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BSGS: Bayesian Sparse Group Selection
by Kuo-Jung Lee and Ray-Bing Chen

Abstract An R package BSGS is provided for the integration of Bayesian variable and sparse group
selection separately proposed by Chen et al. (2011) and Chen et al. (in press) for variable selection
problems, even in the cases of large p and small n. This package is designed for variable selection
problems including the identification of the important groups of variables and the active variables
within the important groups. This article introduces the functions in the BSGS package that can be
used to perform sparse group selection as well as variable selection through simulation studies and
real data.

Introduction

Variable selection is a fundamental problem in regression analysis, and one that has become even more
relevant in current applications where the number of variables can be very large, but it is commonly
assumed that only a small number of variables are important for explaining the response variable.
This sparsity assumption enables us to select the important variables, even in situations where the
number of candidate variables is much greater than the number of observations.

BSGS is an R package designed to carry out a variety of Markov chain Monte Carlo (MCMC) sam-
pling approaches for variable selection problems in regression models based on a Bayesian framework.
In this package, we consider two structures of variables and create functions for the corresponding
MCMC sampling procedures. In the first case where the variables are treated individually without
grouping structure, two functions, CompWiseGibbsSimple and CompWiseGibbsSMP, are provided to
generate the samples from the corresponding posterior distribution. In the second case, it is assumed
that the variables form certain group structures or patterns, and thus the variables can be partitioned
into different disjoint groups. However, only a small number of groups are assumed to be important
for explaining the response variable, i.e. the condition of the group sparsity, and we also assume
that sparse assumption is held for the variables within the groups. This problem is thus termed a
sparse group selection problem Simon et al. (2013); Chen et al. (in press), and the goal is to select the
important groups and also identify the active variables within these important groups simultaneously.
There are two functions to handle the sparse group selection problems, BSGS.Simple and BSGS.Sample,
which are used to generate the corresponding posterior samples. Once the posterior samples are
available, we then can determine the active groups and variables, estimate the parameters of interest
and make other statistical inferences.

This paper is organized as follows. We first briefly introduce statistical models that are used
to deal with the problems of variable selection in the BSGS package. We then describe the tuning
parameters in the functions in the BSGS package. Two simulations are used to illustrate the details of
the implementations of the functions. Finally we present a real economic example to demonstrate the
BSGS package.

Framework of BSGS

We start with the introduction of individual variable selection problems, and then turn our attention
to sparse group selection. For completeness, we describe the model and priors so that one may easily
change the inputs of functions in the BSGS package for any purpose.

Variable selection

Consider a linear regression model given by

Y = Xβ + ε, (1)

where Y = (Y1, . . . , Yn)′ is the response vector of length n, X = [X1, . . . , Xp] is an n× p design matrix,
with Xi as the corresponding i-th variable (regressor) as a potential cause of the variation in the
response, β is the corresponding unknown p× 1 coefficient vector, and ε = (ε1, . . . , εn)′ is the error
term, which is assumed to have a normal distribution with a zero mean, and the covariance matrix
σ2 In, In is the n× n identity matrix. To achieve variable selection, we select a subset of X1, . . . , Xp to
explain the response Y. For this purpose, following the stochastic search variable selection method
George and McCulloch (1993), a latent binary variable γi taking the value of 0 and 1 is introduced
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to indicate whether or not the corresponding variable is selected. That is, if γi = 1, the variable Xi is
selected, and otherwise it is not selected.

In this Bayesian framework we basically follow the prior assumption in Chen et al. (2011). We
assume the prior distribution of γi is a Bernoulli distribution with probability 1− ρi, and then given
γi, we assume the prior for βi is a mixture of point mass at 0 denoted by δ0 and a normal distribution
as follows

βi|γi ∼ (1− γi)δ0 + γi N(0, τ2
i ), (2)

where τi is a pre-specified constant. Moreover, (γi, βi) are assumed to be independent for i = 1, . . . , p.
Lastly, σ2 is set to follow an inverse Gamma distribution,

σ2 ∼ IG(ν/2, νλ/2). (3)

Based on the model setting given above, there are two Gibbs samplers for this variable selection.
The first procedure is the componentwise Gibbs sampler (CGS) which was introduced by Geweke
(1996) and also mentioned in Chen et al. (2011). The other is the stochastic matching pursuit (SMP)
algorithm Chen et al. (2011) in which the variables compete to be selected.

Sparse group selection

In traditional variable selection problems, each variable Xi is treated individually; however, in some
real applications, a group of variables that behave similarly may be more meaningful in explaining the
response. In other words, a group of variables potentially plays a more important role in explaining
the response than a single variable can. The variable selection problem thus becomes a group selection
one. In group selection problems, the variables within the selected groups are all treated as important.
However, this assumption might not be held in practice such as the climate application in Chatterjee
et al. (2012). Instead of the group selection problem, we thus consider approaches to sparse group
selection, in which the sparse assumption is held for groups and the variables within groups.

Here the goal is not only to select the influential groups, but also to identify the important variables
within these. To this end, a Bayesian group variable selection approach, the Group-wise Gibbs sampler
(GWGS) Chen et al. (in press), is applied. Suppose that, in terms of expert or prior knowledge, the
explanatory variables Xi’s are partitioned into g non-overlapping groups in a regression model. Each
group l contains j = 1, . . . , pl variables with ∑

g
l=1 pl = p. Now the model is rewritten as

Y =
g

∑
l=1

Xl βl + ε, (4)

where Xl = [Xl1, · · · , Xlpl
] is the n× pl sub-matrix of X, βl = (βl1, · · · , βlpl

)′ is the pl × 1 coefficient
vector of group l. The GWGS works by introducing two nested layers of binary variables to indicate
whether a group or a variable is selected or not. At the group-selection level, we define a binary
variable ηl = 1 if group l is selected, and ηl = 0 otherwise. At the variable-selection level, we define
another binary variable γli = 1 if the variable i within group l, Xli, is selected, and γli = 0 otherwise.

We assume the group indicator, ηl , has the Bernoulli distribution with the probability 1− θl . Within
group l, the prior distribution of γli conditional on the indicator ηl is defined as

γli|ηl ∼ (1− ηl)δ0 + ηlBer(1− ρli), (5)

where δ0 is a point mass at 0 and Ber(1− ρli) is Bernoulli distributed with the probability 1− ρli.
Equation (5) implies that if the l-th group is not selected, it turns out that γli = 0 for all i. The prior
distribution of the coefficient βli given ηl and γli is given by

βli|ηl , γli ∼ (1− ηlγli)δ0 + ηlγliN (0, τ2
li),

where τli is a pre-specified value Chen et al. (2011). Finally, the variance σ2 is assumed to have an
inverse Gamma distribution, that is, σ2 ∼ IG(ν/2, νλ/2). We also assume (ηl , γl1, βl1, . . . , γlpl

, βlpl
),

l = 1, · · · , g, are a priori independent.

Two sampling procedures are proposed in Chen et al. (in press) for Bayesian sparse group selection.
The first is the GWGS. In the GWGS, simulating the indicator variable ηl from the posterior distribution
would be computationally intensive, especially when the number of variables within the group is
large. To address this issue, Chen et al. (in press) proposed a modified and approximation approach,
a sample version of GWGS. In this a Metropolis-Hastings algorithm is adopted to replace the Gibbs
sampling method in GWGS.
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Implementation

In this section, we describe the default tuning parameters and some details in the implementation of
the functions in BSGS.

Hyperparameter set-up

• The tuning parameters, ν and λ:
The parameters in the prior distribution of σ2 are suggested by George and McCulloch (1993)
setting the default values of ν = 0 and λ being any positive value. A data-driven choice for this
is proposed by Chipman et al. (1997), which sets the value of ν around 2 and the value of λ is
set up to be the 99% quantile of the prior of σ2 that is close to

√
Var(Y). In addition, George

and McCulloch (1997) simply set ν = 10 and λ =
√

Var(Y). In our experiences, a larger value
of ν tends to result in a larger estimate of σ.

• The parameter τ:
Now we consider the assignment of the value of τ, the prior variance of the regression coefficient
for the active variable. It was found that the larger the value of τ, the smaller the conditional
probability of γ = 1 is. As a result, a large value of τ favors a more parsimonious mode. In
contrast, a small value of τ would yield more complex models.

• The parameters ρ and θ:
The default of the prior inclusion probabilities of groups and variables is set equal to 0.5. In the
case when p is much greater than n and only a small number of variables are considered active,
we would assign a larger values to ρ and θ to reflect the prior belief of sparsity.

Stopping rule

The posterior distribution is not available in explicit form so we use the MCMC method, and specifically
Gibbs sampling to simulate the parameters from this distribution Brooks et al. (2011). To implement the
Gibbs sampler, the full conditional distributions of all parameters must be determined. A derivation
of the full conditional distributions is provided in Chen et al. (in press). When these have been
obtained, the parameters are then updated individually using a Gibbs sampler (where available),
or a Metropolis-Hastings sampling algorithm. An MCMC sample will converge to the stationary
distribution, i.e. the posterior distribution. We use the batch mean method to estimate the Monte Carlo
standard error (MCSE) of the estimate of σ2 and then decide to stop the simulation once the MCSE is
less than a specified value, cf. Flegal et al. (2008). The default minimum number of iterations is 1000.
If the MCSE does not achieve the prespecified value, an extra 100 iterations are run until the MCSE is
less than the prespecified value. The sample can then be used for statistical inference.

Statistical inference

• Variable and group selection criteria:
In this package, we adopt the median probability criterion proposed by Barbieri and Berger
(2004) for group and variable selections. Specifically, for the variable selection problem, we
estimate the posterior inclusion probability P(γi = 1|Y) from the posterior samples and then
the i-th variable is selected into the model if the estimated posterior probability is larger than
or equal to 1/2. Here instead of 1/2, this cut-off value is treated as a tuning parameter, α,
which can be specified by users. For the sparse group selection problem, the estimated posterior
probability of the l-th group is greater than or equal to αg, i.e. P(ηl = 1|Y) ≥ αg, we then include
Xl into the model. Suppose the l-th group is selected, then the i-th variable within this group is
selected if P(γli = 1|ηl = 1, Y) ≥ αi. Here αg and αi are two pre-specified values between 0 and
1.

• Posterior estimates of regression coefficients:
We use the Rao-Blackwell method to estimate β by

β̂ = E(β|y) ≈ 1
NM

M

∑
m=1

βm,

where βm is the sample in mth iteration, M is the number of iterations, and NM is the number of
nonzero βm.
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Evaluation of model estimation

Regarding the stability of the estimation, we compare the accuracy of selection of the variables by the
following measures in the simulation studies: the True Classification Rate (TCR), the True Positive
Rate (TPR), and the False Positive Rate (FPR). These are defined as follows

TCR =
number of correctly selected variables

number of variables
;

TPR =
number of correctly selected variables

number of active variables
;

FPR =
number of falsely selected variables

number of inactive variables
.

TCR is an overall evaluation of accuracy in the identification of the active and inactive variables. TPR
is the average rate of active variables correctly identified, and is used to measure the power of the
method. FPR is the average rate of inactive variables that are included in the regression, and it can be
considered as the type I error rate of the selection approach. In these three criteria, it is preferred to
have a larger value of TCR or TPR, or a smaller value of FPR.

We also report the mean squared error (MSE),

MSE =
n

∑
i=1

(yi − ŷi)
2/n,

where ŷi is the prediction of yi. This is used to evaluate whether the overall model estimation has a
good fit with regard to the data set.

Examples

Two simulations and a real example are provided to demonstrate the use of functions in the BSGS
package.

Simulation I

The traditional variable selection problem is illustrated in this simulation. We use an example to
illustrate the functions CompWiseGibbsSimple and CompWiseGibbsSMP corresponding to the CGS and
SMP sampling procedures to simulate the sample from the posterior distribution. Based on the
samples, we can decide which variable is important in the regression model. In this simulation, the
data Y of length n = 50 is generated from a normal distribution with a mean Xβ and σ2 = 1. We

assume β = (3,−3.5, 4,−2.8, 3.2,

p−5︷ ︸︸ ︷
0, . . . , 0), p = 100, and X is from a multivariate normal distribution

with a mean 0 and the covariance matrix Σ as the identity matrix. We then generate the responses
based on (1).

require(BSGS)
set.seed(1)

## Generate data
num.of.obs <- 50
num.of.covariates <- 100

beta.g <- matrix(c(3, -3.5, 4, -2.8, 3.2, rep(0, num.of.covariates-5)), ncol = 1)
r.true <- (beta.g != 0) * 1

pair.corr <- 0.0 ## pair correlations between covariates
Sigma <- matrix(pair.corr, num.of.covariates, num.of.covariates)
diag(Sigma) <- rep(1, num.of.covariates)
x <- mvrnorm(n = num.of.obs, rep(0, num.of.covariates), Sigma)

sigma2 <- 1
mu <- x %*% beta.g
y <- rnorm(num.of.obs, mu, sigma2)

Regarding to the hyperparameters, we simply set τ2 = 10, but one can use cross-validation to
tune the parameter Chen et al. (2011). Following George and McCulloch (1997), we let ν = 10 and
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λ =
√

Var(Y). Without any prior information on which variable is important, we let prior inclusion
probability ρi = 0.5 for each variable. We use the rigid regression estimates as the initial values of
regression coefficients βs.

## Specify the values of hyperparameters and initial values of parameters

tau2 <- 10 ## hyperparameter in Eq. (1)
nu0 <- 10 ## hyperparameter in Eq. (2)
lambda0 <- sd(y) ## hyperparameter in Eq. (2)

## Initial values for parameters
beta.initial <- t(solve(t(x) %*% x + diag(1/5, num.of.covariates)) %*% t(x) %*% y)
sigma2.initial<-1
r.initial <- rbinom(num.of.covariates, 1, 1)

Now two functions, CompWiseGibbsSimple and CompWiseGibbsSMP, are applied to simulate the
samples from the posterior distribution. The minimum number of iterations is 1000. The simulation
will stop when the MCSE of the estimate of σ2 is less than 0.1 and otherwise an extra 100 iterations are
run until the MCSE is less than this. For stability, we update num.of.inner.iter.default = 10 times
for β and γ and take the last ones as a sample before updating σ2.

num.of.iteration <- 1000
num.of.inner.iter.default <- 10
MCSE.Sigma2.Given <- 0.1

## Apply two sampling functions to generate the samples from the
## posterior distribution.

outputCGS <- CompWiseGibbsSimple(y, x, beta.initial, r.initial, tau2,
rho, sigma2.initial, nu0, lambda0, num.of.inner.iter.default,
num.of.iteration, MCSE.Sigma2.Given)

outputSMP <- CompWiseGibbsSMP(y, x, beta.initial, r.initial, tau2,
rho, sigma2.initial, nu0, lambda0, num.of.inner.iter.default,
num.of.iteration, MCSE.Sigma2.Given)

Once the simulation stops, the posterior samples are used to estimate the posterior quantities of
interest. One can then check the number of iterations and computational times for both approaches.

## Output from the component-wise Gibbs sampling procedure
outputCGS$Iteration
[1] 1000
outputCGS$TimeElapsed

user system elapsed
61.558 4.815 66.813

## Output from the component-wise Gibbs sampling procedure
outputSMP$Iteration
[1] 1000
outputSMP$TimeElapsed

user system elapsed
45.970 5.907 52.383

One can then use the function CGS.SMP.PE to identify the important variables and to estimate the
parameters. Due to the limitations of space, we do not include the estimates here. A variable i is
considered important if the posterior probability of its indicator variable γi = 1 is greater than or equal
to αi = 1/2. Once the critical point is decided, two functions TCR.TPR.FPR.CGS.SMP and MSE.CGS.SMP
are carried out to evaluate the performance on the model estimations in terms of TCP, TPR, FTP and
MSE.

## Output from the component-wise Gibbs sampling procedure
CGS.SMP.PE(outputCGS)

MSE.CGS.SMP(outputCGS, Y=y, X=x)
[1] 2.921087
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TCR.TPR.FPR.CGS.SMP(outputCGS, r.true, 0.5)
$TCR
[1] 1

$TPR
[1] 1

$FPR
[1] 0

## Output from the component-wise Gibbs sampling procedure
CGS.SMP.PE(outputSMP)

MSE.CGS.SMP(outputSMP, Y=y, X=x)
[1] 3.751427

TCR.TPR.FPR.CGS.SMP(outputSMP, r.true, 0.5)
$TCR
[1] 1

$TPR
[1] 1

$FPR
[1] 0

Simulation II

We provide another stimulation to illustrate the use of functions for sparse group selection. In the
following simulation, the data Y of length n = 50 is generated from a normal distribution with a
mean Xβ and σ2 = 1, where X is from a multivariate distribution with mean 0 and covariance Σ with
the pair correlation between variables equal to zero. There are 10 groups of variables. Each group
contains 10 variables and some of them are active. More specifically, Xl = Xl1, . . . , Xlpl

, k = 1, . . . , 10
and pl = 10 for all l. We assume the group l = 1, 2, 5, 8 are active. Variables p1 = 7, 8, 9 in the group
l = 1, p2 = 1, 2 in the group l = 2, p5 = 3 in the group l = 5, and p8 = 7 in the group l = 8 are active.
The response is generated via (4).

require(BSGS)

set.seed(1)

Num.Of.Iteration <- 1000
Num.of.Iter.Inside.CompWise <- 10
num.of.obs <- 50
num.of.covariates <- 100
num.of.group.var <- 10
Group.Index <- rep(1:10, each = 10)

nu <- 0
lambda <- 1
pair.corr <- 0.

Sigma <- matrix(pair.corr, num.of.covariates, num.of.covariates)
diag(Sigma) <- rep(1,num.of.covariates)

X <- mvrnorm(n = num.of.obs, rep(0, num.of.covariates), Sigma)

beta.true <- rep(0, num.of.covariates)
beta.true[c(7, 8, 9, 11, 12, 43, 77)] <- c(3.2, 3.2, 3.2, 1.5, 1.5, -1.5, -2)
beta.true <- cbind(beta.true)
r.true <- (beta.true != 0) * 1

sigma2.true <-1
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Y <- rnorm(num.of.obs, X %*% beta.true, sigma2.true)

Here we suppose that we have no prior information on the parameters. We let ν = 0 and λ = 1
which corresponds to the non-informative prior for σ2. Also, we let ρi = 0.5 and θ = 0.5 for prior
inclusion probabilities of groups and variables. Finally, we let τ = 1 for the variance of each regression
coefficient.

## hyperparameters
tau2.value <- rep(1, num.of.covariates)
rho.value <- rep(0.5, num.of.covariates)
theta.value <- rep(0.5, num.of.group.var)

With the reasonable assignment of the initial values of parameters, we apply two functions,
BSGS.Simple and BSGS.Sample, to estimate the posterior quantities of interest and in turn identify the
important groups and variables. For illustration, we stop the simulation when the MCSE of estimate
of σ2 is less than 0.5.

## Initial values and stopping point
r.value <- rbinom(num.of.covariates, 1, 0.5)
eta.value <- rbinom(num.of.group.var, 1, 0.5)
beta.value <- cbind(c(t(solve(t(X) %*% X +
diag(1/5, num.of.covariates)) %*% t(X) %*% Y) )) # beta.true

sigma2.value <- 1
MCSE.Sigma2.Given <- 0.5

## Apply two sampling approaches to generate samples
outputSimple <- BSGS.Simple(Y, X, Group.Index, r.value, eta.value, beta.value,
tau2.value, rho.value, theta.value, sigma2.value, nu, lambda,
Num.of.Iter.Inside.CompWise, Num.Of.Iteration, MCSE.Sigma2.Given)

outputSample <- BSGS.Sample(Y, X, Group.Index, r.value, eta.value, beta.value,
tau2.value, rho.value, theta.value, sigma2.value, nu, lambda,
Num.of.Iter.Inside.CompWise, Num.Of.Iteration, MCSE.Sigma2.Given)

One can easily use the function BSGS.PE to estimate the posterior probabilities of ηl = 1 and
γli = 1|ηl = 1 based on the samples generated from the posterior distribution. To investigate
which sampling approach provides a better model estimation, one can calculate MSE by the function
MSE.BSGS. Furthermore, the function TCR.TPR.FPR.BSGS is used to evaluate the performance on the
accuracy of selection on variables. All functions are illustrated as follows. We take αi = αg = 0.5 in
this example.

## The posterior quantities estimated by two sampling approaches respectively.

## Output from the simple version of BSGS
outputSimple$Iteration
[1] 1000
outputSimple$TimeElapsed

user system elapsed
238.755 0.007 239.037
BSGS.PE(outputSimple)$eta.est

1 2 3 4 5 6 7 8 9 10
1.000 1.000 0.115 0.200 0.926 0.099 0.108 0.991 0.053 0.171
MSE.BSGS(outputSimple, Y=Y, X=X)
[1] 0.574

TCR.TPR.FPR.BSGS(outputSimple, r.true, 0.5)
$TCR
[1] 0.97

$TPR
[1] 1

$FPR
[1] 0.0323

## Output from the sample version of BSGS
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outputSample$Iteration
[1] 3700
outputSample$TimeElapsed

user system elapsed
105.535 0.163 105.822
BSGS.PE(outputSample)$eta.est

1 2 3 4 5 6 7 8 9 10
1.00000 0.90514 0.04189 0.02459 0.88000 0.01000 0.00486 0.91135 0.00486 0.00730
MSE.BSGS(outputSample, Y=Y, X=X)
[1] 2.16
TCR.TPR.FPR.BSGS(outputSample, r.true, 0.5)
$TCR
[1] 0.97

$TPR
[1] 1

$FPR
[1] 0.0323

One may be interested in how the different stopping points would affect the computational
effort and model estimation. We thus compare the computational times and accuracy of parameter
estimation in terms of TCR, TPR, FPR, and MSE for two different sampling approaches by using
different MCSEs to stop the simulation and the results are shown in Tables 1 and 2. It has been found
that for the case of n = 50 and p = 100 the simple version would converge faster than the sample
version. However, the sample version would require less effort to produce the sample than the simple
version.

MCSE # of iterations runtime (in sec) MSE TCR TPR FPR σ̂2

0.5 1000 239 0.58 0.97 1 0.03 1.143
0.25 1000 239 0.58 0.97 1 0.03 1.143
0.1 1100 263 0.55 0.98 1 0.02 1.112

Table 1: Results based on simple version procedure for sparse group selection for different stopping
points.

MCSE # of iterations runtime (in sec) MSE TCR TPR FPR σ̂2

0.5 3700 105 2.16 0.97 1 0.03 1.418
0.25 9500 226 0.58 0.97 1 0.03 1.418

0.1 31200 4148 0.48 0.97 1 0.03 1.047

Table 2: Results based on sample version procedure for sparse group selection for different stopping
points.

We further investigate the accuracy of parameter estimations and the selection of the variables in
terms of MSE, TCR, TPR, and FPR for the two sampling approaches when the number of covariates
increases but each group has 10 variables. We consider p = 300, 500, and 1000 and the simulation
is terminated when the MCSE of the estimate of σ2 is less than 0.5 for illustration. One may use
different values of MCSE, but more computational time may be needed. Table 3 shows that the
simulation stops with the same number of iterations and the parameter estimates and accuracy of
variable selection show little difference. On the other hand, the results in Table 4 for the sample version
GWGS show that more iterations are needed, under the same stopping rule. The two approaches thus
perform equally well on the selection of variables, but by comparing MSEs it is evident that the simple
version of GWGS outperforms with regard to the predictions. Although the sample version has less
computational intensity, it needs more iterations to achieve the stopping point. If one is interested
in selecting important variables, both approaches are effective. But if one is interested in choosing a
model which fits the data well, it is thus suggested one uses the simple version approach.

Next, we compare the computational time when the number of variables in the group increases. We
perform an experiment in which there are seven groups, each containing 15 variables. The assignments
of hyperparameters are the same as those in Simulation II. Table 5 shows the computational time plus
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# of covariates # of iterations runtime (in sec) MSE TCR TPR FPR σ̂2

300 1000 212 0.56 0.95 0.86 0.05 1.94
500 1000 273 0.99 0.98 1 0.02 1.803

1000 1000 263 0.55 0.98 1 0.02 1.112

Table 3: Results based on the simple version procedure for sparse group selection for different numbers
of covariates, with pair-correlation equal to 0.

# of covariates # of iterations runtime (in sec) MSE TCR TPR FPR σ̂2

300 2100 127 1.63 0.99 1 0.01 1.819
500 14600 2258 4.73 0.97 1 0.03 1.601

1000 39900 39567 8.90 0.99 1 <0.01 2.158

Table 4: Results based on the sample version procedure for sparse group selection for different
numbers of covariates, with pair-correlation equal to 0.

the model estimations. It can be seen that the sample version is strongly recommended when the
number of variables within a group is greater than 15.

Sampling version # of iterations runtime (in sec) MSE TCR TPR FPR σ̂2

Simple 1000 8330 0.11 0.93 1 0.08 0.90
Sample 2400 71 0.75 0.99 1 0.01 1.06

Table 5: Comparison between simple and sample versions for sparse group selection when the number
of covariates within a group is 15.

A real economic example

This subsection further illustrates the functions in the BSGS based on an economic dataset from Rose
and Spiegel Rose and Spiegel (2010, 2011, 2012) which is available at http://faculty.haas.berkeley.
edu/arose The response variable is the 2008-2009 growth rate for the crisis measure. Rose and Spiegel
originally consider 119 explanatory factors for the crisis for as many as 107 countries, but there are
missing data for a number of these.

require(BSGS)
## the whole data set
data(Crisis2008)

To maintain a balanced data set, we use 51 variables for a sample of 72 countries. For more
information about the balanced data, please see the description of ‘Crisis2008’ in the BSGS. The
balanced data is then analyzed to illustrate the main sampling function BSGS.Simple to simulate the
sample from the posterior distribution. In the analysis, we demean the response so that it is not
necessary to include the intercept into the design matrix. All variables are standardized except the
dummy variables.

set.seed(1)
data(Crisis2008BalancedData)

var.names <- colnames(Crisis2008BalancedData)[-1]
country.all <- rownames(Crisis2008BalancedData)
cov.of.interest <- colnames(Crisis2008BalancedData)[-1]

Y <- Crisis2008BalancedData[, 1]
Y <- Y - mean(Y)
X <- Crisis2008BalancedData[, -1]

if (NORMALIZATION) {
dummy.variable <- cov.of.interest[lapply(apply(X, 2, unique), length) == 2]
non.dummy.X <- X[, !(colnames(X) %in% dummy.variable)]
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X.normalized <- apply(non.dummy.X, 2, function(XX) (XX - mean(XX))/sd(XX))
X[, !(colnames(X) %in% dummy.variable)] <- X.normalized

}

As discussed in Ho (in press), these variables can be classified into the nine theoretical groups of
the crisis’ origin (the number in parentheses indicates the number of variables considered in the group):
principal factors (10), financial policies (three), financial conditions (four), asset price appreciation
(two), macroeconomic policies (four), institutions (11), geography (four), financial linkages (one), and
trade linkages (12). Based on this information, we assign a group index to each variable.

Group.Index <- rep(1:9, c(10, 3, 4, 2, 4, 11, 4, 1, 12))

Since the number of covariates within the group is moderate, it is recommended that the simple
version GWGS be applied to generate the samples. In this example, we have tested different values of
τ2 and finally we set τ2 = 10 due to the minimal MSE’s. Here the stopping rule is when the MCSE of
the estimate of σ2 is less than or equal to 0.1 for the simple version. No prior information is provided
to indicate which group or variable is more important, so we let θ = 0.5 and η = 0.5. We let ν = 0
and λ = 1 resulting in a non-informative prior for σ2. In each group, we will update parameters
“Num.of.Iter.Inside.CompWise = 100” times within a group for stability.

Num.Of.Iteration <- 1000
Num.of.Iter.Inside.CompWise <- 100
num.of.obs <- nrow(X)
num.of.covariates <- ncol(X)
num.of.groups <- length(unique(Group.Index))
nu <- 0
lambda <- 1
beta.est <- lm(Y ~ X - 1)$coef
beta.est[is.na(beta.est)] <- 0
beta.value <- beta.est
tau2.value <- rep(1, num.of.covariates)

sigma2.value <- 1

r.value <- rep(0, num.of.covariates)
eta.value <- rep(0, num.of.groups)

tau2.value <- rep(10, num.of.covariates)

rho.value <- rep(0.5, num.of.covariates)
theta.value <- rep(0.5, num.of.groups)

MCSE.Sigma2.Given <- 0.5

outputCrisis2008 <- BSGS.Simple(Y, X, Group.Index, r.value, eta.value, beta.value,
tau2.value, rho.value, theta.value, sigma2.value, nu, lambda,
Num.of.Iter.Inside.CompWise, Num.Of.Iteration, MCSE.Sigma2.Given)

The posterior probabilities of ηl and γli are shown in Figure 1. Based on the median probability
criterion, the group (or variable) whose posterior probability is larger than or equal to 0.5 is selected as
an important group (or variable). It is found that only the groups, “Financial Policies” and “Trade
Linkages” are considered to have an influence on the economic crisis. Moreover, within each important
group, we also find that only some of the variables may make a contribution to explain the response.

Summary

This paper illustrated the usage of a new R package, BSGS, for identifying the important groups
of variables and important variables in linear regression models. Furthermore, BSGS can be easily
implemented with problems of a large p and small n. The grouping idea is also applicable to other
regression and classification settings, for example, the multi-response regression and multi-class
classification problems. We envision future additions to the package that will allow for extensions to
these models.

We are confident that this package can be applied to many important real-world problems by
keeping flexibility with regard to selecting variables within a group based on the hierarchical assign-
ment of two layers of indicator variables. For instance, in the gene-set selection problem, a biological
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Figure 1: The group selection results for the cross-country severity of the crisis. The orange border
indicates the posterior probability for the group selection, and the gray bar indicates the posterior
probability for variable selection in the selected groups.

pathway may be related to a certain biological process, but it may not necessarily mean all the genes
in the pathway are all related to the biological process. We may want not only to remove unimportant
pathways effectively, but also identify important genes within important pathways.
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