Y. Cao, G. Xia, M. Gong, J. Liu, and J. Song. RBoost: Label noise-robust boosting algorithm
based on a nonconvex loss function and the numerically stable base learners. IEEE Transactions
on Neural Networks and Learning Systems, 27(11):2216–2228, 2016. URL https://doi.org/10.1109/
TNNLS.2015.2475750. [p220]

A. L. Miranda, L. P. F. Garcia, A. C. Carvalho, and A. C. Lorena. Use of classification algorithms in
noise detection and elimination. In International Conference on Hybrid Artificial Intelligence Systems,
pages 417–424. Springer, 2009. URL https://doi.org/10.1007/978-3-642-02319-4_50. [p221]

A. D. Pozzolo, O. Caelen, and G. Bontempi. Unbalanced: Racing for Unbalanced Methods Selection, 2015.
URL https://CRAN.R-project.org/package=unbalanced. R package version 2.0. [p219]

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993. [p220]

P. Romanski and L. Kotthoff. FSelector: Selecting Attributes, 2014. URL https://CRAN.R-project.org/
package=FSelector. R package version 0.20. [p219]

J. A. Sáez, M. Galar, J. Luengo, and F. Herrera. Analyzing the Presence of Noise in Multi-Class
Problems: Alleviating Its Influence with the One-vs-One Decomposition. Knowledge and Information
Systems, 38(1):179–206, 2014. URL https://doi.org/10.1007/s10115-012-0570-1. [p220]

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://doi.org/10.1613/jair.606
https://CRAN.R-project.org/package=mvoutlier
https://doi.org/10.1109/TNNLS.2013.2292894
https://doi.org/10.1109/TNNLS.2013.2292894
https://doi.org/10.1016/j.knosys.2015.09.023
https://doi.org/10.1007/978-3-319-10247-4
https://doi.org/10.1016/j.knosys.2015.12.006
https://doi.org/10.1016/j.knosys.2015.12.006
https://doi.org/10.1023/A:1009761603038
https://doi.org/10.1023/A:1009761603038
https://doi.org/10.18637/jss.v045.i07
https://doi.org/10.1007/s00180-008-0119-7
https://doi.org/10.1007/s11390-007-9054-2
https://doi.org/10.1007/s11390-007-9054-2
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1016/j.patcog.2007.05.006
https://doi.org/10.1109/TNNLS.2015.2475750
https://doi.org/10.1109/TNNLS.2015.2475750
https://doi.org/10.1007/978-3-642-02319-4_50
https://CRAN.R-project.org/package=unbalanced
https://CRAN.R-project.org/package=FSelector
https://CRAN.R-project.org/package=FSelector
https://doi.org/10.1007/s10115-012-0570-1

CONTRIBUTED RESEARCH ARTICLE 227

J. A. Sáez, M. Galar, J. Luengo, and F. Herrera. INFFC: An iterative class noise filter based on
the fusion of classifiers with noise sensitivity control. Information Fusion, 27:19–32, 2016. URL
https://doi.org/10.1016/j.inffus.2015.04.002. [p219]

C.-M. Teng. Correcting Noisy Data. In Proceedings of the Sixteenth International Conference on Machine
Learning, pages 239–248, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers. [p220]

C. M. Teng. Dealing with data corruption in remote sensing. In International Symposium on Intelligent
Data Analysis, pages 452–463. Springer, 2005. URL https://doi.org/10.1007/11552253_41. [p221]

I. Tomek. Two modifications of CNN. IEEE Trans. Systems, Man and Cybernetics, 6:769–772, 1976. URL
https://doi.org/10.1109/TSMC.1976.4309452. [p219]

S. van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations
in r. Journal of Statistical Software, 45(3):1–67, 2011. URL https://doi.org/10.18637/jss.v045.i03.
[p219]

R. Y. Wang, V. C. Storey, and C. P. Firth. A Framework for Analysis of Data Quality Research. IEEE
Transactions on Knowledge and Data Engineering, 7(4):623–640, 1995. URL https://doi.org/10.1109/
69.404034. [p220]

D. L. Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions
on Systems, Man, and Cybernetics, 2(3):408–421, 1972. URL https://doi.org/10.1109/TSMC.1972.
4309137. [p219]

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. Morgan
Kaufmann, 2005. [p219, 220]

X. Wu. Knowledge Acquisition from Databases. Ablex Publishing Corp., Norwood, NJ, USA, 1996. [p220]

X. Wu and X. Zhu. Mining with noise knowledge: Error-aware data mining. IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(4):917–932, 2008. URL https:
//doi.org/10.1109/TSMCA.2008.923034. [p220]

S. Zhong, T. M. Khoshgoftaar, and N. Seliya. Analyzing Software Measurement Data with Clustering
Techniques. IEEE Intelligent Systems, 19(2):20–27, 2004. URL https://doi.org/10.1109/MIS.2004.
1274907. [p220]

X. Zhu and X. Wu. Class noise vs. attribute noise: A quantitative study. Artificial Intelligence Review, 22
(3):177–210, 2004. URL https://doi.org/10.1007/s10462-004-0751-8. [p220]

Pablo Morales
Department of Computer Science and Artificial Intelligence, University of Granada
18071 Granada, Spain
pablomorales@decsai.ugr.es

Julián Luengo
Department of Computer Science and Artificial Intelligence, University of Granada
18071 Granada, Spain
julianlm@decsai.ugr.es

Luís P.F. Garcia
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo
Trabalhador São-carlense Av. 400, São Carlos, São Paulo 13560-970, Brazil
lpgarcia@icmc.usp.br

Ana C. Lorena
Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo
Talim St. 330, São José dos Campos, São Paulo 12231-280, Brazil
aclorena@unifesp.br

André C.P.L.F. de Carvalho
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo
Trabalhador São-carlense Av. 400, São Carlos, São Paulo 13560-970, Brazil
andre@icmc.usp.br

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://doi.org/10.1016/j.inffus.2015.04.002
https://doi.org/10.1007/11552253_41
https://doi.org/10.1109/TSMC.1976.4309452
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1109/69.404034
https://doi.org/10.1109/69.404034
https://doi.org/10.1109/TSMC.1972.4309137
https://doi.org/10.1109/TSMC.1972.4309137
https://doi.org/10.1109/TSMCA.2008.923034
https://doi.org/10.1109/TSMCA.2008.923034
https://doi.org/10.1109/MIS.2004.1274907
https://doi.org/10.1109/MIS.2004.1274907
https://doi.org/10.1007/s10462-004-0751-8
mailto:pablomorales@decsai.ugr.es
mailto:julianlm@decsai.ugr.es
mailto:lpgarcia@icmc.usp.br
mailto:aclorena@unifesp.br
mailto:andre@icmc.usp.br

CONTRIBUTED RESEARCH ARTICLE 228

Francisco Herrera
Department of Computer Science and Artificial Intelligence, University of Granada
18071 Granada, Spain
herrera@decsai.ugr.es

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

mailto:herrera@decsai.ugr.es

	The NoiseFiltersR Package: Label Noise Preprocessing in R
	Introduction
	Label noise preprocessing
	The NoiseFiltersR package
	Installation
	Documentation
	Calling the filters
	The ````"filter" class

	Summary
	Acknowledgements

