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SMR: An R Package for Computing the
Externally Studentized Normal Midrange
Distribution
by Ben Dêivide Oliveira Batista and Daniel Furtado Ferreira

Abstract The main purpose of this paper is to present the main algorithms underlining the con-
struction and implementation of the SMR package, whose aim is to compute studentized normal
midrange distribution. Details on the externally studentized normal midrange and standardized
normal midrange distributions are also given. The package follows the same structure as the prob-
ability functions implemented in R. That is: the probability density function (dSMR), the cumulative
distribution function (pSMR), the quantile function (qSMR) and the random number generating function
(rSMR). Pseudocode and illustrative examples of how to use the package are presented.

Introduction

The SMR package was created to provide an infrastructure for the studentized midrange distribu-
tion. This is a new distribution that was inspired by the externally studentized range distribution,
which has been largely applied in multiple comparison procedures to identify the best treatment
level and has been extensively studied theoretically. Several algorithms to compute the probability
density, cumulative distribution, and quantile functions were published by Lund and Lund (1983) and
Copenhaver and Holland (1988). Recently, Batista and Ferreira (2014) developed the theory of the
externally studentized normal midrange distribution, which is new in the scientific literature to the
best knowledge of the authors. The cumulative distribution, the probability density, and the quantile
functions were obtained by them analytically.

Computations of the required multidimensional integrations should be done numerically. There-
fore, Batista and Ferreira (2014) applied Gaussian quadrature for this task. In particular, they chose
the Gauss-Legendre quadrature for solving numerical integrations, because it obtains more accurate
results when compared with other Gaussian quadrature methods. The quantile function of the exter-
nally studentized normal midrange was computed by the Newton-Raphson method. Based on these
numerical methods, the SMR package was built and released.

The package name was chosen to identify the Studentized MidRange distribution. The package
follows the same structure as the probability functions implemented in R. The following functions
were implemented in the package: the probability density function (dSMR), the cumulative distribution
function (pSMR), the quantile function (qSMR), and the random number generating function (rSMR).

Therefore, the main purpose of this paper is to present the main algorithms underlining the
construction and implementation of the SMR package, showing pseudocode of its functions and
providing the fundamental ideas for the appropriate use of the package through illustrative examples.

First, details on the externally studentized normal midrange and standardized normal midrange
distributions are given. Second, the algorithms for the construction of the package and their respec-
tive pseudocodes are presented. Third, details of the SMR package functions are showed. Finally,
illustrative examples of the package are presented.

The externally studentized normal midrange distribution

Let X1,n, X2,n, . . ., Xn,n be the order statistics of a random sample X1, X2, . . ., Xn of size n from a
population with cumulative distribution function (c.d.f.) F(x) and probability density function (p.d.f.)
f (x) arranged in order of magnitude of values.

The midrange R for a sample X1, X2, . . ., Xn is defined as

R = (X1,n + Xn,n)/2,

see, e.g., Rider (1957).

The p.d.f. and c.d.f. of R are

fR(r) =
∫ r

−∞
2n(n− 1) f (y) f (2r− y)[F(2r− y)− F(y)]n−2dy (1)
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and

FR(r) = n
∫ r

−∞
f (y)[F(2r− y)− F(y)]n−1dy, (2)

see, e.g., David and Nagaraja (2003).

The studentized midrange Q for a sample X1, X2, . . ., Xn is defined as

Q =
R/σ

S/σ
=

R
S

=
W
X

,

see, e.g., Batista (2012). When S and R are independent, Q corresponds to the externally studentized
midrange, otherwise Q is the internally studentized midrange. The former occurs for example, when
R is computed from one normal random sample of size n, and S is obtained from another random
sample of size m. It also occurs when R/S is computed from the treatment means of an experimental
factor with n levels and S =

√
(QME), where QME is the associated experimental mean square error

with m− 1 degrees of freedom (Searle, 1987). When considering the externally studentized midrange,
it is relevant to compute Q as the ratio of W = R/σ the standardized midrange distribution and
X = S/σ.

Considering the particular case of the normal distribution with mean µ = 0, without loss of
generality, and variance σ2 the p.d.f. of X = S/σ is given by (Newman, 1939)

f (x; ν) =
νν/2

Γ(ν/2)2ν/2−1 xν−1e−νx2/2, x ≥ 0. (3)

An important distribution for this study, well documented in Batista (2012), Gumbel (1958) and
Pillai (1950), is the standardized normal midrange distribution, defined by W = R/σ. The p.d.f. of W
is

fW(w) =
∫ w

−∞
2n(n− 1)φ(y)φ(2w− y)[Φ(2w− y)−Φ(y)]n−2dy. (4)

and the c.d.f. is
FW(w) =

∫ w

−∞
nφ(y)[Φ(2w− y)−Φ(y)]n−1dy, (5)

both results found in David and Nagaraja (2003), where Φ(.) and φ(.) are the c.d.f. and p.d.f. of the
standard normal distribution N(0, 1), respectively.

Therefore, according to Batista and Ferreira (2014), the p.d.f. and c.d.f. of Q, in the particular case
of the normal distribution with mean µ = 0 and variance σ2, are respectively

f (q; n, ν) =
∫ ∞

0

∫ xq

−∞
2n(n− 1)xφ(y)φ(2xq− y)[Φ(2xq− y)−Φ(y)]n−2 f (x; ν)dydx, (6)

and
F(q; n, ν) =

∫ ∞

0

∫ xq

−∞
nφ(y)[Φ(2xq− y)−Φ(y)]n−1 f (x; ν)dydx, (7)

where ν is the number of degrees of freedom.

The p.d.f (4) and c.d.f. (5) are very important to the externally studentized normal midrange
algorithms implementation in the SMR package.

Algorithms used in the SMR package

The functions implemented in the SMR package are dependent on specific functions of R which are:
pnorm, to obtain the cumulative distribution function of the standard normal, Φ(x); dnorm, to obtain
the standard normal probability density function, φ(x); lgamma, to obtain the logarithm of the gamma
function. To compute the nodes and weights of the Gauss-Legendre quadrature, an R function based
on the method presented by Hildebrand (1974) was implemented. In the following subsections the
algorithms and pseudocodes used in the construction of each routine of SMR package are presented.
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The Gauss-Legendre quadrature and the Newton-Raphson method

The basic idea of Gauss-Legendre quadrature of a function f (x), according to Davis and Rabinowitz
(1984), is to write it as follows:

1∫
−1

f (x)dx =

1∫
−1

w(x)g(x)dx ≈
m

∑
i=1

wig(xi), (8)

where f (x) ≡ w(x)g(x) and w(x) is the weight function in the Gaussian quadrature, wi and xi are
the nodes and weights, respectively, in an m-point Gaussian quadrature rule, for i = 1, 2, . . ., m. The
weight function is w(x) = 1 in the Gauss-Legendre quadrature, thus f (x) = g(x).

Let the symmetric tridiagonal matrix J , with elements Ji,i = ai−1, i = 1, . . . , m and Ji−1,i =

Ji,i−1 =
√

Ji,i−1 Ji−1,i =
√

bi−1, i = 2, . . . , m, be the Jacobi matrix, given by

J =



a0
√

b1 0 . . . . . . . . .√
b1 a1

√
b2 0 . . . . . .

0
√

b2 a2
√

b3 0 . . .
0 . . . . . . . . . . . . 0
. . . . . . 0

√
bm−2 am−2

√
bm−1

. . . . . . . . . 0
√

bm−1 am−1

 ,

where ai−1 = 0, for i = 1, . . . , m and
√

bi−1 = (i− 1)/
√

4(i− 1)2 − 1, for i = 2, . . . , m, considering
the Gauss-Legendre quadrature.

For computing the quadrature weights and nodes, the eigenvalues and eigenvectors of J were
obtained Hildebrand (1974). The nodes for the Gaussian quadrature were the eigenvalues of this tridi-
agonal matrix J and the weights can be computed from the corresponding normalized eigenvectors

φ(i) associated to the eigenvalue xi. The weight wi can be computed from the first element φ
(i)
1 of the

ith corresponding eigenvector by

wi = µ0

(
φ
(i)
1

)2
,

where µ0 = 2 for the Gauss-Legendre quadrature (Gil et al., 2007).

The set {xi, wi} is determined such that expression (8) yields an exact result for polynomials of
degree 2m− 1 or less (Chihara, 1978). For non-polynomial functions the Gauss-Legendre quadrature
error is defined by

εm ≈
∣∣∣∣∣ q

∑
i=1

wig(xi)−
m

∑
i=1

wig(xi)

∣∣∣∣∣ , q > m. (9)

However, the externally studentized normal midrange distribution depends on integrals over
infinite intervals. The integral over an infinite range should be changed into an integral over [-1,1] by
using the following transformations (Davis and Rabinowitz, 1984)

∞∫
a

f (y)dy =

1∫
−1

f
(

a +
1 + t
1− t

)
2

(1− t)2 dt, (10)

b∫
−∞

f (y)dy =

1∫
−1

f
(

b +
1 + t
t− 1

)
2

(t− 1)2 dt, (11)

b∫
a

f (y)dy =
b− a

2

1∫
−1

f
(
(b− a)

2
t +

(b + a)
2

)
dt. (12)

Therefore, the integrals were computed by applying the Gauss-Legendre quadrature rule on these
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transformed variables by

∞∫
a

f (y)dy ≈
m

∑
i=1

wi
2

(1− ti)2 f
(

a +
1 + ti
1− ti

)
, (13)

b∫
−∞

f (y)dy ≈
m

∑
i=1

wi
2

(ti − 1)2 f
(

b +
1 + ti
ti − 1

)
, (14)

∫ b

a
f (y)dy ≈ b− a

2

m

∑
i=1

wi f
(

b− a
2

ti +
a + b

2

)
. (15)

For more details, see Olver et al. (2010).

The Newton-Raphson approximation aims to find the roots of a real function, that is,

y : f (y) = 0.

Thus, iteratively, the Newton-Raphson method follows

yk+1 = yk −
f (yk)

f ′(yk)
, k = 0, 1, 2, . . .

where f ′(y) is the first derivative of the function f (y), see, e.g., Miller (2014).

The process starts with an initial arbitrary value y0, which should be reasonably close to the true
root, then the method will usually converge in a few iterations, considering f ′(yk) 6= 0.

In this study the main objective was to find the quantile q, given that the cumulative probability
is p, 0 < p < 1. Hence, considering the cumulative distribution function, F(q), and the probability
density, f (q), functions of the random variable Q, the desired solution is

q : F(q)− p = 0.

The solution is obtained by

qk+1 = qk −
F(qk)− p

f (qk)
, k = 0, 1, 2, . . . (16)

that should be computed sequentially until a certain convergence criterion is reached.

Standardized normal midrange probability density function

For the standardized normal midrange probability density function (4), the integration interval (−∞; q]
was divided into two subintervals and w was replaced in the algorithm to q, as done before to the
cumulative distribution function. Hence, the subintervals (−∞, q− 8] and [q− 8, q] were considered.
For the first subinterval, the following transformation of variable was used y = b + (1 + t)/(t −
1), resulting in an integration interval given by [−1, 1], as required to apply the Gauss-Legendre
quadrature. With the same purpose, the transformation z = (a− b)t/2 + (a + b)/2 was applied to the
second subinterval. The algorithm was denoted by dNMR. The approximation of (4) was computed by

fQ(q) =2n(n− 1)

[ ∫ q−8

−∞
φ(y)φ(2q− y)[Φ(2q− y)−Φ(y)]n−2dy

+
∫ q

q−8
φ(y)φ(2q− y)[Φ(2q− y)−Φ(y)]n−2dy

]

≈2n(n− 1)

[
m

∑
i=1

2
(xi − 1)2 φ(yi)φ(2q− yi)[Φ(2q− yi)−Φ(yi)]

n−2

+ 4
m

∑
i=1

φ(zi)φ(2q− zi)[Φ(2q− zi)−Φ(zi)]
n−2

]
(17)

The choice of the value 8 was motivated by the same choice made by Copenhaver and Holland
(1988) to the normal range distribution. Since the midrange distribution is more peaked than the range
distribution, this value seems to be a good choice for the standardized normal midrange distribution.
Further investigations could be undertaken to optimize the choice of these subintervals.

The pseudocode to compute the standardized normal midrange probability density function is
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given by:

1. Input q, n > 1, m ≥ 2;

2. Compute m nodes (xi) and weights (wi), with i = 1, 2, . . ., m;

3. Transform xi, from [−1, 1] to (−∞, q− 8], using:
yi = (q− 8) + (1− xi)/(xi − 1), for i = 1, 2, . . ., m;

4. Compute auxi = Φ(2q− yi)−Φ(yi), for i = 1, 2, . . ., m;

5. Compute aux1i = φ(yi) and aux2i = φ(2q− yi), for i = 1, 2, . . ., m;

6. If auxi ≤ 0, then auxi = ε, for i = 1, 2, . . ., m;

7. Compute f yi = ln(aux1i) + (n− 1) ln(auxi) + ln(aux2i) + ln(2) + ln(n) + ln(n− 1),
for i = 1, 2, . . ., m;

8. Apply f yi = exp( f yi), for i = 1, 2, . . ., m;

9. Compute f yi = [2/(xi − 1)2] f yi, for i = 1, 2, . . ., m;

10. Compute I =
m
∑

i=1
wi f yi;

11. Transform xi from [−1, 1] to [q− 8, q], using, a = q− 8 and b = q, where
yi = [(b− a)/2]xi + (a + b)/2, for i = 1, 2, . . ., m;

12. Repeat steps 4 to 8, with the yi from 11, for i = 1, 2, . . ., m;

13. Compute f yi = [(b− a)/2] f yi, for i = 1, 2, . . ., m;

14. Compute I = I +
m
∑

i=1
wi f yi;

15. Return I.

The standardized normal midrange cumulative distribution function

The algorithm for computing the cumulative distribution function of standardized normal midrange,
expression (5), was developed using the Gauss-Legendre quadrature. This will be essential in the
construction of the externally studentized normal midrange. First, the integration interval was divided
into two subintervals to achieve higher accuracy as suggested by Quarteroni et al. (2007) and the
following division was considered:

FQ(q) =
∫ q−8

−∞
nφ(y)[Φ(2q− y)−Φ(y)]n−1dy +

∫ q

q−8
nφ(y)[Φ(2q− y)−Φ(y)]n−1dy. (18)

In these two parts, different variable transformations were considered. In the first part, the
transformation y = (q− 8) + (1 + t)/(t− 1) was applied to obtain an integration interval [−1, 1],
needed to solve this integral by Gauss-Legendre quadrature. Considering yi obtained by the above
transformation, where t = xi is the ith Gauss-Legendre quadrature node, i = 1, 2, . . ., m, and m is the
number of quadrature points, then the first part of the integral (18) was approximated by using the
transformations (11) and (14). Hence,

I1(q) =
∫ q−8

−∞
nφ(y)[Φ(2q− y)−Φ(y)]n−1dy

≈ n
m

∑
i=1

wi
2

(xi − 1)2 φ(xi)[Φ(2q− yi)−Φ(yi)]
n−1. (19)

For the second part, the transformation y = (b− a)t/2 + (a + b)/2 was used, with the same goal
presented for the first transformation. These changes were implemented implicitly as a numerical
device, as shown above. Therefore, the second part of the integral (18) was approximated by using the
transformations (12) and (15). It was given by

I2(q) =
∫ q

q−8
nφ(y)[Φ(2q− y)−Φ(y)]n−1dy

≈ n(b− a)
2

m

∑
i=1

wiφ(yi)[Φ(2q− yi)−Φ(yi)]
n−1, (20)

where b = q and a = q− 8.
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Considering the expressions (19) and (20) the cumulative distribution function (18) was approxi-
mated by

FQ(q) ≈ I1(q) + I2(q), (21)

in the same way as the numerical approximation adopted by McBane (2006) and by Verma and Suarez
(2014) for obtaining the probability density and cumulative distribution functions and critical values
for the range ratio statistics. The main difference between those works and the present results is
the use of the Gauss-Legendre quadrature, besides the distribution functions where the quadrature
was applied. All other integrals computed in this work will be based on this type of numerical
approximation.

In the algorithm pseudocode, the standardized normal midrange denoted by w, is replaced by q,
following the notation of expression (18), avoiding confusion with the quadratures weights. Hence,
the pseudocode using the Gauss-Legendre quadrature to obtain the cumulative distribution function
of the standardized normal midrange (21), which is denoted by pNMR, is given by:

1. Input n > 1, q, and m ≥ 2;
2. Compute m nodes (xi) and weights (wi), with i = 1, 2, . . . , m;
3. Transform xi, from interval [−1, 1] to (−∞, q− 8]: yi = (q− 8) + (1 + xi)/(xi − 1);
4. Compute aux1i = Φ(yi);
5. Compute aux2i = φ(yi);
6. Compute auxi = Φ(2q− yi)− aux1i;
7. If auxi ≤ 0, then auxi = ε;
8. Compute f yi = log(aux2i) + (n− 1) log(auxi);
9. Compute f yi = exp( f yi);

10. Compute f yi = n(2/(xi − 1)2) f yi;
11. The quantities in steps 3-10, should be computed for each node xi, i = 1, 2, . . ., m. Therefore,

compute I =
m
∑

i=1
wi f yi;

12. Set a = q− 8 and b = q;
13. Transform xi from interval [−1, 1] to [q− 8, q]: yi = [(b− a)/2]xi + (a + b)/2, for i = 1, 2, . . .,

m;
14. Repeat steps 4 to 9, with yi of step 13, for i = 1, 2, . . ., m;
15. Compute f yi = n(b− a)/2× f yi, for i = 1, 2, . . ., m;

16. Compute I = I +
m
∑

i=1
wi f yi;

17. Return I.

Standardized normal midrange quantile function

The algorithm qNMR was derived to compute the standardized normal midrange quantile function.
The pseudocode makes use of the Newton-Raphson, expression (16), and is given by:

1. Input n > 1, m ≥ 2, and 0 < p < 1;
2. Set eps = 1× 10−13, for the error tolerance, and maxIt = 5000, for the maximum number of

iterations;
3. Get initial estimate of q, called q0, by:

3. a. If p < 0.5, then q0 = −0.5, else go to step 3b;
3. b. If p > 0.5, then q0 = 0.5, else set q0 = 0;

4. it = 0;
5. While (it ≤ maxIt) do

cd f = pNMR(q0, n, np);
pd f = dNMR(q0, n, np);
q1 = q0 − (cd f − p)/pd f ;
go to step 6;

6. If |q1− q0| ≤ eps, then return q1 and exit; otherwise, go to step 5, but first update the interactions
counter it = it + 1 of Newton-Raphson method and do q0 = q1. In step 5, if this counter exceeds
the limit maxIt, go to step 7;

7. print the error message: “iterative process did not achieve convergence in maxIt steps.”
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Externally studentized normal midrange probability density function

For computing the externally studentized normal midrange probability density function, given in
(6), note that the innermost integral is the probability density function of the standardized normal
midrange, given by (4) and (17). Thus, the dNMR algorithm presented above was reused for computing
the probability density function of interest. Also, the variable x (standardized standard deviation)
is replaced by s in the implemented algorithm, avoiding confusion with the quadrature nodes. The
outermost integral was divided into two parts and a Gauss-Legendre quadrature was also applied
in each part. The integration intervals are given by [0, 1] and [1, ∞) for the same reasons mentioned
above. Thus,

f (q; n, ν) =
∫ ∞

0
fQ(sq) f (s; ν)ds

=
∫ 1

0
fQ(sq) f (s; ν)ds +

∫ ∞

1
fQ(sq) f (s; ν)ds, (22)

where f (sq) was approximated by expression (17), with q substituted by sq, and computed by the
algorithm dNMR, described in the previous section.

The innermost integral multiplied by the probability density function of the variable s, f (s; ν), was
computed by

d(q; s, n, ν) =dNMR(sq, n, m)× νν/2

Γ(ν/2)2ν/2−1 sν−1e−νs2/2 (23)

The auxiliary algorithm dSMR_aux was constructed to compute (23). Its pseudocode is given by:

1. Input s (quadrature node at the ith step), q, n > 1 and m ≥ 2;

2. Υ = dNMR(s× q, n, m);

3. Compute

dsln = (nu/2) ln(nu)− ln Γ(nu/2)− (nu/2− 1) ln(2) + (nu− 1) ln(s)− nu× s2/2;

4. Compute f x = s× exp(dsln);

5. Compute d = f x× Υ;

6. Return d.

Each integration subinterval of (22) was appropriately transformed enabling the Gauss-Legendre
quadrature to be applied for approximating the integral (6). For this purpose, in the first integration
subinterval, [0, 1], the transformation y = (a− b)t/2 + (a + b)/2 was adopted. Hence,

I1(q; n, ν) =
∫ 1

0
fQ(sq) f (s; ν)ds

≈
m

∑
i=1

wi
1
2

d(q; yi, n, ν), (24)

where d(q; yi, n, ν) is computed by (23), with corresponding pseudocode given by dSMR_aux.

In the second subinterval of [1, ∞), the transformation (13), with a = 1, was applied, being given by
y = 1 + (1 + t)/(1− t). Thus, considering the quadrature nodes xi’s, the integral was approximated
by

I2(q; n, ν) =
∫ ∞

1
fQ(sq) f (s; ν)ds

≈
m

∑
i=1

wi
2

(1− xi)2 d(q; yi, n, ν). (25)

The integration (6) was approximated by

f (q; n, ν) ≈ I1(q; n, ν) + I2(q; n, ν), (26)

where I1(q; n, ν) and I2(q; n, ν) were computed by (24) and (25), respectively.

Again, all transformations were implicitly applied as a numerical integration device only. The
expression (26) was used to obtain the pseudocode for the computation of the probability density
function of the externally studentized normal midrange, denoted dMR. It is given by:
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1. Input q, n > 1, nu > 0 and m ≥ 2;

2. Compute m nodes (xi) and weights (wi), with i = 1, 2, . . ., m;

3. Transform the variable xi from [−1, 1] to [0, 1], using:
yi = 0, 5xi + 0, 5, for i = 1, 2, . . ., m;

4. Compute f yi =
1
2dSMR_aux(yi, q, n, m), for i = 1, 2, . . ., m;

5. Compute I =
m
∑

i=1
wi f yi;

6. Transform xi from [−1, 1] to [1, ∞]:
yi = 1 + (1 + xi)/(1− xi), for i = 1, 2, . . ., m;

7. Compute f yi = dSMR_aux(yi, q, n, m), for i = 1, 2, . . ., m;

8. Compute f yi = ln( f yi) + ln(2)− 2 ln(1− xi), for i = 1, 2, . . ., m;

9. Compute f yi = exp( f yi), for i = 1, 2, . . ., m;

10. Compute I = I +
m
∑

i=1
( f yi × wi);

11. Return I.

Quadratures of 64 points are sufficient for most circumstances, although it is possible to increase
the number of quadrature points and achieve the desired accuracy. The Newton-Raphson method was
used to compute quantiles, since the probability density function, the first derivative, was available.
The following subsections describe the algorithms and show their pseudocodes.

The externally studentized normal midrange cumulative distribution function

Note that the innermost integral of the externally studentized normal midrange cumulative distribu-
tion function, given in (7), is the cumulative distribution function of standardized normal midrange,
given by (5) and (18). Thus, the pNMR algorithm presented above was reused for computing the
cumulative distribution function of interest. Also, the variable x (standardized standard deviation)
is replaced by s in the implemented algorithm, avoiding confusion with the quadrature nodes. The
outermost integral was divided into two parts and a Gauss-Legendre quadrature was also applied in
each part. The integration intervals are given by [0, 1] and [1, ∞). The limit 1 was chosen since it is the
modal value of the standardized normal standard deviation probability density function f (x; ν), given
in expression (3), following the ideas of Copenhaver and Holland (1988). Thus

F(q; n, ν) =
∫ ∞

0
FQ(sq) f (s; ν)ds

=
∫ 1

0
FQ(sq) f (s; ν)ds +

∫ ∞

1
FQ(sq) f (s; ν)ds, (27)

where FQ(sq) was given by expression (18), with q substituted by sq, and computed by the algorithm
pNMR, described in the previous section.

The innermost integral multiplied by the probability density function of the variable s, f (s; ν), was
computed by

I(q; s, n, ν) =pNMR(sq, n, m)× νν/2

Γ(ν/2)2ν/2−1 sν−1e−νs2/2 (28)

Therefore, an auxiliary algorithm, denoted by pNMR_aux, was constructed to compute (28). The
pseudocode is given by:

1. Input q, s, n > 1, nu > 0 and m ≥ 2;

2. I = pNMR(s× q, n, m);

3. Compute

f x = (nu/2) ln(nu)− ln Γ(nu/2)− (nu/2− 1) ln(2) + (nu− 1) ln(s)− s× nu× s/2;

4. Apply f x = exp( f x);
5. Compute I = f x× I;

6. Return I.
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Each subinterval of (27) was appropriately transformed enabling the Gauss-Legendre quadrature
to be applied for solving the integral (7). For this purpose, in the first integration subinterval, [0, 1], the
transformation y = (a− b)t/2 + (a + b)/2, given by (12) and (15), was adopted. Hence, considering
all quadrature nodes xi’s, it follows that

I1(q; n, ν) =
∫ 1

0
FQ(sq) f (s; ν)ds

≈
m

∑
i=1

wi
1
2

I(q; yi, n, ν), (29)

where I(q; yi, n, ν) is given by (28).

In the second subinterval of [1, ∞), the transformations (10) and (13), with a = 1, was applied and
it is given by y = 1 + (1 + t)/(1− t). Thus, considering the quadrature nodes xi’s, the integral was
approximated by

I2(q; n, ν) =
∫ ∞

1
FQ(sq) f (s; ν)ds

≈
m

∑
i=1

wi
2

(1− xi)2 I(q; yi, n, ν). (30)

The integration (7) was computed by

F(q; n, ν) ≈ I1(q; n, ν) + I2(q; n, ν), (31)

using the results of (29) and (30).

All transformations were implicitly applied, i.e., they were only a numerical integration device. The
pseudocode for the computation of the cumulative distribution function of the externally studentized
normal midrange, denoted pMR, applies the ideas of expression (31) and is given by:

1. Input q, nu > 0, n > 1, and m ≥ 2;

2. Compute m nodes (xi) and weights (wi), with i = 1, 2, . . ., m;

3. For the first part of the split integral, transform: yi = 0, 5xi + 0, 5, for i = 1, 2, . . ., m;

4. Compute f yi =
1
2pNMR_aux(q, yi, n, m), for i = 1, 2, . . ., m;

5. Compute I =
m
∑

i=1
wi f yi;

6. For the second part of the split integral, transform: yi = 1 + (1 + xi)/(1− xi), for i = 1, 2, . . .,
m;

7. Compute f yi = pNMR_aux(q, yi, n, np), for i = 1, 2, . . ., m;

8. Compute f yi = ln( f yi) + ln(2)− 2 ln(1− xi), for i = 1, 2, . . ., m;

9. Hence, compute f yi = exp( f yi), for i = 1, 2, . . ., m;

10. Compute I = I +
m
∑

i=1
wi f yi;

11. Return I.

Externally studentized normal midrange quantile function

For the externally studentized normal midrange quantile function, the qMR algorithm was constructed.
The algorithm applies the Newton-Raphson method and depends on the pMR an dMR methods. Its
pseudocode is:

1. Input: n > 1, m ≥ 2, and 0 < p < 1;

2. Set eps = 1× 10−13, for the error tolerance, and maxIt = 5000, for the maximum number of
iterations;

3. Get initial estimate of q, called q0, by:

3.a. If p < 0.5, then q0 = −0.5, else go to step 3b;

3.b. If p > 0.5, then q0 = 0.5, else set q0 = 0;

4. it = 0;
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5. While (it ≤ maxIt) do
cd f = pMR(q0, n, np);
pd f = dMR(q0, n, np);
q1 = q0 − (cd f − p)/pd f ;
go to step 6;

6. If |q1− q0| ≤ eps, then return q1 and exit; otherwise, go to step 5 but first update the interactions
counter it = it + 1 of Newton-Raphson method and do q0 = q1. In step 5, if this counter exceeds
the limit maxIt, go to step 7;

7. print the error message: “iterative process did not achieve convergence in maxIt steps.”

The random number generator

To generate random sample of size N from the normal midrange distribution, the algorithm rMR was
constructed, with parameter n and ν. First, a sample from the standard normal distribution of size n,

X1, X2, . . ., Xn, was simulated, where Xi
iid∼ N(0, 1). A chi-square variable U ∼ χ2

ν, with degrees of
freedom ν, was also simulated, and the following transformation was computed:

Q =
[max(Xi) + min(Xi)]/2√

U
ν

.

With infinite degrees of freedom, then the following transformation was considered instead

W =
max(Xi) + min(Xi)

2
.

The process was repeated N times and the values of Q or W, depending on the considered case, are
stored in a vector of size N.

This distribution can be used to obtain cumulative probabilities and quantiles. Thus, for example,
given a quantile q or w, the cumulative probability function, ensuring that N is large, is computed in
an approximated way by:

P(Q ≤ q) =

N
∑

i=1
I(Qi ≤ q)

N
, ν < ∞

P(W ≤ w) =

N
∑

i=1
I(Wi ≤ w)

N
, ν = ∞.

The random number generator rMR returns the vector of N realizations of Q or W and its pseu-
docode is presented below. The rMR generator is dependent of the R functions rnorm() and rchisq(),
for obtaining a random vector of standard normal independently variables and a chi-square realization,
respectively. The matrix(x,p,q) function, presented below, creates a matrix of dimension p× q filled
by columns with the elements given by the vector x.

1. Input: N > 1, n > 1 and ν > 0;

2. x = rnorm(N × n)

3. X = matrix(x, N, n) of dimension (N × n);

4. if nu = ∞, then go to (7), else go to (5);

5. u = rchisq(N, ν);

6. X = X/
√
(u/ν);

7. for i = 1 to N do:
rMR[i] = [max(X[i, ]) + min(X[i, ])]/2;

8. return rMR.

Details of the SMR package

The package SMR provides the following functions, where np is the number of nodes and weights of
the Gauss-Legendre quadrature:
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• dSMR(x,size,df,np=32): computes values of the probability density function, given in (6) or
(4);

• pSMR(q,size,df,np=32): computes values of the cumulative distribution function, given in (7)
or (5);

• qSMR(p,size,df,np=32): computes quantiles of the externally studentized normal midrange;

• rSMR(n,size,df=Inf): drawn a random sample of size n from the externally studentized normal
midrange.

The value of the argument df can be finite or infinity. If df=Inf, values of the probability den-
sity, cumulative distribution and quantile functions of the normal midrange (standardized normal
midrange) are computed. If the argument df is not specified in the rSMR function, the default value Inf
is used and random samples from the normal midrange distribution are drawn. The other functions
presented earlier in the previous section are internal algorithms of the SMR package.

As an illustration, consider the following examples:

library(SMR)
set.seed(10701)
q <- 2 # quantile
x <- 2 # quantile
p <- 0.9 # probability
n <- 10 # sample size to be simulated
size <- 5 # normal sample size
df <- 3 # degrees of freedom
np <- 32 # number of points of the Gaussian quadrature

dSMR(x, size, df, np) # SMR pdf
[1] 0.01926172

pSMR(q, size, df, np) # SMR cdf
[1] 0.9851739

qSMR(p, size, df, np) # SMR quantile
[1] 0.8350065

rSMR(n, size, df) # random sample of the SMR distribution
[1] 0.35108979 0.33786356 -0.13753510 -0.58741681 -0.40358907
[6] -0.72528615 0.45845331 0.08906021 -1.64157684 0.07022362

In the case ν = ∞, the result of the standardized normal midrange distribution is returned, as
illustrated by the following example:

library(SMR)
q <- 2 # quantile
x <- 2 # quantile
p <- 0.9 # cumulative probability
n <- 10 # sample size to be simulated
size <- 5 # normal sample size
df <- Inf # degrees of freedom
np <- 32 # number of points of the Gaussian quadrature

dSMR(x, size, df, np) # normal MR pdf
[1] 0.0004487675

pSMR(q, size, df, np) # normal MR cdf
[1] 0.9999408

qSMR(p, size, df, np) # normal MR quantile
[1] 0.6531507

rSMR(n, size, df,) # random sample of the normal MR distribution
[1] -0.52475079 0.10198842 -0.38647236 0.18939367 0.17756023
[6] -1.03384242 0.35608349 1.00629514 0.06360581 0.70835452
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A concrete application of the SMR package on real dataset is now considered. We use the data on
nitrogen contents of red clover plants presented in Steel and Torrie (1980), page 180. A completely
randomized design with one factor with 6 levels and r = 5 replications were carried out. The mean
squared error (MSE) was 11.7887, with ν = 24 degrees of freedom. The factor means is presented in
Table 1. A multiple comparison procedure was suggested by Batista (2012). The suggested procedure
was similar to the Tukey test (Tukey, 1953). First the least significant difference of the proposed test is
computed by

∆ =2q1−α/2;n,ν

√
MSE

r
,

where q1−α/2;n,ν is the 100α/2% quantile of the externally studentized normal midrange. This value
can be computed by using the function qSMR(0.975,6,24,np=32)=1.0049 of the SMR package, for the
significance level α = 0.05.

The ∆ value in this case is

∆ =2× 1.0049×
√

11.7887
5

= 3.0859.

Finally, the test is performed in the same way of the Tukey test. The results of the proposed
midrange and Tukey tests are shown in Table 1. The proposed midrange test show no ambiguous
results in this example, as happens with the Tukey test (two or more letters per level).

Table 1: The midrange and Tukey multiple comparison procedures applied to the nitrogen contents of
6 red clover plants presented in Steel and Torrie (1980), page 180.

Levels means Tukey∗ Midrange∗

5 13.26 c d
3 14.64 c d
6 18.70 cb c
4 19.92 cb c
2 23.98 ba b
1 28.82 a a

∗ Means with the same letter are not significantly different.

Concluding remarks

The importance of the externally studentized normal midrange distribution can be enormous in the
analysis of experiments, since the midrange estimator is more efficient than the sample mean in
platykurtic distributions. Therefore, this distribution could be useful in the proposition of multiple
comparison procedures, that could potentially show better results (more robust and powerful) than
the traditional tests based on the externally studentized normal range.

This package is easy to use and shows very high accuracy. The accuracy of critical values is
estimated through the computation of the difference between two results using different numbers of
quadrature points according to the expression (9). The number of quadrature points can be chosen
and for most cases, 32 points are enough to achieve high accuracy. Monte Carlo simulations were
also used to evaluate the accuracy of the proposed methods and the consistency of the SMR package.
The algorithms were proposed and implemented using Gauss-Legendre quadrature and the Newton-
Raphson method in R software, resulting in the SMR package, that is available for download from
CRAN. An important aspect is that the SMR package is written in R. Code in Fortran or C can make the
SMR functions faster, a feature that is planned for future releases of the package. Another important
aspect is the possibility of using in future releases two-dimensional interpolations when dSMR, pSMR
and qSMR are called with long vectors of arguments x, q, and p. In this case, two-dimensional grids for
{x, q, and p} and {size} can be computed offline and the approx function used to interpolate.
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