
CONTRIBUTED RESEARCH ARTICLE 446

milr: Multiple-Instance Logistic
Regression with Lasso Penalty
by Ping-Yang Chen, Ching-Chuan Chen, Chun-Hao Yang, Sheng-Mao Chang, Kuo-Jung Lee

Abstract The purpose of the milr package is to analyze multiple-instance data. Ordinary multiple-
instance data consists of many independent bags, and each bag is composed of several instances.
The statuses of bags and instances are binary. Moreover, the statuses of instances are not observed,
whereas the statuses of bags are observed. The functions in this package are applicable for analyzing
multiple-instance data, simulating data via logistic regression, and selecting important covariates in
the regression model. To this end, maximum likelihood estimation with an expectation-maximization
algorithm is implemented for model estimation, and a lasso penalty added to the likelihood function is
applied for variable selection. Additionally, an "milr" object is applicable to generic functions fitted,
predict and summary. Simulated data and a real example are given to demonstrate the features of this
package.

Introduction

Multiple-instance learning (MIL) is used to model the class labels which are associated with bags of
observations instead of the individual observations. This technique has been widely used in solving
many different real-world problems. In the early stage of the MIL application, Dietterich et al. (1997)
studied the drug-activity prediction problem. A molecule is classified as a good drug if it is able
to bind strongly to a binding site on the target molecule. The problem is: one molecule can adopt
multiple shapes called the conformations and only one or a few conformations can bind the target
molecule well. They described a molecule by a bag of its many possible conformations whose binding
strength remains unknown. An important application of MIL is the image and text categorization,
such as in Maron and Ratan (1998); Andrews et al. (2003); Zhang et al. (2007); Zhou et al. (2009); Li et al.
(2011); Kotzias et al. (2015), to name a few. An image (bag) possessing at least one particular pattern
(instance) is categorized into one class; otherwise, it is categorized into another class. For example,
Maron and Ratan (1998) treated the natural scene images as bags, and, each bag is categorized as the
scene of waterfall if at least one of its subimages is the waterfall. Whereas, Zhou et al. (2009) studied
the categorization of collections (bags) of posts (instances) from different newsgroups corpus. A
collection is a positive bag if it contains 3% posts from a target corpus category and the remaining 97%
posts, as well as all posts in the negative bags, belong to the other corpus categories. MIL is also used
in medical researches. The UCSB breast cancer study (Kandemir et al., 2014) is such a case. Patients
(bags) were diagnosed as having or not having cancer by doctors; however, the computer, initially,
had no knowledge of which patterns (instances) were associated with the disease. Furthermore, in
manufacturing processes (Chen et al., 2016), a product (bag) is defective as long as one or more of its
components (instances) are defective. In practice, at the initial stage, we only know that a product is
defective, and we have no idea which component is responsible for the defect.

Several approaches have been offered to analyze datasets with multiple instances, e.g., Maron
(1998); Ray and Craven (2005); Xu and Frank (2004); Zhang and Goldman (2002). From our point of
view, the statuses of these components are missing variables, and thus, the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) can play a role in multiple-instance learning. By now the
toolboxes or libraries available for implementing MIL methods are developed by other computer
softwares. For example, Yang (2008) and Tax and Cheplygina (2016) are implemented in MATLAB
software, but neither of them carries the methods based on logistic regression model. Settles et al. (2008)
provided the Java codes including the method introduced in Ray and Craven (2005). Thus, for R users,
we are first to develop a MIL-related package based on logistic regression modelling which is called
multiple-instance logistic regression (MILR). In this package, we first apply the logistic regression
defined in Ray and Craven (2005) and Xu and Frank (2004), and then, we use the EM algorithm to
obtain maximum likelihood estimates of the regression coefficients. In addition, the popular lasso
penalty (Tibshirani, 1996) is applied to the likelihood function so that parameter estimation and
variable selection can be performed simultaneously. This feature is especially desirable when the
number of covariates is relatively large.

To fix ideas, we firstly define the notations and introduce the construction of the likelihood function.
Suppose that the dataset consists of n bags and that there are mi instances in the ith bag for i = 1, . . . , n.
Let Zi denote the status of the ith bag, and let Yij be the status of the jth instance in the ith bag along
with xij ∈ <p as the corresponding covariates. We assume that the Yij follow independent Bernoulli

distributions with defect rates of pij, where pij = g
(

β0 + xT
ij β
)

and g(x) = 1/
(
1 + e−x). We also

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 447

assume that the Zi follow independent Bernoulli distributions with defect rates of πi. Therefore, the
bag-level likelihood function is

L (β0, β) =
n

∏
i=1

πzi
i (1− πi)

1−zi . (1)

To associate the bag-level defect rate πi with the instance-level defect rates pij, several methods

have been proposed. The bag-level status is defined as Zi = I
(

∑mi
j=1 Yij > 0

)
. If the independence

assumption among the Yij holds, the bag-level defect rate is πi = 1−∏mi
j=1(1− pij). On the other

hand, if the independence assumption might not be held, Xu and Frank (2004) and Ray and Craven
(2005) proposed the softmax function to associate πi to pij, as follows:

si (α) =
mi

∑
j=1

pij exp
{

αpij

}/ mi

∑
j=1

exp
{

αpij

}
, (2)

where α is a pre-specified nonnegative value. Xu and Frank (2004) used α = 0, therein modeling
πi by taking the average of pij, j = 1, . . . , mi, whereas Ray and Craven (2005) suggested α = 3. We
observe that the likelihood (1) applying neither the πi function nor the si(α) function results in effective
estimators.

Below, we begin by establishing the E-steps and M-steps required for the EM algorithm and
then attach the lasso penalty for the estimation and feature selection. Several computation strategies
applied are the same as those addressed in Friedman et al. (2010). Finally, we demonstrate the functions
provided in the milr package via simulations and on a real dataset.

The multiple-instance logistic regression

EM algorithm

If the instance-level statuses, yij, are observable, the complete data likelihood is

n

∏
i=1

mi

∏
j=1

p
yij

ij q
1−yij

ij ,

where qij = 1− pij. An ordinary approach, such as the Newton method, can be used to solve this
maximal likelihood estimate (MLE). However, considering multiple-instance data, we can only observe

the statuses of the bags, Zi = I
(

∑
mj

j=1 Yij > 0
)

, and not the statuses of the instances Yij. As a result,
we apply the EM algorithm to obtain the MLEs of the parameters by treating the instance-level labels
as the missing data.

In the E-step, two conditional distributions of the missing data given the bag-level statuses Zi are

Pr
(
Yi1 = 0, . . . , Yimi = 0 | Zi = 0

)
= 1

and

Pr
(

Yij = yij, j = 1, . . . , mi | Zi = 1
)
=

∏mi
j=1 p

yij

ij q
1−yij

ij × I
(

∑mi
j=1 yij > 0

)
1−∏mi

l=1 qil
.

Thus, the conditional expectations are

E
(

Yij | Zi = 0
)
= 0 and E

(
Yij | Zi = 1

)
=

pij

1−∏mi
l=1 qil

≡ γij.

The Q function at step t is Q
(

β0, β | βt
0, βt) = ∑n

i=1 Qi
(

β0, β | βt
0, βt), where Qi is the conditional

expectation of the complete log-likelihood for the ith bag given Zi, which is defined as

Qi
(

β0, β | βt
0, βt) = E

 mi

∑
j=1

yij log
(

pij

)
+
(

1− yij

)
log
(

qij

) ∣∣∣∣∣ Zi = zi, βt
0, βt

=

mi

∑
j=1

ziγ
t
ij

(
β0 + xT

ij β
)
− log

(
1 + eβ0+xT

ij β
)

.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=milr

CONTRIBUTED RESEARCH ARTICLE 448

Note that all the pij, qij, and γij are functions of β0 and β, and thus, we define these functions by
substituting β0 and β by their current estimates βt

0 and βt to obtain pt
ij, qt

ij, and γt
ij, respectively.

In the M-step, we maximize this Q function with respect to (β0, β). Since the maximization of the
nonlinear Q function is computationally expensive, following Friedman et al. (2010), the quadratic
approximation to Q is applied. Taking the second-order Taylor expansion about βt

0 and βt, we have
Q
(

β0, β | βt
0, βt) = QQ

(
β0, β | βt

0, βt)+ C + R2
(

β0, β | βt
0, βt), where C is a constant in terms of β0

and β, R2
(

β0, β | βt
0, βt) is the remainder term of the expansion and

QQ
(

β0, β | βt
0, βt) = −1

2

n

∑
i=1

mi

∑
j=1

wt
ij

[
ut

ij − β0 − xT
ij β
]2

,

where ut
ij = β0 + xT

ij β
t +

(
ziγ

t
ij − pt

ij

)/(
pt

ijq
t
ij

)
and wt

ij = pt
ijq

t
ij. In the milr package, instead of

maximizing Q
(

β0, β | βt
0, βt), we maximize its quadratic approximation, QQ

(
β0, β | βt

0, βt). Since the
objective function is quadratic, the roots of ∂QQ/∂β0 and ∂QQ/∂β have closed-form representations.

Variable selection with lasso penalty

We adopt the lasso method (Tibshirani, 1996) to identify active features in this MILR framework. The
key is to add the L1 penalty into the objective function in the M-step so that the EM algorithm is
capable of performing estimation and variable selection simultaneously. To this end, we rewrite the
objective function as

min
β0,β

{
−QQ

(
β0, β | βt

0, βt)+ λ
p

∑
k=1
|βk|

}
. (3)

Note that the intercept term β0 is always kept in the model; thus, we do not place a penalty on β0.
In addition, λ is the tuning parameter, and we will introduce how to determine this parameter later.
We applied the shooting algorithm (Fu, 1998; Chen et al., 2016) to update

(
βt

0, βt).
Implementation

The milr package contains a data generator, DGP, which is used to generate the multiple-instance data
for the simulation studies, and two estimation approaches, milr and softmax, which are the main
tools for modeling the multiple-instance data. In this section, we introduce the usage and default
setups of these functions.

Data generator

The function DGP is the generator for the multiple-instance-type data under the MILR framework.

To use the DGP function, the user needs to specify an integer n as the number of bags, a vector m of
length n as the number of instances in each bag, and a vector beta of length p, with the desired number
of covariates, and the regression coefficients, β, as in DGP(n,m,beta). Note that one can set m as an
integer for generating the data with an equal instance size m for each bag. Thus, the total number of
observations is N = ∑n

i=1 mi. The DGP simulates the labels of bags through the following steps:

1. Generate p mutually independent covariates of length N from the standard normal distribution
as an N × p matrix, X.

2. Generate the binary response, Yij, for the jth instance of the ith bag from the Bernoulli distribu-
tion with

pij = 1
/ (

1 + exp
{
−xT

ij β
})

where xij is the p-component vector in the row of X representing the jth instance of the ith bag.

3. Calculate the observed response for the ith bag by Zi = I
(

∑mi
j=1 Yij > 0

)
.

4. Return the indices of the bags, the covariate matrix X and the bag-level statuses Z.

The milr and softmax apporaches

In the milr package, we provide two approaches to model the multiple-instance data: the proposed
milr (Chen et al., 2016) and the softmax approach (Xu and Frank, 2004). To implement these two
approaches, we assume that the number of observations and covariates are N and p, respectively. The

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 449

input data for both milr and softmax are separated into three parts: the bag-level statuses, y, as a
vector of length N; the N × p design matrix, x; and bag, the vector of indices of length N, representing
the indices of the bag to which each instance belongs.

milr(y, x, bag, lambda, numLambda, lambdaCriterion, nfold, maxit)
softmax(y, x, bag, alpha, ...)

For the milr function, specifying lambda in different ways controls whether and how the lasso
penalty participates in parameter estimation. The default value of lambda is 0. With this value, the
ordinary MLE is applied, i.e., no penalty term is considered. This is the suggested choice when the
number of covariates p is small. When p is large or when variable selection is desired, users can
specify a λ vector of length κ; otherwise, by letting lambda = -1, the program automatically provides
a λ vector of length κ = numLambda as the tuning set. Following Friedman et al. (2010), the theoretical
maximal value of λ in (3) is

λmax =

[
n

∏
i=1

(mi − 1)

] 1
2
[

n

∏
i=1

m1−2zi
i

] 1
2

.

The automatically specified sequence of λ values ranges from λmin = λmax/1000 to λmax in ascending
order.

The default setting for choosing the optimal λ among these λ values is the Bayesian information
criterion (BIC), −2 log (likelihood) + p∗ × log (n), where p∗ is the number of nonzero regression
coefficients. Alternatively, the user can use the options lambdaCriterion = "deviance" and nfold =
K with an integer K to obtain the best λ that minimizes the predictive deviance through “bag-wise”
K-fold cross validation. The last option, maxit, indicates the maximal number of iterations of the EM
algorithm; its default value is 500.

For the softmax function, the option alpha is a nonnegative real number for the α value in (2). The
maximum likelihood estimators of the regression coefficients are obtained by the generic function
optim. Note that no variable selection approach is implemented for this method.

Two generic accessory functions, coef and fitted, can be used to extract the regression coefficients
and the fitted bag-level labels returned by milr and softmax. We also provide the significance test
based on Wald’s test for the milr estimations without the lasso penalty through the summary function.
In addition, to predict the bag-level statuses for the new data set, the predict function can be used by
assigning three items: object is the fitted model obtained by milr or softmax, newdata is the covariate
matrix, and bag_newdata is the bag indices of the new dataset. Finally, the MIL model can be used to
predict the bag-level labels and the instances-level labels. The option type in fitted and predicted
functions controls the type of output labels. The default option is type = "bag" which results the
bag-level prediction. Otherwise, by setting type = "instance", the instances-level labels will be
presented.

fitted(object, type)
predict(object, newdata, bag_newdata, type)

Examples

We illustrate the usage of the milr package via simulated and real examples.

Estimation and variable selection

We demonstrate how to apply the milr function for model estimation and variable selection. We
simulate data with n = 50 bags, each containing m = 3 instances and regression coefficients β =
(−2,−1, 1, 2, 0.5, 0, 0, 0, 0, 0). Specifically, the first four covariates are important.

library(magrittr)
library(milr)
set.seed(99)
set the size of dataset
numOfBag <- 50
numOfInstsInBag <- 3
set true coefficients: beta_0, beta_1, beta_2, beta_3
trueCoefs <- c(-2, -2, -1, 1, 2, 0.5, 0, 0, 0, 0, 0)
trainData <- DGP(numOfBag, numOfInstsInBag, trueCoefs)

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 450

trainData$X %<>% set_colnames(paste0("X", 1:ncol(.)))
tapply(trainData$Z, trainData$ID, function(x) sum(x) > 0) %>% as.numeric

[1] 1 1 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0
[36] 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1

Since the number of covariates is small, we then use the milr function to estimate the model
parameters with lambda = 0. One can apply summary to produce results including estimates of the
regression coefficients and their corresponding standard error, testing statistics and the P-values under
Wald’s test. The regression coefficients are returned by the function coef.

fit milr model
milrFit_EST <- milr(trainData$Z, trainData$X, trainData$ID, lambda = 0)
call the Wald's test result
summary(milrFit_EST)

Log-Likelihood: -14.005.

Estimates:

Estimate Std.Err Z value Pr(>z)
intercept -3.28671 1.16695 -2.8165 0.004855 **
X1 -2.45529 0.92227 -2.6622 0.007762 **
X2 -1.26351 0.67621 -1.8685 0.061689 .
X3 0.94016 0.75173 1.2507 0.211054
X4 3.84173 1.47862 2.5982 0.009372 **
X5 0.22000 0.66579 0.3304 0.741073
X6 -1.00740 0.73288 -1.3746 0.169262
X7 -0.53063 0.59871 -0.8863 0.375463
X8 0.25334 0.71596 0.3538 0.723451
X9 -1.92753 0.92437 -2.0852 0.037047 *
X10 0.12249 0.63054 0.1943 0.845972

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

call the regression coefficients
coef(milrFit_EST)

intercept X1 X2 X3 X4 X5
-3.2867082 -2.4552903 -1.2635149 0.9401636 3.8417318 0.2199982
X6 X7 X8 X9 X10
-1.0074012 -0.5306309 0.2533409 -1.9275338 0.1224893

The generic function table builds a contingency table of the counts for comparing the true bag-
level statuses and the fitted bag-level statuses (obtained by the option type = "bag") and the predict
function is used to predict the labels of each bag with corresponding covariate X. On the other hand,
The fitted and predicted instance-level statuses can also be found by setting type = "instance" in the
fitted and predict functions.

fitted(milrFit_EST, type = "bag")

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1

%#fitted(milrFit_EST, type = "instance") # instance-level fitted labels
table(DATA = tapply(trainData$Z, trainData$ID, function(x) sum(x) > 0) %>% as.numeric,

FITTED = fitted(milrFit_EST, type = "bag"))

FITTED
DATA 0 1
0 18 4
1 3 25

predict for testing data
testData <- DGP(numOfBag, numOfInstsInBag, trueCoefs)

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 451

testData$X %<>% set_colnames(paste0("X", 1:ncol(.)))
pred_EST <- predict(milrFit_EST, testData$X, testData$ID, type = "bag")
#predict(milrFit_EST, testData$X, testData$ID,
type = "instance") # instance-level prediction
table(DATA = tapply(testData$Z, testData$ID, function(x) sum(x) > 0) %>% as.numeric,

PRED = pred_EST)

PRED
DATA 0 1
0 13 6
1 8 23

Next, the n < p cases are considered. We generate a data set with n = 50 bags, each with 3
instances and p = 100 covariates. Among these covariates, only the first five of them, X1, . . . , X5, are
active and their nonzero coefficients are the same as the previous example. First, we manually specify
50 λ values manually from 0.01 to 50. The milr function chooses the best tuning parameter which
results in the smallest BIC. For this dataset, the chosen model is a constant model.

set.seed(99)
Set the new coefficient vector (large p)
trueCoefs_Lp <- c(-2, -2, -1, 1, 2, 0.5, rep(0, 95))
Generate the new training data with large p
trainData_Lp <- DGP(numOfBag, numOfInstsInBag, trueCoefs_Lp)
trainData_Lp$X %<>% set_colnames(paste0("X", 1:ncol(.)))
variable selection by user-defined tuning set
lambdaSet <- exp(seq(log(0.01), log(50), length = 50))
milrFit_VS <- milr(trainData_Lp$Z, trainData_Lp$X, trainData_Lp$ID,

lambda = lambdaSet)
grep the active factors and their corresponding coefficients
coef(milrFit_VS) %>% .[abs(.) > 0]

intercept
-0.9020893

Second, we try the auto-tuning feature implemented in milr by assigning lambda = -1. The total
number of tuning λ values is indicated by setting nlambda. The following example shows the result of
the best model chosen among 50 λ values. The slice $lambda shows the auto-tuned λ candidates and
the slice $BIC returns the corresponding value of BIC for every candidate λ value. Again, the chosen
model is a constant model.

variable selection using auto-tuning
milrFit_auto_VS <- milr(trainData_Lp$Z, trainData_Lp$X, trainData_Lp$ID,

lambda = -1, numLambda = 50)
the auto-selected lambda values
milrFit_auto_VS$lambda

[1] 0.08041559 0.09259014 0.10660786 0.12274780 0.14133125
[6] 0.16272815 0.18736444 0.21573056 0.24839117 0.28599645
[11] 0.32929500 0.37914875 0.43655012 0.50264180 0.57873946
[16] 0.66635795 0.76724148 0.88339831 1.01714075 1.17113118
[21] 1.34843505 1.55258192 1.78763568 2.05827549 2.36988893
[26] 2.72867921 3.14178869 3.61744105 4.16510498 4.79568271
[31] 5.52172701 6.35769107 7.32021625 8.42846331 9.70449388
[36] 11.17370961 12.86535784 14.81311383 17.05575111 19.63791336
[41] 22.61100310 26.03420494 29.97566379 34.51384138 39.73907818
[46] 45.75539179 52.68254760 60.65844293 69.84185212 80.41558721

the values of BIC under each lambda value
milrFit_auto_VS$BIC

[1] 196.54069 184.90606 161.51628 157.75005 118.76827 118.95214 115.27610
[8] 115.55212 115.87195 112.32892 112.75439 113.24620 113.81466 114.48027
[15] 119.19304 116.18877 121.15644 114.54700 112.02964 110.31200 103.92031
[22] 101.90760 88.78977 83.57070 82.69910 82.13240 78.00261 74.25620
[29] 74.19599 78.98716 77.39963 75.33387 78.16814 69.25384 69.25384
[36] 69.25384 69.25384 69.25384 69.25384 69.25384 69.25384 69.25384
[43] 69.25384 69.25384 69.25384 69.25384 69.25384 69.25384 69.25384
[50] 69.25384

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 452

grep the active factors and their corresponding coefficients
coef(milrFit_auto_VS) %>% .[abs(.) > 0]

intercept
-0.9020893

Instead of using BIC, a better way to choose the proper lambda is using the cross validation
by setting lambdaCriterion = "deviance". The following example shows the best model chosen
by minimizing the predictive deviance via “bag-wise” 10-fold cross validation. The results of the
predictive deviance for every candidate λ can be found in the slice $cv. Twenty-nine covariates were
identified including the first four true active covariates, X1, . . . , X4.

variable selection using auto-tuning with cross validation
milrFit_auto_CV <- milr(trainData_Lp$Z, trainData_Lp$X, trainData_Lp$ID,

lambda = -1, numLambda = 50,
lambdaCriterion = "deviance", nfold = 10)

the values of predictive deviance under each lambda value
milrFit_auto_CV$cv

[1] 10.013948 3.754961 3.132322 2.933881 2.433803 2.346058 2.752407
[8] 3.248528 3.858600 4.392568 4.781208 5.249175 5.727995 6.030227
[15] 6.393522 6.432488 6.379543 6.339838 6.317661 6.329531 5.551296
[22] 5.222904 5.113070 5.006837 5.078377 5.106067 5.242165 5.579102
[29] 5.786248 6.178347 6.414204 6.648448 6.659413 6.573462 6.547737
[36] 6.547737 6.547737 6.547737 6.547737 6.547737 6.547737 6.547737
[43] 6.547737 6.547737 6.547737 6.547737 6.547737 6.547737 6.547737
[50] 6.547737

grep the active factors and their corresponding coefficients
coef(milrFit_auto_CV) %>% .[abs(.) > 0]

intercept X1 X2 X3 X4
-2.446119887 -0.362833108 -1.479388087 0.541861054 0.535400264
X7 X11 X14 X15 X17
1.448461978 0.334921736 0.004238594 -0.755908930 0.017708059
X18 X25 X26 X30 X32
-0.586349577 -0.244962971 0.343205919 1.315468844 -0.845118964
X33 X37 X48 X58 X61
0.370261921 -0.493144745 -0.523001848 -0.044975426 0.208521105
X62 X71 X72 X74 X76
0.409946699 1.369814722 0.484713157 0.683531448 1.542186462
X77 X79 X85 X95 X100
-0.656669320 -1.685794976 -0.369189815 -0.912145167 -0.135461219

According to another simulation study which is not shown in this paper, in contrast to cross-
validation, BIC does not perform well for variable selection in terms of multiple-instance logistic
regressions. However, it can be an alternative when performing cross-validation is too time consuming.

Real case study

Hereafter, we denote the proposed method with the lasso penalty by MILR-LASSO for brevity. In the
following, we demonstrate the usage of MILR-LASSO and the softmax approach on a real dataset,
called MUSK1. The MUSK1 data set consists of 92 molecules (bags) of which 47 are classified as having
a musky smell and 45 are classified to be non-musks. The molecules are musky if at least one of their
conformers (instances) were responsible for the musky smell. However, knowledge about which
conformers are responsible for the musky smell is unknown. There are 166 features that describe the
shape, or conformation, of the molecules. The goal is to predict whether a new molecules is musk or
non-musk. This dataset is one of the popular benchmark datasets in the field of multiple-instance
learning research and one can download the dataset from the following weblink.

dataName <- "MIL-Data-2002-Musk-Corel-Trec9.tgz"
dataUrl <- "http://www.cs.columbia.edu/~andrews/mil/data/"

We use the untar function to decompress the downloaded .tgz file and extract the MUSK1 dataset.
Then, with the following data preprocessing, we reassemble the MUSK1 dataset in a "data.frame"
format. The first 2 columns of the MUSK1 dataset are the bag indices and the bag-level labels of each
observation. Starting with the third column, there are p = 166 covariates involved in the MUSK1 dataset.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 453

filePath <- file.path(getwd(), dataName)
Download MIL data sets from the url
download.file(paste0(dataUrl, dataName), filePath)
Extract MUSK1 data file
untar(filePath, files = "MilData/Musk/musk1norm.svm")
Read and Preprocess MUSK1
library(reshape2)
tmp <- read.table(file.path(getwd(), "MilData/Musk/musk1norm.svm"),

sep = " ", colClasses = "character")
MUSK1 <- colsplit(tmp[,1], ":", names = c("obs", "bag", "label"))[,2:3]
MUSK1 <- cbind(MUSK1, Reduce(cbind,

lapply(2:ncol(tmp),
function(i) colsplit(tmp[,i], ":", names = paste0(c("num", "x"), i-1))[,2]

)))
MUSK1$bag <- MUSK1$bag + 1
MUSK1$label <- (MUSK1$label + 1)/2
MUSK1[,3:ncol(MUSK1)] <- scale(MUSK1[,3:ncol(MUSK1)])
Y <- tapply(MUSK1$label, MUSK1$bag, function(x) sum(x) > 0) %>% as.numeric
nc <- ncol(MUSK1)

To fit an MIL model without variable selection, the milr package provides two functions. The first
is the milr function with lambda = 0. The second approach is the softmax function with a specific
value of alpha. Here, we apply the approaches that have been introduced in Xu and Frank (2004)
and Ray and Craven (2005), called the s(0) (alpha=0) and s(3) (alpha=3) methods, respectively. The
optimization method in softmax is chosen as the default settings of the generic function optim, that is,
the Nelder-Mead method.

As suggested by one reviewer, it is relevant to compare the computational efficiencies and con-
vergence rates of the milr and softmax functions implemented in this package. Note that, the milr
approach is written in C++ and so is the objective function in softmax, and, we only consider their
performance affected by their common tuning parameter, maxit, the total number of iterations. For
each approach, the total number of iterations are set from 5,000 to 25,000, and, the computation task
was performed by a laptop with Intel Core M-5Y71 CPU 1.4 GHz and 8GB RAM. Moreover, the
performance in model fitting is assessed based on the classification accuracy. We use the generic
function table to produce the contingency tables and calculate the classification accuracy values
accordingly.

The left panel of Figure 1 shows the computational cost of each approach along with the increment
of the total number of iterations. As expected, the computational cost increases with the number of
iterations linearly for both functions. However, the slope for the milr function is much flatter than the
slope for the softmax function. A further result of MILR not shown here suggests that, for this dataset,
the coefficient estimate of the MILR approach converges between 15,000 and 16,000 iterations. The
resulting accuracy of each model is shown in the right panel of Figure 1 which indicates that the MILR
approach requires fewer iterations to achieve the best fit.

set the iterations from 5000 to 25000
itSet <- seq(5000, 25000, 2000)
runtime <- matrix(0, length(itSet), 3)
runacc <- matrix(0, length(itSet), 3)
for (it in 1:length(itSet)) {

record the computation time
runtime[it,1] <- system.time(

softmaxFit_0 <- softmax(MUSK1$label, MUSK1[,3:nc], MUSK1$bag, alpha = 0,
control = list(maxit = itSet[it]))

)[3]
runtime[it,2] <- system.time(

softmaxFit_3 <- softmax(MUSK1$label, MUSK1[,3:nc], MUSK1$bag, alpha = 3,
control = list(maxit = itSet[it]))

)[3]
runtime[it,3] <- system.time(
use a very small lambda so that milr can do the estimation
without evaluating the Hessian matrix
milrFit <- milr(MUSK1$label, MUSK1[,3:nc], MUSK1$bag, lambda = 1e-7,

maxit = itSet[it])
)[3]
calculate the accuracy

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 454

5 10 15 20 25

Iterations (x 1000)

C
P

U
 ti

m
e

(s
ec

)
CPU time

5

10

15

s_0
s_3
milr

5 10 15 20 25

Iterations (x 1000)
A

cc
ur

ac
y

(%
)

Fitted Accuracy

90

92.5

95

97.5

100

Figure 1: Computational efficiency of softmax methods and milr approach.

tmp <- table(DATA = Y, FIT_s0 = fitted(softmaxFit_0, type = "bag"))
runacc[it,1] <- sum(diag(tmp))/sum(tmp)
tmp <- table(DATA = Y, FIT_s3 = fitted(softmaxFit_3, type = "bag"))
runacc[it,2] <- sum(diag(tmp))/sum(tmp)
tmp <- table(DATA = Y, FIT_MILR = fitted(milrFit, type = "bag"))
runacc[it,3] <- sum(diag(tmp))/sum(tmp)

}

For variable selection, we apply the MILR-LASSO approach. First, the tuning parameter set is
chosen automatically by setting λ = −1, and the best λ value is obtained by minimizing the predictive
deviance with 10-fold cross validation among nlambda = 100 candidates. In total it costs about 130
seconds to choose the optimal λ value and there are 19 active covariates detected by the MILR-LASSO
approach. Using these active covariates, the reduced MILR model performs 89.13% classification
accuracy.

MILR-LASSO
milrSV <- milr(MUSK1$label, MUSK1[,3:nc], MUSK1$bag,

lambda = -1, numLambda = 100,
lambdaCriterion = "deviance", maxit = 16000)

sv_ind <- which(coef(milrSV)[-1] != 0) + 2
show the detected active covariates
names(MUSK1)[sv_ind]

[1] "V31" "V36" "V37" "V76" "V83" "V105" "V106" "V108" "V109" "V116"
[11] "V118" "V124" "V126" "V129" "V132" "V136" "V147" "V162" "V163"

use a very small lambda so that milr can do the estimation
without evaluating the Hessian matrix
milrREFit <- milr(MUSK1$label, MUSK1[,sv_ind], MUSK1$bag,

lambda = 1e-7, maxit = 16000)
table(DATA = Y, FIT_MILR = fitted(milrREFit, type = "bag"))

FIT_MILR
DATA 0 1
0 39 6
1 4 43

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 455

Following the discussion above, we use 10-fold cross validation and compare the prediction
accuracy among four MIL models which are s(0), s(3), the MILR model with all covariates, and, the
MILR model fitted by the selected covariates via MILR-LASSO. The resulting prediction accuracies are
83.70%, 77.17%, 75.00% and 81.52%, respectively.

predY <- matrix(0, length(Y), 4); colnames(predY) <- c("s0", "s3", "milr", "milr_sv")
set.seed(99)
folds <- 10; foldSize <- floor(length(Y)/folds)
foldBag <- c(rep(1:folds, foldSize), sample(1:folds, length(Y) - folds*foldSize))
foldBag <- sample(foldBag, length(foldBag))
foldIns <- rep(foldBag, table(MUSK1$bag))
for (i in 1:folds) {
prepare training and testing sets
ind <- which(foldIns == i)
training <- MUSK1[-ind,]; testing <- MUSK1[ind,]
train models
fit_s0 <- softmax(training$label, training[,3:nc], training$bag,

alpha = 0, control = list(maxit = 25000))
fit_s3 <- softmax(training$label, training[,3:nc], training$bag,

alpha = 3, control = list(maxit = 25000))
milr, use a very small lambda so that milr do the estimation
without evaluating the Hessian matrix
fit_milr <- milr(training$label, training[,3:nc], training$bag,

lambda = 1e-7, maxit = 16000)
fit_milr_sv <- milr(training$label, training[,sv_ind], training$bag,

lambda = 1e-7, maxit = 16000)
store the predicted labels
ind2 <- which(foldBag == i)
predict function returns bag response in default
predY[ind2,1] <- predict(fit_s0, as.matrix(testing[,3:nc]), testing$bag)
predY[ind2,2] <- predict(fit_s3, as.matrix(testing[,3:nc]), testing$bag)
predY[ind2,3] <- predict(fit_milr, as.matrix(testing[,3:nc]), testing$bag)
predY[ind2,4] <- predict(fit_milr_sv, as.matrix(testing[,sv_ind]), testing$bag)

}

table(DATA = Y, PRED_s0 = predY[,1])

PRED_s0
DATA 0 1
0 36 9
1 6 41

table(DATA = Y, PRED_s3 = predY[,2])

PRED_s3
DATA 0 1
0 28 17
1 4 43

table(DATA = Y, PRED_MILR = predY[,3])

PRED_MILR
DATA 0 1
0 32 13
1 10 37

table(DATA = Y, PRED_MILR_SV = predY[,4])

PRED_MILR_SV
DATA 0 1
0 35 10
1 7 40

Summary

This article introduces the usage of the R package milr for analyzing multiple-instance data under the
framework of logistic regression. In particular, the package contains two approaches: summarizing

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 456

the mean responses within each bag using the softmax function (Xu and Frank, 2004; Ray and Craven,
2005) and treating the instance-level statuses as hidden information as well as applying the EM
algorithm for estimation (Chen et al., 2016). In addition, to estimate the MILR model, a lasso-type
variable selection technique is incorporated into the latter approach. The limitations of the developed
approaches are as follows. First, we ignore the potential dependency among instance statuses within
one bag. Random effects can be incorporated into the proposed logistic regression to represent the
dependency. Second, according to our preliminary simulation study, not shown in this paper, the
maximum likelihood estimator might be biased when the number of instances in a bag is large, say,
mi = 100 or more. Bias reduction methods, such as Firth (1993) and Quenouille (1956), can be applied
to alleviate this bias. These attempts are deferred to our future work.

Bibliography

S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance
learning. In Advances in Neural Information Processing Systems 15, pages 561–568, 2003. [p446]

R.-B. Chen, K.-H. Cheng, S.-M. Chang, S.-L. Jeng, P.-Y. Chen, C.-H. Yang, and C.-C. Hsia. Multiple-
instance logistic regression with lasso penalty. arXiv preprint arXiv:1607.03615, 2016. [p446, 448,
456]

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society B, 39(1):1–38, 1977. [p446]

T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance problem with
axis-parallel rectangles. Artificial Intelligence, 89(1):31–71, 1997. [p446]

D. Firth. Bias reduction of maximum likelihood estimates. Biometrika, 80(1):27–38, 1993. [p456]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. [p447, 448, 449]

W. J. Fu. Penalized regressions: The bridge versus the lasso. Journal of Computational and Graphical
Statistics, 7(3):397–416, 1998. [p448]

M. Kandemir, C. Zhang, and H. F. A. Empowering multiple instance histopathology cancer diagnosis
by cell graphs. In Medical Image Computing and Computer Assisted Intervention 17 (Pt 2), pages 228–235,
2014. [p446]

D. Kotzias, M. Denil, N. de Freitas, and P. Smyth. From group to individual labels using deep features.
In ACM SigKDD International Conference on Knowledge Discovery and Data Mining 21, pages 597–606,
2015. [p446]

W. Li, L. Duan, D. Xu, and I. W.-H. Tsang. Text-based image retrieval using progressive multi-instance
learning. In International Conference on Computer Vision ’11, pages 2049–2055, 2011. [p446]

O. Maron. Learning from Ambiguity. PhD thesis, Massachusetts Institute of Technology, 1998. [p446]

O. Maron and A. L. Ratan. Multiple-instance learning for natural scene classification. In International
Conference on Machine Learning 15, pages 341–349, 1998. [p446]

M. H. Quenouille. Notes on bias in estimation. Biometrika, 43(3/4):353–360, 1956. [p456]

S. Ray and M. Craven. Supervised versus multiple instance learning: An empirical comparison. In
International Conference on Machine Learning 22, pages 697–704, 2005. [p446, 447, 453, 456]

B. Settles, M. Craven, and S. Ray. Multiple-instance active learning. In Advances in Neural Information
Processing Systems, pages 1289–1296, 2008. [p446]

D. M. J. Tax and V. Cheplygina. MIL, a Matlab toolbox for multiple instance learning, 2016. URL
http://prlab.tudelft.nl/david-tax/mil.html. version 1.2.1. [p446]

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B,
58(1):267–288, 1996. [p446, 448]

X. Xu and E. Frank. Logistic regression and boosting for labeled bags of instances. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining ’04, pages 272–281, 2004. [p446, 447, 448, 453, 456]

J. Yang. MILL: A multiple instance learning library, 2008. URL http://www.cs.cmu.edu/~juny/MILL/.
version 1.00. [p446]

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

http://prlab.tudelft.nl/david-tax/mil.html
http://www.cs.cmu.edu/~juny/MILL/

CONTRIBUTED RESEARCH ARTICLE 457

J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid. Local features and kernels for classification of
texture and object categories: A comprehensive study. International Journal of Computer Vision, 73(2):
213–238, 2007. [p446]

Q. Zhang and S. A. Goldman. EM-DD: An improved multiple-instance learning technique. In Advances
in Neural Information Processing Systems 14, pages 1073–1080, 2002. [p446]

Z.-H. Zhou, Y.-Y. Sun, and Y.-F. Li. Multi-instance learning by treating instances as non-iid samples. In
Annual International Conference on Machine Learning 26, pages 1249–1256, 2009. [p446]

Ping-Yang Chen
Department of Statistics, National Cheng Kung University
1 University Road,
Tainan 70101, Taiwan.
pychen.ping@gmail.com

Ching-Chuan Chen
Department of Statistics, National Cheng Kung University
1 University Road,
Tainan 70101, Taiwan.
zw12356@gmail.com

Chun-Hao Yang
Department of Statistics, University of Florida
University of Florida
Gainesville, FL 32611
chunhaoyang@ufl.edu

Sheng-Mao Chang
Department of Statistics, National Cheng Kung University
1 University Road,
Tainan 70101, Taiwan.
smchang@mail.ncku.edu.tw

Kuo-Jung Lee
Department of Statistics, National Cheng Kung University
1 University Road,
Tainan 70101, Taiwan.
kuojunglee@mail.ncku.edu.tw

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

mailto:pychen.ping@gmail.com
mailto:zw12356@gmail.com
mailto:chunhaoyang@ufl.edu
mailto:smchang@mail.ncku.edu.tw
mailto:kuojunglee@mail.ncku.edu.tw

	milr: Multiple-Instance Logistic Regression with Lasso Penalty
	Introduction
	The multiple-instance logistic regression
	EM algorithm
	Variable selection with lasso penalty

	Implementation
	Data generator
	The milr and softmax apporaches

	Examples
	Estimation and variable selection
	Real case study

	Summary

