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betategarch: Simulation, Estimation and
Forecasting of Beta-Skew-t-EGARCH
Models
by Genaro Sucarrat

Abstract This paper illustrates the usage of the betategarch package, a package for the simulation,
estimation and forecasting of Beta-Skew-t-EGARCH models. The Beta-Skew-t-EGARCH model is
a dynamic model of the scale or volatility of financial returns. The model is characterised by its
robustness to jumps or outliers, and by its exponential specification of volatility. The latter enables
richer dynamics, since parameters need not be restricted to be positive to ensure positivity of volatility.
In addition, the model also allows for heavy tails and skewness in the conditional return (i.e. scaled
return), and for leverage and a time-varying long-term component in the volatility specification. More
generally, the model can be viewed as a model of the scale of the error in a dynamic regression.

Introduction

It is well known that financial returns are characterised by volatility clustering: Large returns in
absolute value are likely to be followed by other large returns in absolute value, and small returns in
absolute value are likely to be followed by other small returns in absolute value. This characteristic is
usually modelled by specifications in the Autoregressive Conditional Heteroscedasticity (ARCH) class
of models by Engle (1982). If yt denotes the financial return at t such that

yt = σtεt, εt ∼ I ID(0, σ2
ε ), σ2

t = h(σt−1, yt−1, . . .), t = 1, 2, . . . ,

then the scale or volatility σt > 0 is said to follow an ARCH process. Arguably, the most popular
ARCH specification is the first order Generalised ARCH (GARCH) of Bollerslev (1986), where σ2

t
is modelled in an ARMA(1,1)-like manner, σ2

t = ω + φ1σ2
t−1 + κ1y2

t−1 with σ2
ε = 1, see Francq and

Zakoïan (2010) for a recent survey of GARCH models. If the financial return in question is predictable,
then yt can be interpreted as de-meaned return, i.e. the unpredictable part of return. However, more
generally, yt can be viewed as the error-term in a dynamic regression. Three characteristics that are
often exhibited by financial returns are leverage (i.e. volatility asymmetry), conditional fat-tailedness
and conditional skewness. The former means volatility tends to be higher after negative returns –
this is typically attributed to leverage (hence the name), whereas conditional fat-tailedness means the
standardised conditional return (i.e. εt) is more fat-tailed than the Gaussian. Conditional skewness
means the standardised return is not symmetric. For stock returns, the skewness is typically negative,
which means the probability of a large negative return is greater than a large positive return, even
after controlling or adjusting for the recent level of volatility.

Several R packages provide facilities for the estimation and forecasting of univariate GARCH
models that contains one or more of these features. Arguably, the three most important packages are
tseries by Trapletti and Hornik (2013), fGarch by Wuertz et al. (2013) and rugarch by Ghalanos (2013).
The tseries package probably has the fastest GARCH optimiser, but does not offer state-of-the-art
specifications with leverage and fat-tailed skewed densities. This, by contrast, is provided by the
fGarch and rugarch packages. The former has been considered by many – including myself – as the
benchmark package in R for quite a while, since it provides a wide range of GARCH models coupled
with a variety of densities. However, unfortunately, fGarch does not offer the possibility to estimate
Exponential GARCH (EGARCH) models, i.e. models where the dynamics is specified in terms of ln σ2

t
rather than in terms of σ2

t . EGARCH models are attractive, since they enable richer and more flexible
dynamics (parameters can be negative), and since the autocorrelation function of returns depends
on the conditional density (this is not the case for non-exponential ARCH models). The rugarch
package, which despite its relative recent origin (available on CRAN since September 2011) already
offers an impressive range of GARCH specifications and variations of these, fills this gap to some
extent by providing Nelson’s (1991) EGARCH model. Another package that partially fills this gap is
AutoSEARCH by Sucarrat (2012), which offers estimation and automated General-to-Specific model
selection of log-ARCH-X models. However, to the best of my knowledge, there are no other R packages
that provide facilities for additional EGARCH models. The betategarch package thus contributes to
the R world by offering utilities for the simulation, estimation and forecasting of Beta-t-EGARCH
models.

The Beta-t-EGARCH model was first proposed by Harvey (2013) and Harvey and Chakravarty
(2008), but it can also be viewed as an unrestricted version of the Generalised Autoregressive Score
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(GAS) model of Creal et al. (2013). The code upon which betategarch is based was originally developed
for Harvey and Sucarrat (2013), which extends the Beta-t-EGARCH model to the skewed case. The
Beta-Skew-t-EGARCH model has a number of attractions. First, the model is robust to jumps or
outliers, and fares very well empirically for a variety of financial returns when compared with
other GARCH models, see Harvey and Sucarrat (2013). Second, the model accommodates the most
important characteristics of time-varying financial volatility: Leverage, conditional fat-tailedness,
conditional skewness and a decomposition of volatility into a short-term and a long-term component.
Third, the unconditional moments of return (i.e. yt) exist (if the conditional moments exist), which is
important in long-term forecasting and for the computation of the autocorrelation function of returns.
By contrast, this is generally not the case for Nelson’s (1991) EGARCH when coupled with a t density:
A necessary condition for the unconditional moments of the first-order specification to exist when
εt is t is that the ARCH parameter is negative, see condition (A1.6) and the subsequent discussion
in Nelson (1991, p. 365). Moreover, in the presence of leverage the ARCH parameter must be even
more negative for the unconditional moments to exist. This is why Nelson (1991) proposed his model
with a Generalised Error Distribution (GED) instead of a t. Fourth, the asymptotic properties are
much easier to derive than those of Nelson’s (1991) EGARCH, see Straumann and Mikosch (2006) and
Wintenberger (2012) for a detailed description of the difficulties. Finally, since the conditional score
drives the dynamics of the model, the Beta-t-EGARCH acquires some attractive theoretical properties.
In particular, a simple transformation of the score is Beta-distributed (hence the name).

The two main functions of the betategarch package (version 3.1) are tegarchSim and tegarch. The
first simulates from a Beta-Skew-t-EGARCH, whereas the latter estimates one. The tegarch function
returns an object (a list) of the tegarch class, and a collection of S3 methods developed for this class can
be applied to such objects: coef, fitted, logLik, predict, print, residuals, summary and vcov. The
rest of the functions in the package are either auxiliary functions called by the two main functions, or
a dataset, nasdaq, which is included for illustration purposes (see empirical example below). Finally, it
is worth noting that the objects returned by tegarchSim function and the fitted and predict methods
are of the class zoo defined in package zoo, see Zeileis and Grothendieck (2005) and Zeileis et al. (2013).
This means a large range of useful time-series methods and facilities can be applied to these objects,
including plotting and printing methods.

The one-component Beta-Skew-t-EGARCH

The martingale difference version of the first order one-component Beta-Skew-t-EGARCH model (see
Sections 4 and 6 in Harvey and Sucarrat, 2013) is given by

yt = exp(λt)εt = σtεt, εt ∼ st(0, σ2
ε , ν, γ), ν > 2, γ ∈ (0, ∞), (1)

λt = ω + λ†
t , (2)

λ†
t = φ1λ†

t−1 + κ1ut−1 + κ∗sgn(−yt−1)(ut−1 + 1), |φ1| < 1. (3)

The σt is the conditional scale or volatility, which need not equal the conditional standard deviation.
In other words, εt is not standardised to have variance one. The conditional standard deviation is
obtained as σtσε, where σ2

ε is the variance of εt. The conditional error εt is distributed as a Skewed t
with zero mean, scale σ2

ε , degrees of freedom parameter ν and skewness parameter γ. The conditional
error is defined as εt = ε∗t − µε∗ , where ε∗t is an uncentred (i.e. mean not necessarily equal to zero)
Skewed t variable with ν degrees of freedom, skewness parameter γ and mean µε∗ . A centred and
symmetric (i.e. ordinary) t-distributed variable with mean zero is obtained when γ = 1, in which
µε∗ = 0, whereas a left-skewed (right-skewed) t-variable is obtained when γ < 1 (γ > 1). More
details on the distribution are given below. The ω is the log-scale intercept and can be interpreted
as the long-term log-volatility, φ1 is the persistence parameter (the bigger, the more clustering), κ1
is the ARCH parameter (the bigger in absolute value, the greater the response to shocks), ut is the
conditional score (i.e. the derivative of the log-likelihood of yt at t with respect to λt) and κ∗ is the
leverage parameter. A sufficient condition for stability in λt is |φ1| < 1.

Let ε∗ denote an ordinary (i.e. centred and symmetric) t-distributed variable (with unit scale),
and let f (ε∗) denote its density. By means of the skewing method of Fernández and Steel (1998), the
density of an uncentred Skewed t variable can be written as

f (ε∗|γ) = 2
γ + γ−1 f

(
ε∗

γsgn(ε∗)

)
. (4)

Computation of the density values and of the mean of an uncentred Skewed t variable, and random
number generation, can be undertaken with dST, STmean and rST, respectively. For example, the
following code compares the empirical average of ten thousand random numbers with the analytical
mean:
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library(betategarch)
set.seed(123)
eps <- rST(10000, df=5, skew=0.7)
mean(eps)
[1] -0.69805
STmean(df=5, skew=0.7)
[1] -0.6914265

In addition, the functions STvar, STskewness and STkurtosis return the analytical values of the
variance, skewness (the standardised 3rd moment) and kurtosis (the standardised 4th moment),
respectively, of an uncentered Skewed t variable.

The conditional score of the martingale difference version of the Beta-Skew-t-EGARCH model (see
Harvey and Sucarrat, 2013, Equation (32) in Section 4) is given by

∂ ln fy(yt)

∂λt
= ut

=
(ν + 1)[y2

t + ytµε∗ exp(λt)]

ν exp(2λt)γ2sgn(yt+µε∗ exp(λt)) + (yt + µε∗ exp(λt))2
− 1. (5)

It is useful to note, however, that for simulation purposes the score ut can also be written more
conveniently as

ut =
(ν + 1)(ε∗2t − µε∗ ε

∗
t )

νγ2sgn(ε∗t ) + ε∗2t
− 1,

where ε∗t is an uncentred Skewed t variable. When the conditional distribution is symmetric (i.e.
γ = 1), then ut+1

ν+1 ∼ Beta(1/2, ν/2). This explains the origin of the name Beta-t-EGARCH.

Financial returns that follow the one-component Beta-Skew-t-EGARCH model given by (1)-(3) can
be simulated with the tegarchSim function. For example, in order to generate two thousand returns
from a specification with empirically plausible values on ω, φ1, κ1 and ν, but without leverage and
skewness, then the following code can be used:

y1 <- tegarchSim(2000, omega=0.1, phi1=0.95, kappa1=0.05, df=10)

Similarly, the following three commands each generate two thousand returns with, respectively,
moderate leverage, strong left-skewness, and both moderate leverage and strong left-skewness:

y2 <- tegarchSim(2000, omega=0.1, phi1=0.95, kappa1=0.05, kappastar=0.02, df=10)
y3 <- tegarchSim(2000, omega=0.1, phi1=0.95, kappa1=0.05, df=10, skew=0.8)
y4 <- tegarchSim(2000, omega=0.1, phi1=0.95, kappa1=0.05, kappastar=0.02, df=10,

skew=0.8)

By default, the tegarchSim function returns the values of yt only. However, for the full set of output
one may use the verbose option. For example, the following code generates 100 observations using
the default parameter values, stores the output in the matrix mY that is of class zoo and returns the first
six observations:

mY <- tegarchSim(100, verbose=TRUE)
head(mY)

y sigma stdev lambda lambdadagg u epsilon
1 0.19977534 1.0000000 1.118034 0.000000000 0.000000000 -0.9562733 0.19977534
2 -1.35118283 0.9904828 1.107393 -0.009562733 -0.009562733 0.7258681 -1.36416581
3 0.15475640 0.9981758 1.115994 -0.001825916 -0.001825916 -0.9736225 0.15503923
4 -0.04853563 0.9885947 1.105282 -0.011470845 -0.011470845 -0.9973492 -0.04909558
5 0.48034223 0.9793455 1.094942 -0.020870795 -0.020870795 -0.7415964 0.49047270
6 0.39742433 0.9731245 1.087986 -0.027243220 -0.027243220 -0.8195400 0.40840028

The last column named "epsilon" contains the centred Skewed t variable εt as defined in (1). The
zeros for λt and λ†

t in the first row are due to the default initial value. This can be changed via the
lambda.initial option.

The two-component Beta-Skew-t-EGARCH

Squared financial return often exhibit long-memory, see Ding et al. (1993) and Ding and Granger
(1996). Two-component models of volatility accommodate the long-memory property by decomposing
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volatility into one long-term component and one short-term component. The role of the latter is to
pick up temporary changes following a shock.

The martingale difference version of the first order two-component Beta-Skew-t-EGARCH model
(see Sections 2.5 and 6 in Harvey and Sucarrat, 2013) is given by

y = exp(λt)εt = σtεt, εt ∼ st(0, σ2
ε , ν, γ), ν, γ ∈ (0, ∞), (6)

λt = ω + λ†
1,t + λ†

2,t, (7)

λ†
1,t = φ1λ†

1,t−1 + κ1ut−1, |φ1| < 1, (8)

λ†
2,t = φ2λ†

2,t−1 + κ2ut−1 + κ∗sgn(−yt−1)(ut−1 + 1), |φ2| < 1, φ1 6= φ2. (9)

The λ1,t and λ2,t can be interpreted as the time-varying long-term and short-term components of
log-volatility, respectively. The conditional score ut, also here given by (5), drives both the long-run
and short-run components, but leverage appears only in the short-term component. This is in line
with the view that shocks only matter for short-term volatility, see e.g. Engle and Lee (1999). The
model is not identifiable if φ2 = φ1.

Returns that follow a two-component Beta-Skew-t-EGARCH model given by (6)-(9) can also be
simulated with the tegarchSim function. For example, the following code generates three thousand
returns from a specification with empirically plausible values on the other parameters, but without
leverage and skewness:

y1 <- tegarchSim(3000, omega=0.2, phi1=0.98, phi2=0.9, kappa1=0.01, kappa2=0.02, df=5)

Similarly, just as in the one-component case, the following code generates three thousand values of yt
with, respectively, leverage, skewness, and both leverage and skewness:

y2 <- tegarchSim(3000, omega=0.2, phi1=0.98, phi2=0.9, kappa1=0.01, kappa2=0.02,
kappastar=0.04, df=5)

y3 <- tegarchSim(3000, omega=0.2, phi1=0.98, phi2=0.9, kappa1=0.01, kappa2=0.02,
df=5, skew=0.95)

y4 <- tegarchSim(3000, omega=0.2, phi1=0.98, phi2=0.9, kappa1=0.01, kappa2=0.02,
kappastar=0.04, df=5, skew=0.95)

Also here is the verbose option available for a more detailed output, and also here can the
lambda.initial option be used to change the initial values.

Estimation and inference

One-component and two-component specifications can be estimated with the tegarch function. For
example, the following code generates 5000 values of yt with default parameter values, estimates
a one-component specification with leverage and skewness, and then prints the most important
information:

set.seed(123)
y <- tegarchSim(5000)
onecompmod <- tegarch(y)
onecompmod

Date: Wed Dec 04 19:53:52 2013
Message (nlminb): relative convergence (4)

Coefficients:
omega phi1 kappa1 kappastar df skew

Estimate: -0.002491487 0.92076991 0.014298775 -0.003284977 9.371817 0.99867519
Std. Error: 0.018374338 0.04263685 0.005027258 0.003574193 1.087466 0.01979645

Log-likelihood: -7635.482215
BIC: 3.064414

Estimation without leverage or skewness or both can be achieved by setting the asym and skew options
to FALSE. For alternative summaries of the estimation results the summary method can be used, either
with its verbose option set to FALSE (default) or TRUE (more information is returned). The latter
returns, amongst other, the initial values used, the upper and lower bounds used (see Section on
“Computational challenges” below) and the numerically estimated Hessian. For additional inference
on the parameters the covariance-matrix of the parameter estimates can be extracted with the vcov
method:
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vcov(onecompmod)

omega phi1 kappa1 kappastar df
omega 3.376163e-04 4.821495e-06 -3.369968e-06 3.781322e-06 1.202316e-02
phi1 4.821495e-06 1.817901e-03 -1.321280e-04 7.384223e-05 1.460351e-05
kappa1 -3.369968e-06 -1.321280e-04 2.527332e-05 -5.374307e-06 -5.498031e-04
kappastar 3.781322e-06 7.384223e-05 -5.374307e-06 1.277486e-05 2.261583e-05
df 1.202316e-02 1.460351e-05 -5.498031e-04 2.261583e-05 1.182581e+00
skew 1.808787e-06 -6.327049e-05 3.869190e-06 -7.473051e-06 2.075498e-04

skew
omega 1.808787e-06
phi1 -6.327049e-05
kappa1 3.869190e-06
kappastar -7.473051e-06
df 2.075498e-04
skew 3.918993e-04

In order to estimate a two-component Beta-Skew-t-EGARCH model the components option has to be
set to 2:

twocompmod <- tegarch(y, components=2)

To estimate a two-component model without skewness the skew argument must be set to FALSE.
Leverage, however, cannot be turned off in the two-component model for identifiability reasons.

Forecasting volatility

Forecasts of volatility – i.e. either the conditional standard deviation or the conditional scale – can
be generated with the predict method applied to a tegarch object. The formula for n-step ahead
forecasts of conditional scale σt is

Et(σt+n) = exp(ω + φn
1 λ†

t ) ·Πn
i=1Et

[
exp(φn−i

1 gt+i−1)
]

(10)

for the one-component model, where gt is an IID term equal to κ1ut + κ∗sgn(−ε)(ut + 1). The t
subscript in the conditional expectation operator Et(·) means the set of conditioning information
contains all values up to and including period t. Accordingly, for i = 1 the value of Et[exp(φn−i

1 gt+i−1)]

is exp(φn−1
1 gt). For i > 1, however, the expectations are not available in explicit form, so they are

estimated by computing the sample mean of a large number of simulated IID variates. The default
number of IID variates is 10 000, but this can be changed via the n.sim option. Another default option
is that the predict method only returns forecasts of the conditional standard deviation

Et(σt+n)σε. (11)

However, if the verbose option is changed to TRUE, then forecasts of the conditional scale are also
returned. Similarly, the initial values used are by default those of the last observation in the estimation
sample. This can be altered via the initial.values option, e.g. for counterfactual or scenario analysis
purposes.

The scale formula for the two-component specification is

Et(σt+n) = exp(ω + φn
1 λ†

1,t + φn
2 λ†

2,t) ·Πn
i=1Et

[
exp(φn−i

1 g1,t+i−1 + φn−i
2 g2,t+i−1)

]
, (12)

where g1,t = κ1ut and g2,t = κ2ut + κ∗sgn(−ε)(ut + 1). Again, forecasts of conditional standard
deviations are given by Et(σt+n)σε, and the expectations in the last term on the right are estimated by
simulation for i > 1.

As an example, the following code generates forecasts up to 7-period ahead for both scale and
standard deviation for the one-component model estimated above:

set.seed(123)
predict(onecompmod, n.ahead=7, verbose=TRUE)

sigma stdev
1 1.012363 1.141463
2 1.014470 1.143838
3 1.012704 1.141847
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4 1.011081 1.140017
5 1.009589 1.138335
6 1.008217 1.136788
7 1.006955 1.135365

The returned object is of class zoo, so a convenient time-series plotting method is readily available.
Similarly, the command predict(twocompmod,n.ahead=7,verbose=TRUE) generates a corresponding
set of forecasts for the two-component model estimated above.

Computational challenges

Estimation of the Beta-Skew-t-EGARCH model is by exact Maximum Log-likelihood (ML). The
expressions of the first and second derivatives are not available in explicit form, so the procedure is all
numerical. This leads to four computational challenges. The first is simply that the model is highly
nonlinear, which is readily apparent by simply looking at the expression for the score (equation (5)).
Moreover, the degree of non-linearity is compounded in the two-component specification. However,
as no positivity constraints on the ARCH, GARCH and leverage parameters (i.e. ω, φ1, φ2, κ1, κ2, κ) are
needed, the numerical challenges are in fact not as large as those of, say, the two-component GARCH
model of Engle and Lee (1999). There, positivity constraints on all parameters are necessary. As in
all highly nonlinear estimation problems a set of good initial values is essential. By default, these are
0.02, 0.95, 0.05, 0.01, 10, 0.98 for one-component specifications, and 0.02, 0.95, 0.9, 0.001, 0.01, 0.005, 10,
0.98 for two-component specifications. However, if the user wishes to do so they can be changed via
the initial.values option in the tegarch function. The summary method with option verbose=TRUE
returns (amongst other) the initial values used in estimation.

The second computational challenge is that dynamic stability or stationarity – in practice that |φ1| <
1 (and |φ2| < 1 in the two-component case) – is required for estimation, whereas empirically φ1 (and φ2)
is often close to, but just below, 1. In order to avoid explosive recursions during estimation it is therefore
desirable to restrict φ1 (and φ2) such that |φ1| < 1 (and |φ2| < 1). My experience suggests the nlminb
function is an excellent choice for this type of problems. The optim function with the L-BFGS-U option
provides a similar bounding facility, but in practice it does not work as well as nlminb (it is less precise
and fails more often in my experience). As for bounds, the skewing parameter γ is only defined on
strictly positive values, and on theoretical grounds the degrees of freedom parameter ν must be greater
than 2. For these reasons the default lower bounds on φ1, φ2, ν and γ are -1+.Machine$double.eps,
-1+.Machine$double.eps, 2+.Machine$double.eps and .Machine$double.eps, and their default up-
per bounds are 1-.Machine$double.eps, 1-.Machine$double.eps, +Inf and +Inf (i.e. ν and γ are
unbounded from above). The other parameters are unbounded (i.e. their default upper and lower
bounds are +Inf and -Inf, respectively). If the user wishes to do so the bounds can be changed via the
lower and upper options in the tegarch function. Additional control options can also be passed on to
the nlminb optimiser (see nlminb documentation) by introducing them as arguments in the tegarch
function.

A third computational challenge is due to the presence of the sign function sgn in the skewed
density (4), which means the log-likelihood is not differentiable in γ at the skewness change point. The
log-likelihood is continuous, so the problem is likely to be numerical only and not theoretical. In fact,
consistency and asymptotic normality results often hold regardless (see e.g. Zhu and Galbraith, 2010).
Most of the time the user will not encounter problems due to this characteristic, neither in simulation
nor in empirical practice. Occasionally, however, the numerically estimated gradients (analytical
ones are not available in explicit form) may explode when they iterate towards the proximity of
the skewness change point. The nlminb function together with its bounding facility resolves this
problem to a large extent. For extra protection against NA and Inf values the log-likelihood functions
(tegarchLogl and tegarchLogl2) check for NA and Inf values at each iteration: Whenever such values
are produced, then a small value on the log-likelihood is returned. By default this small value is the
log-likelihood associated with the initial values, but this can be changed via the logl.penalty option
in the tegarch function.

The fourth computational challenge is easily resolved. The expressions for the density function of
the t-distribution and the moments of a t-distributed variable contain the gamma function in both the
numerator and the denominator. When the argument of the gamma function is 172 or larger (i.e. 344
degrees of freedom or higher), then a value of Inf/Inf = NaN is returned, which can be detrimental
to estimation. This issue is not particular to R but a consequence of how the Gamma function is
implemented numerically in computer languages in general. Luckily, the issue can be easily resolved
by noting that beta(x,y) = gamma(x) * gamma(y)/gamma(x+y). The t-density and the moments of
t-variables are thus readily re-written in terms of the beta function. The fGarch package has been
using this parametrisation of the t-distribution for some time (always?), and I suspect it is for the same
reason.
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Empirical example: Daily volatility of the Nasdaq 100 stock market index

This section illustrates the use of the package in an empirical example (it is available as a demo by
typing demo(betategarch)). The financial return in question is the daily log-return (in percent) of
the Nasdaq 100 composite index (adjusted closing values). The study by Harvey and Sucarrat (2013)
suggests stock market indices are particularly prone to be characterised by leverage, conditional
fat-tailedness, skewness and a long-term component, so a stock market index is therefore specially
suited to illustrate the usefulness of the Beta-Skew-t-EGARCH model. Also, the Nasdaq index was not
included in Harvey and Sucarrat (2013) study. The source of the data is http://finance.yahoo.com/
and the period in question is 3 January 2001 to 15 October 2013, i.e. a total of 3215 observations.

The following code loads the data, defines y to equal daily return in terms of a ‘zoo’ object and
plots y:

data(nasdaq)
y <- zoo(nasdaq[,"nasdaqret"], order.by=as.Date(nasdaq[,"day"], "%Y-%m-%d"))
plot(y, main="The Nasdaq 100 index (daily)", xlab="", ylab="Log-return in %")

The plot appears as the upper graph in Figure 1 and shows that the return series is clearly characterised
by time-varying volatility.

To estimate a one-component Beta-Skew-t-EGARCH, to extract its fitted values and to plot the
fitted conditional standard deviations, the following code can be used:

nasdaq1comp <- tegarch(y)
nasdaq1stdev <- fitted(nasdaq1comp)
plot(nasdaq1stdev, main="", ylab="1-comp: St.dev.", xlab="")

The estimation results are stored in nasdaq1comp, so typing nasdaq1comp yields

Date: Mon Dec 09 17:42:06 2013
Message (nlminb): relative convergence (4)

Coefficients:
omega phi1 kappa1 kappastar df skew

Estimate: 1.0421017 0.996543407 0.023508613 0.032033017 10.336337 0.85670426
Std. Error: 0.2412326 0.001184624 0.003542337 0.003065121 1.646172 0.01925872

Log-likelihood: -5586.666891
BIC: 3.490447

The degrees of freedom in the Skewed t is estimated to be 10.3, a reasonably fat-tailed conditional
t density, whereas the skewness is estimated to be about 0.86, which corresponds to pronounced
negative skewness in εt. Also, the test statistic (0.8567− 1)/0.0193 = −7.4249 is significant at all con-
ventional significance levels. For a model without skewness, the command tegarch(y,skew=FALSE)
can be used. For a closer look at the standardised residuals ε̂t/σ̂ε in the estimated model above, the
residuals method can be used for extraction. For the unstandardised residuals ε̂t, the standardised
argument must be set to FALSE. BIC is the Schwarz (1978) information criterion in terms of the aver-
age log-likelihood. By default, the fitted method returns the fitted conditional standard deviation.
However, more output is available by using the verbose option, i.e. by typing fitted(nasdaq1comp,
verbose=TRUE). This returns a matrix with, amongst other, the fitted scale and log-scale, the estimated
score and the residuals. The returned matrix is a ‘zoo’ object that is automatically matched with the
dates – if any – of returns yt. The middle graph in Figure 1 contains the plot of the fitted conditional
standard deviations of the one-component model.

To estimate a two-component Beta-Skew-t-EGARCH model, to extract its fitted values and to plot
its fitted conditional standard deviation, the following code can be used:

nasdaq2comp <- tegarch(y, components=2)
nasdaq2stdev <- fitted(nasdaq2comp)
plot(nasdaq2stdev, main="", ylab="2-comp: St.dev.", xlab="")

The plot of the fitted conditional standard deviations appears as the lower graph in Figure 1. Typing
nasdaq2comp returns

Date: Mon Dec 09 17:42:09 2013
Message (nlminb): relative convergence (4)

Coefficients:
omega phi1 phi2 kappa1 kappa2 kappastar
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Estimate: 1.4409972 1.0000000000 0.94175462 0.022074604 0.006442775 0.049203985
Std. Error: 0.1991004 0.0004089023 0.01940377 0.004854267 0.006545395 0.006899511

df skew
Estimate: 9.732886 0.89320223
Std. Error: 1.564813 0.02094124

Log-likelihood: -5573.471563
BIC: 3.487262

Comparison of the BIC values of the two models suggests the latter provides a better fit. This provides
further evidence in favour of two-component models in modelling the volatility of financial stock-
market returns.

To generate out-of-sample forecasts up to 5-days ahead, the following code can be used:

set.seed(123)
predict(nasdaq1comp, n.ahead=5)

1 2 3 4 5
0.8121401 0.8179406 0.8218067 0.8256776 0.8295533

In other words, the predicted conditional standard deviation 5 trading days after the 15th of October
2013 is about 0.8296. By default, the fitted values of λt and λ†

t for the last day of the estimation sample
are used as initial values. However, alternative initial values on λt and λ†

t can be specified by the user
via the initial.values option.

Conceptually the Beta-Skew-t-EGARCH model can appear complicated. So one may ask whether it
performs better than conceptually simpler models like, say, an ordinary GARCH model with leverage
and the two-component model of Engle and Lee (1999). An ordinary GARCH(1,1) model with leverage
of the Glosten et al. (1993) type, sometimes referred to as the GJR-GARCH, coupled with a standardised
Skewed t conditional density is given by

y = σtεt, εt ∼ st(0, 1, ν, γ), (13)

σ2
t = ω + φ1σ2

t−1 + κ1y2
t−1 + κ∗ I{yt−1<0}y

2
t−1, (14)

where the parameters have similar interpretations to those of the Beta-Skew-t-EGARCH specification.
The model can be estimated with the fGarch package by means of

library(fGarch)
nasdaqgarch <- garchFit(data=y, cond.dist="sstd",
include.mean=FALSE, include.skew=TRUE, leverage=TRUE)

Next, summary(nasdaqgarch) yields (amongst other)

Estimate Std. Error t value Pr(>|t|)
omega 0.016866 0.004315 3.908 9.29e-05 ***
alpha1 0.040237 0.009882 4.072 4.67e-05 ***
gamma1 0.712143 0.183734 3.876 0.000106 ***
beta1 0.933986 0.008357 111.762 < 2e-16 ***
skew 0.898964 0.021099 42.608 < 2e-16 ***
shape 9.910543 1.562340 6.343 2.25e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log Likelihood:
-5591.593 normalized: -1.73922

Information Criterion Statistics:
AIC BIC SIC HQIC

3.482173 3.493511 3.482166 3.486237

In the table alpha1, gamma1 and beta1 correspond to κ1, κ∗ and φ1, respectively. The skewness and
degrees of freedom estimates are relatively similar to those of the Beta-Skew-t-EGARCH above. How-
ever, the BIC value is lower, which means the Beta-Skew-t-EGARCH provides a better fit according to
this criterion.

In the rugarch package the first order two-component model of Engle and Lee (1999) coupled with
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a standardised Skewed t conditional density is given by

y = σtεt, εt ∼ st(0, 1, ν, γ), (15)

σ2
t = qt + φ1(σ

2
t−1 − qt−1) + κ1(y2

t−1 − σ2
t−1), (16)

q2
t = ω + φ2q2

t−1 + κ1(y2
t−1 − σ2

t−1). (17)

In other words, rugarch does not provide the option to include leverage in the Engle and Lee (1999)
model. Estimation can be undertaken with

library(rugarch)
EngleLeeSpec <- ugarchspec(variance.model = list(model = "csGARCH",

garchOrder = c(1, 1)), mean.model=list(armaOrder=c(0,0),
include.mean=FALSE), distribution.model="sstd")

nasdaqEngleLee <- ugarchfit(EngleLeeSpec, y, solver="nlminb")

Next, summary(nasdaqgarch) yields (amongst other)

Estimate Std. Error t value Pr(>|t|)
omega 0.008419 0.003911 2.1528 0.031337
alpha1 0.021006 0.014765 1.4228 0.154807
beta1 0.931799 0.044489 20.9446 0.000000
eta11 0.995956 0.002383 417.9196 0.000000
eta21 0.044147 0.013570 3.2533 0.001141
skew 0.912973 0.020984 43.5076 0.000000
shape 11.055129 2.095500 5.2757 0.000000

LogLikelihood : -5617.186

Information Criteria
------------------------------------

Akaike 3.4987
Bayes 3.5119
Shibata 3.4987
Hannan-Quinn 3.5035

In the table alpha1, beta1, eta11 and eta21 correspond to κ1, φ1, φ2 and κ2, respectively. The skewness
and degrees of freedom estimates are again relatively similar to those of the Beta-Skew-t-EGARCH
above, and again the BIC value is higher. So also in this case does the Beta-Skew-t-EGARCH provide
a better fit according to BIC. In fact, the log-likelihood of the Engle and Lee (1999) model is even
lower than that of the GJR-GARCH, which contains fewer parameters. This suggests leverage, which
is omitted from the rugarch implementation of the Engle and Lee (1999) model, is an important
determinant of Nasdaq 100 return volatility.

Summary

This paper illustrates how the betategarch package can be used for the simulation, estimation and
forecasting of one-component and two-component first order Beta-Skew-t-EGARCH models. The
model allows for skewed and heavy-tailed t-distributed conditional errors, and leverage and a time-
varying long-term component in the volatility specification. The two main functions of the package
are tegarchSim and tegarch. The first simulates from a Beta-Skew-t-EGARCH model, either a one-
component or two-component specification, whereas the latter function estimates one. The object (a
list) returned by the second function is of class tegarch, and a collection of S3 methods can be applied
to objects from this class: coef, fitted, logLik, predict, print, residuals, summary and vcov. Finally,
the empirical illustration on daily Nasdaq 100 returns provides further in-sample evidence in favour
of the Beta-Skew-t-EGARCH model.
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