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The RWiener Package: an R Package
Providing Distribution Functions for the
Wiener Diffusion Model
by Dominik Wabersich and Joachim Vandekerckhove

Abstract We present the RWiener package that provides R functions for the Wiener diffusion model.
The core of the package are the four distribution functions dwiener, pwiener, qwiener and rwiener,
which use up-to-date methods, implemented in C, and provide fast and accurate computation of the
density, distribution, and quantile function, as well as a random number generator for the Wiener
diffusion model. We used the typical Wiener diffusion model with four parameters: boundary
separation, non-decision time, initial bias and drift rate parameter. Beyond the distribution functions,
we provide extended likelihood-based functions that can be used for parameter estimation and model
selection. The package can be obtained via CRAN.

Introduction

The diffusion model is one of the most successful models of choice reaction time in cognitive psy-
chology (see Wagenmakers, 2009, for an overview) and, while software packages that make diffusion
model analyses possible have been made available (Vandekerckhove and Tuerlinckx, 2007, 2008;
Vandekerckhove et al., 2011; Voss and Voss, 2007; Wagenmakers et al., 2007; Wiecki et al., 2013), a
diffusion model R package was so far missing. Due to the nature of the model, no closed analytical
forms for the computation of the distribution functions exist, which has generated a need for more
involved computational approximations of the various functions (Blurton et al., 2012; Navarro and
Fuss, 2009; Tuerlinckx et al., 2001).

Here, we present an R package, RWiener, that provides the four functions R uses to represent a
distribution, implemented for the Wiener diffusion model: the density function d (Navarro and Fuss,
2009) to compute the probability density function (PDF) at a given quantile for a given parameter set;
the probability function p (Blurton et al., 2012) to compute the cumulative distribution (CDF) at a given
quantile for a given parameter set; the inverse CDF or quantile function1 q to compute the quantile
at a given p-value (CDF-value) for a given parameter set; and a random number generator (RNG) r
(Tuerlinckx et al., 2001) to generate random samples for a given parameter set.

In addition, we extended the package to include several likelihood-based functions that can be
used in combination with R’s built-in estimation routines, like the nlm or optim function, to estimate
the model parameters for an observed data set, assuming a Wiener diffusion process as the underlying
process that created the data.

First, we will present the standard Wiener diffusion model with four parameters: the boundary
separation α, the non-decision time τ, the bias parameter β and a drift rate parameter δ. Next, we
will show the standard functionality of the RWiener package and how it can be used for parameter
estimation. To conclude, we add a small discussion about the utility and extensibility of the here
presented methods.

The Wiener diffusion model

For two-choice reaction time (2CRT) data coming from experiments in which subjects are asked to give
one of two responses on a decision task, the Wiener diffusion model and its extensions have provided
useful modeling approaches. In its simplest complete form, the Wiener diffusion model includes four
parameters. The decision process is thought of as a continuous random walk, or diffusion, process
that starts somewhere between two boundaries and ends as soon as it hits or crosses one or the other.
The time of the first passage, and which boundary is hit first (and therefore which decision will be
made) is probabilistic with a probability determined by the parameter set.

The standard Wiener diffusion model incorporates the following four parameters, a summary of
which is provided in Table 1: (1) the boundary separation α which defines the distance between the
two boundaries, with the first boundary being at 0 and the second being at α, (2) the non-decision time
τ that defines the time that passes without any diffusion process going on (e.g., this incorporates the
time needed to encode a stimulus and to execute a motor response), (3) the bias parameter β defining

1Implemented using a reverse lookup algorithm of the CDF function.
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Symbol Parameter Interpretation

α Boundary separation Speed-accuracy trade-off
(high α means high accuracy)

β Initial bias Bias for either response
(β > 0.5 means bias towards response ‘A’)

δ Drift rate Quality of the stimulus
(close to 0 means ambiguous stimulus)

τ Nondecision time Motor response time, encoding time
(high means slow encoding, execution)

Table 1: The four main parameters of the Wiener diffusion model, with their substantive interpretations.
Reprinted with permission from Vandekerckhove (2009). Copyright 2009, Joachim Vandekerckhove
and Department of Psychology and Educational Sciences, University of Leuven, Belgium.
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Figure 1: A graphical illustration of the Wiener diffusion model for two-choice reaction times. An
evidence counter starts at value αβ and evolves with random increments. The mean increment is δ.
The process terminates as soon as the accrued evidence exceeds α or deceeds 0. The decision process
starts at time τ from the stimulus presentation and terminates at the reaction time.

the relative starting point of the diffusion process between the two boundaries (the absolute starting
point ζ0 can be obtained by ζ0 = βα) and (4) the drift rate parameter δ which captures the tendency
of the diffusion process to drift towards the upper boundary. Given these parameters, the latent
information accumulation process is modeled with the stochastic process d

dt Xt ∼ Normal
(
δ, s2), with

initial condition X0 = αβ. The decision time is modeled as the first time at which Xt ≤ 0 or Xt ≥ α,
and the response time is the sum of the decision time and the non-decision time τ. Figure 1 shows an
illustration of the Wiener diffusion model as described.

The parameters have the following restrictions: 0 < β < 1, α > 0, τ > 0. Often, the variance
parameter s is fixed at 0.1, whereas we fixed it at 1, yielding a more convenient interpretation of the
drift rate parameter and greater computational efficiency. Conversion to a scale with the variance
parameter fixed at any s can be done by multiplying the α and δ parameters by s.

The upper boundary may be defined as corresponding to correct trials, with the lower boundary
corresponding to error trials. However, it often also makes sense to map qualitatively different
responses to the two boundaries (e.g., in a same-different discrimination task, the upper bound could
represent the ‘different’ responses). For generality, we will always speak simply of upper and lower
boundaries. An overview of the computational strategy for the PDF and CDF functions is provided in
the Appendix.

Usage of the package

The package can be obtained via CRAN for R version 2.15.0 or higher, and includes documentation
that provides useful information and examples. As a guide through this demonstration of the RWiener
package functionality, we use an example data set created by the random function of the package
(using a RNG seed of 0 for exact reproducibility):
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Figure 2: Example of plots made with function dwiener and pwiener.

set.seed(0)
dat <- rwiener(n=100, alpha=2, tau=.3, beta=.5, delta=.5)

The arguments for this function call are explained in the next paragraph. This command will generate
a random data set, consisting of 100 observations, each generated from a random Wiener diffusion
model process with the given four parameters. We used a drift rate parameter δ of 0.5, meaning
that the drift diffusion process slightly tends towards the upper boundary. There was no initial bias
towards either of the two boundaries, indicated by β = 0.5. The boundaries are separated by a value
of α = 2 and we used a non-decision time of τ = 0.3, so there will never be a RT smaller than 0.3.

The created dat object is a dataframe with 100 observations and two variables: dat$q contains the
RTs, whereas dat$resp contains a factor to indicate the response made (upper vs. lower). Note that the
upper bound is assigned to the first level and the lower bound to the second one.

The four main functions of the package are described in the following subsection. All four functions
are implemented in C, using the R library for C functions. These C functions are called inside end-user
R functions, so that the end-user never calls the C functions directly, only indirectly through the
provided R functions.

Standard distribution functions

To get the density of a specific quantile, one can use the density function dwiener:

dwiener(dat$q[1], alpha=2, tau=.3, beta=.5, delta=.5, resp=dat$resp[1], give_log=FALSE)

The function takes seven arguments, the first argument is the RT at which the density shall be
evaluated, the next four arguments are the model parameters α, τ, β, and δ. The next argument, resp
takes any of three valid values: upper, lower, or both, meaning that the function shall return the density
at the given quantile for the upper boundary, the lower boundary or the sum of both densities together,
respectively. Its default value is set to upper. Lastly, the function can be given an additional argument
give_log that takes TRUE or FALSE as values and is set to FALSE as a default. When this argument is
TRUE, the function will return the logarithm of the density instead of the density itself.

This function can also be used to draw simple plots. For example, the following code results in the
plot in the left panel of Figure 2:

curve(dwiener(x, 2, .3, .5, .5, rep("upper", length(x))),
xlim=c(0,3), main="Density of upper responses",
ylab="density", xlab="quantile")

To calculate the cumulative distribution, we can use the CDF function pwiener as follows:

pwiener(dat$q[1], alpha=2, tau=.3, beta=.5, delta=.5, resp=dat$resp[1])

The arguments are the same as for the previously described function, without the give_log argument.
Further, this function can be used in the same manner to draw plots, like the one shown in the right
panel of Figure 2.

We can also find the appropriate quantile for a given probability via the inverse CDF function,
implemented as qwiener:

# lookup of the .2 quantile for the CDF of the lower boundary
qwiener(p=.2, alpha=2, tau=.3, beta=.5, delta=.5, resp="lower")
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Figure 3: Plot drawn with wiener_plot function.

Again, the last five arguments of this function have the same meaning as for the two previously
described functions. The first argument, however, is different: instead of a quantile, the first argument
needs to be a probability, indicating the CDF-value to be looked up.

To round out the four standard distribution functions, the RWiener package further provides a
function named rwiener that generates random values. Again, the last four input variables correspond
to the model parameters and are the same as in the other distribution functions. The first argument n
takes a number, indicating the desired number of randomly generated variates.

Plot function

To easily visualize data from the Wiener diffusion model, we can use the plot function wiener_plot as
follows:

wiener_plot(dat)

This draws the two densities of the observed (or, in this case, generated) lower and upper responses.
Figure 3 shows an example of this plot.

Parameter estimation with R’s general-purpose optimization algorithms

In addition to the four distribution functions dwiener, pwiener, qwiener, rwiener and the plot function
wiener_plot, the RWiener package provides four more functions designed for use in parameter
estimation and model selection: (1) the wiener_likelihood function, which calculates the logarithm
` of the likelihood for given parameter values and data; (2) the wiener_deviance function, which
calculates the model deviance −2`; (3) the wiener_aic function, which calculates the model AIC
(Akaike’s Information Criterion) −2`+ 8; and (4) the wiener_bic function, which calculates the model
BIC (Bayesian Information Criterion) −2`+ 4 ln(N).

x <- c(2, .3, .5, .5)
wiener_likelihood(x=x, dat=dat)
wiener_deviance(x=x, dat=dat)
wiener_aic(x=x, dat=dat)
wiener_bic(x=x, dat=dat)
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The first argument of these functions, x, is a vector containing the four parameter values of the model
in the order: α, τ, β, δ. The second argument of these functions, dat, is a dataframe that contains the
data points and the values of the two dependent variables: the RT and the boundary that was hit.
This dataframe has to have the same shape as the dataframe dat as generated previously with the
rwiener function. The first column of the dataframe has to contain the RTs and the second column of
the dataframe has to contain the response type (upper vs. lower).

Estimating parameters for a single condition

In order to estimate model parameters for a given data set, one can use R’s optim or nlm function:2

# using optim, first with Nelder-Mead algorithm, then with BFGS
optim1 <- optim(c(1, .1, .1, 1), wiener_deviance, dat=dat, method="Nelder-Mead")
optim2 <- optim(optim1[["par"]], wiener_deviance, dat=dat, method="BFGS", hessian=TRUE)

# using nlm, which uses a Newton-type algorithm
nlm1 <- nlm(p=c(1, .1, .1, 1), f=wiener_deviance, dat=dat)

The obtained model parameter estimates can then be used to draw further inferences or create
predictions. The help pages of the functions presented here show additional information and examples
of usage.

Estimating parameters for multiple conditions

The deviance function can be combined to compute a single loss value for multiple conditions. To do
so, first create a new inline function:

many_drifts <- function(x, datlist) {
l = 0
for (c in 1:length(datlist)) {
l = l + wiener_deviance(x[c(1, 2, 3, c+3)], datlist[[c]])

}
return(l)

}

# create a second data set and a list containing both data sets
dat2 <- rwiener(n=100, alpha=2, tau=.3, beta=.5, delta=1)
datlist <- list(dat, dat2)

# use nlm to estimate parameters
nlm1 <- nlm(p=c(1, .1, .1, 1, 1), f=many_drifts, dat=datlist)

If the input x is a parameter vector containing the first three parameters (α, τ, β) and then C drift rates,
and dat is a list with C data sets, then the result will contain point estimates of three joint parameters
in addition to C condition-specific drift rate estimates.

An alternative function can be defined that does not allow the drift rates to differ between
conditions:

one_drift <- function(x, datlist) {
l = 0
for (c in 1:length(datlist)) {
l = l + wiener_deviance(x, datlist[[c]])

}
return(l)

}

nlm2 <- nlm(p=c(1, .1, .1, 1), f=one_drift, dat=datlist)

Finally, the two competing models can be compared using the AIC criterion for model selection.3

AIC1 <- wiener_aic(x=nlm1$estimate, dat=datlist, loss=many_drifts)
AIC2 <- wiener_aic(x=nlm2$estimate, dat=datlist, loss=one_drift)

2Note that the wiener_likelihood function will return Inf for certain values, causing the nlm function to warn
that the Inf was replaced by the maximum positive value.

3The input argument loss, with which a custom deviance function can be passed to compute the AIC for more
complex models, is only available from RWiener v1.2.
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For more details on the interpretation of the AIC criterion, see Wagenmakers and Farrell (2004).

Discussion

We presented RWiener, an R package that provides efficient algorithms to compute Wiener diffusion
model functions and use these for further inference. This is the first package in R that provides full
Wiener diffusion model functionality for R. We demonstrated how to use these functions and how to
extend their usage to combine them with other R functions in order to do parameter estimation.

The presented functions can help researchers who work with 2CRT data to analyze their data in
the Wiener diffusion model framework.
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Appendix

Mathematical descriptions of the density and distribution functions

Probability density function

The PDF of the diffusion model is that of the first-passage times of the accumulation process over the
boundaries. That is, it is the expected distribution of the time until the process first hits or crosses one
or the other boundary. This results in a bivariate distribution, over responses x and hitting times t.
The PDF is approximated by Equation 1:

d (t, x = 0|α, τ, β, δ) =
1
α2 exp

[
−αβδ− 1

2
δ2 (t− τ)

]
f
(

t− τ

α2

∣∣∣∣β) . (1)

The first passage time distribution for hits at the opposite boundary is d (t, x = 1|α, τ, β, δ) =
d (t, x = 0|α, 1− β, τ,−δ). In Equation 1, f can be either the large-time representation

fL (u|β) = π
+∞

∑
k=1

k exp
(
− k2π2u

2

)
sin (kπβ)

or the small-time representation

fS (u|β) =
1√

2πu3

+∞

∑
k=−∞

(2k + β) exp

[
− (2k + β)2

2u

]
. (2)

Either approximation of f can be more computationally efficient (in terms of the number of terms
required to have the infinite sum converge below an error bound ε = 10−10), depending on the
parameter and data values. Specifically, Navarro and Fuss (2009) provide a decision rule to determine
the more efficient formula: Equation 2 should be used if and only if

2 +
√
−2u log

(
2ε
√

2πu
)
−
√
−2 log (πuε)

π2u
< 0,

where u = t−τ
α2 . The derivation of this decision rule, as well as demonstrations of its efficiency, are

given in Navarro and Fuss (2009).

Cumulative distribution function

A similar rule for the efficient computation of the CDF can be found in Blurton et al. (2012)—there
exists a large-time representation

pL (t, x = 0|α, τ, β, δ) = P0 −
2π

α2 exp
(
−αβδ− δ2 (t− τ)

2

)
×

+∞

∑
k=1

k sin (πkβ)

δ2 + (kπ/α)2 exp

[
−1

2

(
kπ

α

)2
(t− τ)

]
,

(3)

and a small-time representation

pS (t, x = 0|α, τ, β, δ) = P0 − sgn δ
+∞

∑
k=−∞

{
exp (−2δαk− 2δαβ) Φ

[
sgn δ

2αk + αβ− δ (t− τ)√
t− τ

]
− exp (2δαk) Φ

[
sgn δ

−2αk− αβ− δ (t− τ)√
t− τ

]}
,

(4)

where sgn is the signum function and Φ denotes the cumulative normal distribution function. In both
cases, P0 is the probability of a hit at the lower boundary,
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P0 =

{ 1−exp[−2δα(1−β)]
exp(2δαβ)−exp[−2δα(1−β)]

if δ 6= 0,

1− β if δ = 0.

In order to reach an approximation with absolute error not exceeding ε = 10−10, the infinite sums
in Equations 3 and 4 are approximated with KL and KS terms, respectively (derivation of these limits is
given in Blurton et al., 2012). KL and KS are the smallest integers that satisfy the following constraints:{

K2
L ≥ 1

t−τ

(
α
π

)2

K2
L ≥ − 2

t−τ

(
α
π

)2
{

log
[

1
2 επ (t− τ)

(
δ2 + π2

α2

)]
+ δαβ + 1

2 δ2 (t− τ)
}

and 
KS ≥ β− 1 + 1

2δα log
{

ε
2 [1− exp (2δα)]

}
KS ≥ 1

2α

[
0.535

√
2 (t− τ) + δ (t− τ) + αβ

]
KS ≥ 1

2 β− 1
2α

√
t− τ Φ−1

{
εα

0.3
√

2π(t−τ)
exp

[
1
2 δ2 (t− τ) + δαβ

]} .

Due to the larger computational effort of the small-time representation of the CDF, the large-time
representation is selected if KL/KS < 10.
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