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Hypothesis Tests for Multivariate Linear
Models Using the car Package
by John Fox, Michael Friendly, and Sanford Weisberg

Abstract The multivariate linear model is

Y
(n×m)

= X
(n×p)

B
(p×m)

+ E
(n×m)

The multivariate linear model can be fit with the lm function in R, where the left-hand side of the
model comprises a matrix of response variables, and the right-hand side is specified exactly as for
a univariate linear model (i.e., with a single response variable). This paper explains how to use the
Anova and linearHypothesis functions in the car package to perform convenient hypothesis tests for
parameters in multivariate linear models, including models for repeated-measures data.

Basic ideas

The multivariate linear model accommodates two or more response variables. The theory of multivari-
ate linear models is developed very briefly in this section, which is based on Fox (2008, Sec. 9.5). There
are many texts that treat multivariate linear models and multivariate analysis of variance (MANOVA )
more extensively: The theory is presented in Rao (1973); more generally accessible treatments include
Hand and Taylor (1987) and Morrison (2005). A good brief introduction to the MANOVA approach to
repeated-measures may be found in O’Brien and Kaiser (1985), from which we draw an example below.
Winer (1971, Chap. 7) presents the traditional univariate approach to repeated-measures ANOVA.

The multivariate general linear model is

Y
(n×m)

= X
(n×p)

B
(p×m)

+ E
(n×m)

where Y is a matrix of n observations on m response variables; X is a model matrix with columns for
p regressors, typically including an initial column of 1s for the regression constant; B is a matrix of
regression coefficients, one column for each response variable; and E is a matrix of errors. The contents
of the model matrix are exactly as in the univariate linear model, and may contain, therefore, dummy
regressors representing factors, polynomial or regression-spline terms, interaction regressors, and so
on. For brevity, we assume that X is of full column-rank p; allowing for less than full rank cases would
only introduce additional notation but not fundamentally change any of the results presented here.

The assumptions of the multivariate linear model concern the behavior of the errors: Let ε′i
represent the ith row of E. Then ε′i ∼ Nm(0, Σ), where Σ is a nonsingular error-covariance matrix,
constant across observations; ε′i and ε′j are independent for i 6= j; and X is fixed or independent of
E. We can write more compactly that vec(E) ∼ Nnm(0, In ⊗ Σ). Here, vec(E) ravels the error matrix
row-wise into a vector, In is the order-n identity matrix, and ⊗ is the Kronecker-product operator.

The maximum-likelihood estimator of B in the multivariate linear model is equivalent to equation-
by-equation least squares for the individual responses:

B̂ = (X′X)−1X′Y

Procedures for statistical inference in the multivariate linear model, however, take account of correla-
tions among the responses.

Paralleling the decomposition of the total sum of squares into regression and residual sums of
squares in the univariate linear model, there is in the multivariate linear model a decomposition of the
total sum-of-squares-and-cross-products (SSP ) matrix into regression and residual SSP matrices. We
have

SSPT
(m×m)

= Y′Y− ny y′

= Ê′Ê +
(

Ŷ′Ŷ− ny y′
)

= SSPR + SSPReg

where y is the (m× 1) vector of means for the response variables; Ŷ = XB̂ is the matrix of fitted values;
and Ê = Y− Ŷ is the matrix of residuals.
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Many hypothesis tests of interest can be formulated by taking differences in SSPReg (or, equiva-
lently, SSPR) for nested models, although the Anova function in the car package (Fox and Weisberg,
2011), described below, calculates SSP matrices for common hypotheses more cleverly, without refitting
the model. Let SSPH represent the incremental SSP matrix for a hypothesis—that is, the difference
between SSPReg for the model unrestricted by the hypothesis and SSPReg for the model on which
the hypothesis is imposed. Multivariate tests for the hypothesis are based on the m eigenvalues λj of
SSPHSSP−1

R (the hypothesis SSP matrix “divided by” the residual SSP matrix), that is, the values of λ
for which

det(SSPHSSP−1
R − λIm) = 0

The several commonly used multivariate test statistics are functions of these eigenvalues:

Pillai-Bartlett Trace, TPB =
m

∑
j=1

λj

1− λj

Hotelling-Lawley Trace, THL =
m

∑
j=1

λj

Wilks’s Lambda, Λ =
m

∏
j=1

1
1 + λj

Roy’s Maximum Root, λ1

(1)

By convention, the eigenvalues of SSPHSSP−1
R are arranged in descending order, and so λ1 is the

largest eigenvalue. The car package uses F approximations to the null distributions of these test
statistics (see, e.g., Rao, 1973, p. 556, for Wilks’s Lambda).

The tests apply generally to all linear hypotheses. Suppose that we want to test the linear hypothe-
sis

H0: L
(q×p)

B
(p×m)

= C
(q×m)

(2)

where L is a hypothesis matrix of full row-rank q ≤ p, and the right-hand-side matrix C consists of
constants, usually 0s. Then the SSP matrix for the hypothesis is

SSPH =
(

B̂′L′ −C′
) [

L(X′X)−1L′
]−1 (

LB̂−C
)

The various test statistics are based on the k = min(q, m) nonzero eigenvalues of SSPHSSP−1
R .

When a multivariate response arises because a variable is measured on different occasions, or under
different circumstances (but for the same individuals), it is also of interest to formulate hypotheses
concerning comparisons among the responses. This situation, called a repeated-measures design , can
be handled by linearly transforming the responses using a suitable “within-subjects” model matrix,
for example extending the linear hypothesis in Equation 2 to

H0: L
(q×p)

B
(p×m)

P
(m×v)

= C
(q×v)

(3)

Here, the response-transformation matrix P, assumed to be of full column-rank, provides contrasts in
the responses (see, e.g., Hand and Taylor, 1987, or O’Brien and Kaiser, 1985). The SSP matrix for the
hypothesis is

SSPH
(q×q)

=
(

P′B̂′L′ −C′
) [

L(X′X)−1L′
]−1 (

LB̂P−C
)

and test statistics are based on the k = min(q, v) nonzero eigenvalues of SSPH(P′SSPRP)−1.

Fitting and testing multivariate linear models

Multivariate linear models are fit in R with the lm function. The procedure is the essence of simplicity:
The left-hand side of the model formula is a matrix of responses, with each column representing a
response variable and each row an observation; the right-hand side of the model formula and all
other arguments to lm are precisely the same as for a univariate linear model (as described, e.g.,
in Fox and Weisberg, 2011, Chap. 4). Typically, the response matrix is composed from individual
response variables via the cbind function. The anova function in the standard R distribution is capable
of handling multivariate linear models (see Dalgaard, 2007), but the Anova and linearHypothesis
functions in the car package may also be employed. We briefly demonstrate the use of these functions
in this section.
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Figure 1: Three species of irises in the Anderson/Fisher data set: setosa (left), versicolor (center), and
virginica (right). Source: The photographs are respectively by Radomil Binek, Danielle Langlois, and Frank
Mayfield, and are distributed under the Creative Commons Attribution-Share Alike 3.0 Unported license (first
and second images) or 2.0 Creative Commons Attribution-Share Alike Generic license (third image); they were
obtained from the Wikimedia Commons.

Anova and linearHypothesis are generic functions with methods for many common classes of
statistical models with linear predictors. In addition to multivariate linear models, these classes
include linear models fit by lm or aov; generalized linear models fit by glm; mixed-effects models fit
by lmer or glmer in the lme4 package (Bates et al., 2012) or lme in the nlme package (Pinheiro et al.,
2012); survival regression models fit by coxph or survreg in the survival package (Therneau, 2012);
multinomial-response models fit by multinom in the nnet package (Venables and Ripley, 2002); ordinal
regression models fit by polr in the MASS package (Venables and Ripley, 2002); and generalized
linear models fit to complex-survey data via svyglm in the survey package (Lumley, 2004). There is
also a generic method that will work with many models for which there are coef and vcov methods.
The Anova and linearHypothesis methods for "mlm" objects are special, however, in that they handle
multiple response variables and make provision for designs on repeated measures, discussed in the
next section.

To illustrate multivariate linear models, we will use data collected by Anderson (1935) on three
species of irises in the Gaspé Peninsula of Québec, Canada. The data are of historical interest in
statistics, because they were employed by R. A. Fisher (1936) to introduce the method of discriminant
analysis. The data frame iris is part of the standard R distribution, and we load the car package now
for the some function, which randomly samples the rows of a data set. We rename the variables in the
iris data to make listings more compact:

> names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

> names(iris) <- c("SL", "SW", "PL", "PW", "SPP")
> library(car)
> some(iris, 3) # 3 random rows

SL SW PL PW SPP
44 5.0 3.5 1.6 0.6 setosa
61 5.0 2.0 3.5 1.0 versicolor
118 7.7 3.8 6.7 2.2 virginica

The first four variables in the data set represent measurements (in cm) of parts of the flowers, while
the final variable specifies the species of iris. (Sepals are the green leaves that comprise the calyx of
the plant, which encloses the flower.) Photographs of examples of the three species of irises—setosa,
versicolor, and virginica—appear in Figure 1. Figure 2 is a scatterplot matrix of the four measurements
classified by species, showing within-species 50 and 95% concentration ellipses (see Fox and Weisberg,
2011, Sec. 4.3.8); Figure 3 shows boxplots for each of the responses by species. These graphs are
produced by the scatterplotMatrix and Boxplot functions in the car package (see Fox and Weisberg,
2011, Sec. 3.2.2 and 3.3.2). As the photographs suggest, the scatterplot matrix and boxplots for the
measurements reveal that versicolor and virginica are more similar to each other than either is to
setosa. Further, the ellipses in the scatterplot matrix suggest that the assumption of constant within-
group covariance matrices is problematic: While the shapes and sizes of the concentration ellipses
for versicolor and virginica are reasonably similar, the shapes and sizes of the ellipses for setosa are
different from the other two.

We proceed nevertheless to fit a multivariate one-way ANOVA model to the iris data:

> mod.iris <- lm(cbind(SL, SW, PL, PW) ~ SPP, data=iris)
> class(mod.iris)
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Figure 2: Scatterplot matrix for the Anderson/Fisher iris data, showing within-species 50 and 95%
concentration ellipses.
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Figure 3: Boxplots for the response variables in the iris data set classified by species.

[1] "mlm" "lm"

The lm function returns an S3 object of class "mlm" inheriting from class "lm". The printed representa-
tion of the object (not shown) simply displays the estimated regression coefficients for each response,
and the model summary (also not shown) is the same as we would obtain by performing separate
least-squares regressions for the four responses.

We use the Anova function in the car package to test the null hypothesis that the four response
means are identical across the three species of irises:

> manova.iris <- Anova(mod.iris)
> manova.iris

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

SPP 2 1.19 53.5 8 290 <2e-16

> class(manova.iris)

[1] "Anova.mlm"

> summary(manova.iris)
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Type II MANOVA Tests:

Sum of squares and products for error:
SL SW PL PW

SL 38.956 13.630 24.625 5.645
SW 13.630 16.962 8.121 4.808
PL 24.625 8.121 27.223 6.272
PW 5.645 4.808 6.272 6.157

------------------------------------------

Term: SPP

Sum of squares and products for the hypothesis:
SL SW PL PW

SL 63.21 -19.95 165.25 71.28
SW -19.95 11.34 -57.24 -22.93
PL 165.25 -57.24 437.10 186.77
PW 71.28 -22.93 186.77 80.41

Multivariate Tests: SPP
Df test stat approx F num Df den Df Pr(>F)

Pillai 2 1.19 53.5 8 290 <2e-16
Wilks 2 0.02 199.1 8 288 <2e-16
Hotelling-Lawley 2 32.48 580.5 8 286 <2e-16
Roy 2 32.19 1167.0 4 145 <2e-16

The Anova function returns an object of class "Anova.mlm" which, when printed, produces a MANOVA
table, by default reporting Pillai’s test statistic;1 summarizing the object produces a more complete
report. Because there is only one term (beyond the regression constant) on the right-hand side of the
model, in this example the “type-II” test produced by default by Anova is the same as the sequential
(“type-I”) test produced by the standard R anova function (output not shown):

> anova(mod.iris)

The null hypothesis is soundly rejected.

The object returned by Anova may also be used in further computations, for example, for displays
such as hypothesis-error (HE) plots (Friendly, 2007; Fox et al., 2009; Friendly, 2010), as we illustrate
below.

The linearHypothesis function in the car package may be used to test more specific hypotheses
about the parameters in the multivariate linear model. For example, to test for differences between
setosa and the average of versicolor and virginica, and for differences between versicolor and virginica:

> linearHypothesis(mod.iris, "0.5*SPPversicolor + 0.5*SPPvirginica")

. . .
Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)
Pillai 1 0.967 1064 4 144 <2e-16
Wilks 1 0.033 1064 4 144 <2e-16
Hotelling-Lawley 1 29.552 1064 4 144 <2e-16
Roy 1 29.552 1064 4 144 <2e-16

> linearHypothesis(mod.iris, "SPPversicolor = SPPvirginica")

. . .
Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)
Pillai 1 0.7452 105.3 4 144 <2e-16
Wilks 1 0.2548 105.3 4 144 <2e-16
Hotelling-Lawley 1 2.9254 105.3 4 144 <2e-16
Roy 1 2.9254 105.3 4 144 <2e-16

1The Manova function in the car package may be used as a synonym for Anova applied to a multivariate linear
model. The computation of the various multivariate test statistics is performed via unexported functions from the
standard R stats package, such as stats:::Pillai.
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Here and elsewhere in this paper, we use widely separated ellipses (. . .) to indicate abbreviated R
output.

Setting the argument verbose=TRUE to linearHypothesis (not given here to conserve space) shows
in addition the hypothesis matrix L and right-hand-side matrix C for the linear hypothesis in Equation 2
(page 40). In this case, all of the multivariate test statistics are equivalent and therefore translate into
identical F-statistics. Both focussed null hypotheses are easily rejected, but the evidence for differences
between setosa and the other two iris species is much stronger than for differences between versicolor
and virginica. Testing that "0.5*SPPversicolor + 0.5*SPPvirginica" is 0 tests that the average of
the mean vectors for these two species is equal to the mean vector for setosa, because the latter is the
baseline category for the species dummy regressors.

An alternative, equivalent, and in a sense more direct, approach is to fit the model with custom
contrasts for the three species of irises, followed up by a test for each contrast:

> C <- matrix(c(1, -0.5, -0.5, 0, 1, -1), 3, 2)
> colnames(C) <- c("S:VV", "V:V")
> rownames(C) <- unique(iris$SPP)
> contrasts(iris$SPP) <- C
> contrasts(iris$SPP)

S:VV V:V
setosa 1.0 0
versicolor -0.5 1
virginica -0.5 -1

> mod.iris.2 <- update(mod.iris)
> coef(mod.iris.2)

SL SW PL PW
(Intercept) 5.8433 3.0573 3.758 1.1993
SPPS:VV -0.8373 0.3707 -2.296 -0.9533
SPPV:V -0.3260 -0.1020 -0.646 -0.3500

> linearHypothesis(mod.iris.2, c(0, 1, 0)) # setosa vs. versicolor & virginica

. . .
Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)
Pillai 1 0.967 1064 4 144 <2e-16
Wilks 1 0.033 1064 4 144 <2e-16
Hotelling-Lawley 1 29.552 1064 4 144 <2e-16
Roy 1 29.552 1064 4 144 <2e-16

> linearHypothesis(mod.iris.2, c(0, 0, 1)) # versicolor vs. virginica

. . .
Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)
Pillai 1 0.7452 105.3 4 144 <2e-16
Wilks 1 0.2548 105.3 4 144 <2e-16
Hotelling-Lawley 1 2.9254 105.3 4 144 <2e-16
Roy 1 2.9254 105.3 4 144 <2e-16

We note here briefly that the heplots package (Friendly, 2007; Fox et al., 2009) provides informative
visualizations in 2D and 3D HE plots of multivariate hypothesis tests and "Anova.mlm" objects based
on Eqn. 2. These plots show direct visual representations of the SSPH and SSPE matrices as (possibly
degenerate) ellipses and ellipsoids.

Using the default significance scaling, HE plots have the property that the SSPH ellipsoid extends
outside the SSPE ellipsoid if and only if the corresponding multivariate hypothesis test is rejected by
Roy’s maximum root test at a given α level. See Friendly (2007) and Fox et al. (2009) for details of these
methods, and Friendly (2010) for analogous plots for repeated measure designs.

To illustrate, Figure 4 shows the 2D HE plot of the two sepal variables for the overall test of species,
together with the tests of the contrasts among species described above. The SSPH matrices for the
contrasts have rank 1, so their ellipses plot as lines. All three SSPH ellipses extend far outside the
SSPE ellipse, indicating that all tests are highly significant.
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Figure 4: HE plot for the multivariate test of species in the iris data, α = 0.05, shown for the sepal
length and sepal width response variables. Also shown are the multivariate linearHypothesis tests
for two contrasts among species. The shaded red ellipse is the error ellipse, and the hypothesis ellipses
(including the two lines) are blue.

> library(heplots)
> hyp <- list("V:V"="SPPV:V", "S:VV"="SPPS:VV")
> heplot(mod.iris.2, hypotheses=hyp, fill=c(TRUE, FALSE), col=c("red", "blue"))

Finally, we can code the response-transformation matrix P in Equation 3 (page 40) to compute
linear combinations of the responses, either via the imatrix argument to Anova (which takes a list of
matrices) or the P argument to linearHypothesis (which takes a matrix). We illustrate trivially with a
univariate ANOVA for the first response variable, sepal length, extracted from the multivariate linear
model for all four responses:

> Anova(mod.iris, imatrix=list(Sepal.Length=matrix(c(1, 0, 0, 0))))

Type II Repeated Measures MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

Sepal.Length 1 0.992 19327 1 147 <2e-16
SPP:Sepal.Length 2 0.619 119 2 147 <2e-16

The univariate ANOVA for sepal length by species appears in the second line of the MANOVA table
produced by Anova. Similarly, using linearHypothesis,

> linearHypothesis(mod.iris, c("SPPversicolor = 0", "SPPvirginica = 0"),
+ P=matrix(c(1, 0, 0, 0))) # equivalent

. . .
Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)
Pillai 2 0.6187 119.3 2 147 <2e-16
Wilks 2 0.3813 119.3 2 147 <2e-16
Hotelling-Lawley 2 1.6226 119.3 2 147 <2e-16
Roy 2 1.6226 119.3 2 147 <2e-16

In this case, the P matrix is a single column picking out the first response. We verify that we get the
same F-test from a univariate ANOVA for Sepal.Length:

> Anova(lm(SL ~ SPP, data=iris))

Anova Table (Type II tests)
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Response: SL
Sum Sq Df F value Pr(>F)

SPP 63.2 2 119 <2e-16
Residuals 39.0 147

Contrasts of the responses occur more naturally in the context of repeated-measures data, which
we discuss in the following section.

Handling repeated measures

Repeated-measures data arise when multivariate responses represent the same individuals measured
on a response variable (or variables) on different occasions or under different circumstances. There
may be a more or less complex design on the repeated measures. The simplest case is that of a single
repeated-measures or within-subjects factor, where the former term often is applied to data collected
over time and the latter when the responses represent different experimental conditions or treatments.
There may, however, be two or more within-subjects factors, as is the case, for example, when each
subject is observed under different conditions on each of several occasions. The terms “repeated
measures” and “within-subjects factors” are common in disciplines, such as psychology, where the
units of observation are individuals, but these designs are essentially the same as so-called “split-plot”
designs in agriculture, where plots of land are each divided into sub-plots, which are subjected to
different experimental treatments, such as differing varieties of a crop or differing levels of fertilizer.

Repeated-measures designs can be handled in R with the standard anova function, as described
by Dalgaard (2007), but it is considerably simpler to get common tests from the functions Anova and
linearHypothesis in the car package, as we explain in this section. The general procedure is first to
fit a multivariate linear model with all of the repeated measures as responses; then an artificial data
frame is created in which each of the repeated measures is a row and in which the columns represent
the repeated-measures factor or factors; finally, as we explain below, the Anova or linearHypothesis
function is called, using the idata and idesign arguments (and optionally the icontrasts argument)—
or alternatively the imatrix argument to Anova or P argument to linearHypothesis—to specify the
intra-subject design.

To illustrate, we use data reported by O’Brien and Kaiser (1985), in what they (justifiably) bill as
“an extensive primer” for the MANOVA approach to repeated-measures designs. Although the data are
apparently not real, they are contrived cleverly to illustrate the computations for repeated-measures
MANOVA, and we use the data for this reason, as well as to permit comparison of our results to those
in an influential published source. The data set OBrienKaiser is provided by the car package:

> some(OBrienKaiser, 4)

treatment gender pre.1 pre.2 pre.3 pre.4 pre.5 post.1 post.2 post.3 post.4
11 B M 3 3 4 2 3 5 4 7 5
12 B M 6 7 8 6 3 9 10 11 9
14 B F 2 2 3 1 2 5 6 7 5
16 B F 4 5 7 5 4 7 7 8 6

post.5 fup.1 fup.2 fup.3 fup.4 fup.5
11 4 5 6 8 6 5
12 6 8 7 10 8 7
14 2 6 7 8 6 3
16 7 7 8 10 8 7

> contrasts(OBrienKaiser$treatment)

[,1] [,2]
control -2 0
A 1 -1
B 1 1

> contrasts(OBrienKaiser$gender)

[,1]
F 1
M -1

> xtabs(~ treatment + gender, data=OBrienKaiser)
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Figure 5: Mean reading score by gender, treatment, phase, and hour, for the O’Brien-Kaiser data.

gender
treatment F M
control 2 3
A 2 2
B 4 3

There are two between-subjects factors in the O’Brien-Kaiser data: gender, with levels F and M; and
treatment, with levels A, B, and control. Both of these variables have predefined contrasts, with
−1, 1 coding for gender and custom contrasts for treatment. In the latter case, the first contrast is
for the control group vs. the average of the experimental groups, and the second contrast is for
treatment A vs. treatment B. We have defined these contrasts, which are orthogonal in the row-basis of
the between-subjects design, to reproduce the type-III tests that are reported in the original source.

The frequency table for treatment by gender reveals that the data are mildly unbalanced. We will
imagine that the treatments A and B represent different innovative methods of teaching reading to
learning-disabled students, and that the control treatment represents a standard method.

The 15 response variables in the data set represent two crossed within-subjects factors: phase, with
three levels for the pretest, post-test, and follow-up phases of the study; and hour, representing five
successive hours, at which measurements of reading comprehension are taken within each phase. We
define the “data” for the within-subjects design as follows:

> phase <- factor(rep(c("pretest", "posttest", "followup"), each=5),
+ levels=c("pretest", "posttest", "followup"))
> hour <- ordered(rep(1:5, 3))
> idata <- data.frame(phase, hour)
> idata

phase hour
1 pretest 1
2 pretest 2
3 pretest 3
. . .
14 followup 4
15 followup 5

Mean reading comprehension is graphed by hour, phase, treatment, and gender in Figure 5.
It appears as if reading improves across phases in the two experimental treatments but not in the
control group (suggesting a possible treatment-by-phase interaction); that there is a possibly quadratic
relationship of reading to hour within each phase, with an initial rise and then decline, perhaps
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representing fatigue (suggesting an hour main effect); and that males and females respond similarly in
the control and B treatment groups, but that males do better than females in the A treatment group
(suggesting a possible gender-by-treatment interaction).

We next fit a multivariate linear model to the data, treating the repeated measures as responses,
and with the between-subject factors treatment and gender (and their interaction) appearing on the
right-hand side of the model formula:

> mod.ok <- lm(cbind(pre.1, pre.2, pre.3, pre.4, pre.5,
+ post.1, post.2, post.3, post.4, post.5,
+ fup.1, fup.2, fup.3, fup.4, fup.5)
+ ~ treatment*gender, data=OBrienKaiser)

We then compute the repeated-measures MANOVA using the Anova function in the following manner:

> av.ok <- Anova(mod.ok, idata=idata, idesign=~phase*hour, type=3)
> av.ok

Type III Repeated Measures MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 0.967 296.4 1 10 9.2e-09
treatment 2 0.441 3.9 2 10 0.05471
gender 1 0.268 3.7 1 10 0.08480
treatment:gender 2 0.364 2.9 2 10 0.10447
phase 1 0.814 19.6 2 9 0.00052
treatment:phase 2 0.696 2.7 4 20 0.06211
gender:phase 1 0.066 0.3 2 9 0.73497
treatment:gender:phase 2 0.311 0.9 4 20 0.47215
hour 1 0.933 24.3 4 7 0.00033
treatment:hour 2 0.316 0.4 8 16 0.91833
gender:hour 1 0.339 0.9 4 7 0.51298
treatment:gender:hour 2 0.570 0.8 8 16 0.61319
phase:hour 1 0.560 0.5 8 3 0.82027
treatment:phase:hour 2 0.662 0.2 16 8 0.99155
gender:phase:hour 1 0.712 0.9 8 3 0.58949
treatment:gender:phase:hour 2 0.793 0.3 16 8 0.97237

• Following O’Brien and Kaiser (1985), we report type-III tests (partial tests violating marginality),
by specifying the argument type=3. Although, as in univariate models, we generally prefer
type-II tests (see Fox and Weisberg, 2011, Sec. 4.4.4, and Fox, 2008, Sec. 8.2), we wanted to
preserve comparability with the original source. Type-III tests are computed correctly because
the contrasts employed for treatment and gender, and hence their interaction, are orthogonal
in the row-basis of the between-subjects design. We invite the reader to compare these results
with the default type-II tests.

• When, as here, the idata and idesign arguments are specified, Anova automatically constructs
orthogonal contrasts for different terms in the within-subjects design, using contr.sum for a
factor such as phase and contr.poly (orthogonal polynomial contrasts) for an ordered factor
such as hour. Alternatively, the user can assign contrasts to the columns of the intra-subject
data, either directly or via the icontrasts argument to Anova. In any event, Anova checks that
the within-subjects contrast coding for different terms is orthogonal and reports an error when
it is not.

• By default, Pillai’s test statistic is displayed; we invite the reader to examine the other three
multivariate test statistics. Much more detail of the tests is provided by summary(av.ok) (not
shown).

• The results show that the anticipated hour effect is statistically significant, but the treatment
× phase and treatment × gender interactions are not quite significant. There is, however, a
statistically significant phase main effect. Of course, we should not over-interpret these results,
partly because the data set is small and partly because it is contrived.

Univariate ANOVA for repeated measures

A traditional univariate approach to repeated-measures (or split-plot) designs (see, e.g., Winer, 1971,
Chap. 7) computes an analysis of variance employing a “mixed-effects” model in which subjects
generate random effects. This approach makes stronger assumptions about the structure of the data
than the MANOVA approach described above, in particular stipulating that the covariance matrices
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for the repeated measures transformed by the within-subjects design (within combinations of between-
subjects factors) are spherical—that is, the transformed repeated measures for each within-subjects
test are uncorrelated and have the same variance, and this variance is constant across cells of the
between-subjects design. A sufficient (but not necessary) condition for sphericity of the errors is that
the covariance matrix Σ of the repeated measures is compound-symmetric , with equal diagonal entries
(representing constant variance for the repeated measures) and equal off-diagonal elements (implying,
together with constant variance, that the repeated measures have a constant correlation).

By default, when an intra-subject design is specified, summarizing the object produced by Anova
reports both MANOVA and univariate tests. Along with the traditional univariate tests, the summary
reports tests for sphericity (Mauchly, 1940) and two corrections for non-sphericity of the univariate
test statistics for within-subjects terms: the Greenhouse-Geisser correction (Greenhouse and Geisser,
1959) and the Huynh-Feldt correction (Huynh and Feldt, 1976). We illustrate for the O’Brien-Kaiser
data, suppressing the output for brevity; we invite the reader to reproduce this analysis:

> summary(av.ok, multivariate=FALSE)

There are statistically significant departures from sphericity for F-tests involving hour; the results for
the univariate ANOVA are not terribly different from those of the MANOVA reported above, except
that now the treatment × phase interaction is statistically significant.

Using linearHypothesis with repeated-measures designs

As for simpler multivariate linear models (discussed previously in this paper), the linearHypothesis
function can be used to test more focused hypotheses about the parameters of repeated-measures
models, including for within-subjects terms.

As a preliminary example, to reproduce the test for the main effect of hour, we can use the idata,
idesign, and iterms arguments in a call to linearHypothesis:

> linearHypothesis(mod.ok, "(Intercept) = 0", idata=idata,
+ idesign=~phase*hour, iterms="hour")

Response transformation matrix:
hour.L hour.Q hour.C hour^4

pre.1 -0.6325 0.5345 -3.162e-01 0.1195
pre.2 -0.3162 -0.2673 6.325e-01 -0.4781
. . .
fup.5 0.6325 0.5345 3.162e-01 0.1195

. . .

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.933 24.32 4 7 0.000334
Wilks 1 0.067 24.32 4 7 0.000334
Hotelling-Lawley 1 13.894 24.32 4 7 0.000334
Roy 1 13.894 24.32 4 7 0.000334

Because hour is a within-subjects factor, we test its main effect as the regression intercept in the
between-subjects model, using a response-transformation matrix for the hour contrasts.

Alternatively and equivalently, we can generate the response-transformation matrix P for the
hypothesis directly:

> Hour <- model.matrix(~ hour, data=idata)
> dim(Hour)

[1] 15 5

> head(Hour, 5)

(Intercept) hour.L hour.Q hour.C hour^4
1 1 -0.6325 0.5345 -3.162e-01 0.1195
2 1 -0.3162 -0.2673 6.325e-01 -0.4781
3 1 0.0000 -0.5345 -4.096e-16 0.7171
4 1 0.3162 -0.2673 -6.325e-01 -0.4781
5 1 0.6325 0.5345 3.162e-01 0.1195
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> linearHypothesis(mod.ok, "(Intercept) = 0", P=Hour[ , c(2:5)])

Response transformation matrix:
hour.L hour.Q hour.C hour^4

pre.1 -0.6325 0.5345 -3.162e-01 0.1195
pre.2 -0.3162 -0.2673 6.325e-01 -0.4781
. . .
fup.5 0.6325 0.5345 3.162e-01 0.1195

Sum of squares and products for the hypothesis:
hour.L hour.Q hour.C hour^4

hour.L 0.01034 1.556 0.3672 -0.8244
hour.Q 1.55625 234.118 55.2469 -124.0137
hour.C 0.36724 55.247 13.0371 -29.2646
hour^4 -0.82435 -124.014 -29.2646 65.6907

. . .

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.933 24.32 4 7 0.000334
Wilks 1 0.067 24.32 4 7 0.000334
Hotelling-Lawley 1 13.894 24.32 4 7 0.000334
Roy 1 13.894 24.32 4 7 0.000334

As mentioned, this test simply duplicates part of the output from Anova, but suppose that we want
to test the individual polynomial components of the hour main effect:

> linearHypothesis(mod.ok, "(Intercept) = 0", P=Hour[ , 2, drop=FALSE]) # linear

Response transformation matrix:
hour.L

pre.1 -0.6325
pre.2 -0.3162
. . .
fup.5 0.6325

. . .

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.0001 0.001153 1 10 0.974
Wilks 1 0.9999 0.001153 1 10 0.974
Hotelling-Lawley 1 0.0001 0.001153 1 10 0.974
Roy 1 0.0001 0.001153 1 10 0.974

> linearHypothesis(mod.ok, "(Intercept) = 0", P=Hour[ , 3, drop=FALSE]) # quadratic

Response transformation matrix:
hour.Q

pre.1 0.5345
pre.2 -0.2673
. . .
fup.5 0.5345

. . .

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.834 50.19 1 10 0.0000336
Wilks 1 0.166 50.19 1 10 0.0000336
Hotelling-Lawley 1 5.019 50.19 1 10 0.0000336
Roy 1 5.019 50.19 1 10 0.0000336

> linearHypothesis(mod.ok, "(Intercept) = 0", P=Hour[ , c(2, 4:5)]) # all non-quadratic
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Response transformation matrix:
hour.L hour.C hour^4

pre.1 -0.6325 -3.162e-01 0.1195
pre.2 -0.3162 6.325e-01 -0.4781
. . .
fup.5 0.6325 3.162e-01 0.1195

. . .

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.896 23.05 3 8 0.000272
Wilks 1 0.104 23.05 3 8 0.000272
Hotelling-Lawley 1 8.644 23.05 3 8 0.000272
Roy 1 8.644 23.05 3 8 0.000272

The hour main effect is more complex, therefore, than a simple quadratic trend.

Conclusions

In contrast to the standard R anova function, the Anova and linearHypothesis functions in the car
package make it relatively simple to compute hypothesis tests that are typically used in applications
of multivariate linear models, including repeated-measures data. Although similar facilities for
multivariate analysis of variance and repeated measures are provided by traditional statistical packages
such as SAS and SPSS, we believe that the printed output from Anova and linearHypothesis is more
readable, producing compact standard output and providing details when one wants them. These
functions also return objects containing information—for example, SSP and response-transformation
matrices—that may be used for further computations and in graphical displays, such as HE plots.
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