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lfe: Linear Group Fixed Effects
by Simen Gaure

Abstract Linear models with fixed effects and many dummy variables are common in some fields.
Such models are straightforward to estimate unless the factors have too many levels. The R package
lfe solves this problem by implementing a generalization of the within transformation to multiple
factors, tailored for large problems.

Introduction

A typical linear model looks like:

> y ~ x1+x2+x3 + f1+f2+f3

where f1,f2,f3 are arbitrary factors, and x1,x2,x3 are other covariates. Coefficients may easily be
estimated by lm():

> lm(y ~ x1+x2+x3 + f1+f2+f3)

However, in some applications, in particular in econometrics, the factors have too many levels
and are still needed as fixed effects, as in Abowd et al. (1999). The use of fixed effects as opposed to
random effects is typically necessitated by the possibility that the factors and the other regressors are
correlated. They study log wage (logwage) as an outcome, where fixed effects for individuals (id) and
firms (firm) are included, with some ordinary covariates (exemplified by x), i.e. a model of the type:

> logwage ~ x + id + firm

where id is a factor with one level for each employee, and firm is a factor with one level for each
firm. Employees change firm now and then, so it is not a nested model. The model is used to account
for arbitrarily distributed time constant individual and firm hetereogeneity, and is used to study
the correlation between the firm effect and the employee effect. There are also similar cases with 3
factors, e.g. in Torres et al. (2013), where job title is also considered. They have a dataset of 27 million
observations, with 5.5 million, 568,000, and 96,000 levels in the three factors. In other applications the
factors are primarily used as controls, as in Markussen and Røed (2012), where a variety of models are
used, controlling for various combinations of interactions between factors. These datasets are typically
sourced from large public registries, and can contain tens of millions of observations, with hundreds
of thousands or millions of factor levels. This far exceeds the capabilities of lm(), and can also be too
demanding for the sparse methods in package Matrix (Bates and Maechler, 2013).

When estimating such models, the case with a single factor is special. It can be estimated by using
the within groups transformation, where the mean of the groups are subtracted from the covariates,
resulting in a system without the factor, via the Frisch-Waugh-Lovell theorem. See e.g. Wooldridge
(2002, Section 10.5). The coefficients for the factor levels can easily be recovered as the group means
of the residuals. This estimation method can be found in package plm (Croissant and Millo, 2008).
The method can also be used with more than one factor, by using the within transformation to project
out the factor with the highest number of levels, coding the others as dummy variables. However,
if all of the factors have many levels this can still result in a too large system which is non-sparse.
Moreover, having such sets of dummies in datasets which are not balanced may lead to non-trivial
identification problems. We will illustrate how to use the package lfe (Gaure, 2013b) to solve some of
these problems. For clarity we construct quite small datasets by drawing random covariates, rather
than to refer to large real datasets which are not publicly available.

Enter lfe

The package lfe is designed to handle the above estimation problem. It also contains some methods for
solving identification problems, though not completely in all cases. Since lfe handles quite ordinary
linear models which conceptually could be handled by lm(), we do not go into detail about the
feasibility of fixed effect linear models as such, only the problems which are more or less peculiar to
models with a large number of dummies.

The short story is that coefficients for x1, x2, and x3 in the above model can be estimated by:

> library(lfe)
> est <- felm(y ~ x1+x2+x3 + G(f1)+G(f2)+G(f3))

whereas the coefficients for the factor levels of f1, f2, and f3 can be retrieved by:
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> alpha <- getfe(est)

A longer story follows, the theoretical part of which is mainly based on Gaure (2013a).

We write our model in matrix form

y = Xβ + Dα + ε, (1)

where D is a matrix of dummies coding the factor levels, X is a matrix with the other covariates,
y is the response vector, and ε is a normally distributed error term. Performing an ordinary least
squares regression (OLS) on this system yields the OLS estimates β̂ for the X covariates and α̂ for the
factor levels. The Frisch-Waugh-Lovell theorem states that if P is the projection onto the orthogonal
complement of the range of D, then the projected system

Py = PXβ + Pε,

yields the same β̂ when estimated with OLS. Moreover, the matrix (XtPX)−1 which is used to find
the covariance matrix of β̂, is identical to the β̂-part of the corresponding matrix in the full system (1).
Similarly, the residuals are identical. The projected system does not contain the dummies for the factor
levels, and may therefore be manageable with conventional methods.

Unfortunately, P is an n× n matrix, where n is the number of observations, so it is impractical to
compute P when n ≈ 107. However, it is easier to compute Px for a vector x, i.e. y and the columns
of X. In the special case when D encodes a single factor, the transformation x 7→ Px is the within
transformation, i.e. centring of the groups on their means. It is shown in Gaure (2013a) that when
there is more than one factor, say e > 1 factors, we may consider the centring transformation for each
of them, a projection Pi for each i = 1 . . . e, and compute Px as

Px = lim
m→∞

(
(P1P2 · · · Pe)

m x
)

.

This approach is known as the method of alternating projections and is based on a result by Halperin
(1962, Theorem 1). The procedure can easily be implemented with an R function taking as input a
vector x and the list of factors flist:

> demean <- function(x, flist) {
+ cx <- x; oldx <- x - 1
+ while(sqrt(sum((cx - oldx) ^ 2)) >= 1e-8) {
+ oldx <- cx
+ for(f in flist) cx <- cx - ave(cx, f)
+ }
+ return(cx)
+ }

This algorithm was also arrived at by Guimarães and Portugal (2010, p. 637) as a technical simplifica-
tion of their iterated estimation approach to the same problem.

For efficiency reasons, this linear transformation has been written in C, made threaded to centre
vectors in parallel, and is available as the function demeanlist() in lfe, though the function felm()
wraps it in an lm() like function.

We create a simple example to illustrate the usage. We have 100,000 observations of a covariate x,
and two factors f1, f2, each with 10,000 randomly drawn levels. We create an outcome variable y and
estimate the x coefficient. The G() syntax is used to specify which factors should be projected out of
the system, a similar syntax as for the Error() term in aov(). The G() is not an R function in itself,
though it translates to as.factor() inside felm() after the G() terms have been removed from the
model for special handling.

> library(lfe)
> set.seed(42)
> x <- rnorm(100000)
> f1 <- sample(10000, length(x), replace=TRUE)
> f2 <- sample(10000, length(x), replace=TRUE)
> y <- 2.13*x + cos(f1) + log(f2+1) + rnorm(length(x), sd=0.5)
> est <- felm(y ~ x + G(f1) + G(f2))
> summary(est)

Call:
felm(formula = y ~ x + G(f1) + G(f2))

Residuals:
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Min 1Q Median 3Q Max
-1.9531308 -0.3018539 -0.0003573 0.3007738 2.2052754

Coefficients:
Estimate Std. Error t value Pr(>|t|)

x 2.130889 0.001768 1205 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5013 on 80000 degrees of freedom
Multiple R-squared: 0.9683 Adjusted R-squared: 0.9603
F-statistic: 122.1 on 19999 and 80000 DF, p-value: < 2.2e-16

The result of felm() is a ’felm’ object which is quite similar to an ’lm’ object. However, it is not fully
compatible with it, so some methods for ’lm’ objects may work on a ’felm’ object, others may not. In
an earlier version, the ’felm’ object inherited from the class ’lm’, but there are important differences
in the structure, so this inheritance has been removed. In particular there is no qr-decomposition in
the ’felm’ object, so methods for ’lm’ objects which depend on the qr-decomposition, such as anova(),
can not be used. Also, the ’felm’-object does not contain a copy of the dataset. This has been removed
to conserve memory for very large datasets. Simple extractors like coef() and residuals() work.
Extracting the covariance matrix with vcov() also works, via a separate S3 method, albeit only for
the β̂s. Also, a summary() S3-method, and an accompanying print() method have been included. It
is possible to try ’lm’-methods explicitly as in: getS3method('vcov','lm')(est), though the author
does not guarantee any success with this approach.

The careful reader has noticed that the behaviour of summary() on a ’felm’ object with respect to
degrees of freedom and R2 is the same as that of on an ’lm’ object when including an intercept. There
is no explicit intercept in the result of felm(), but the factor structure includes one implicitly.

The coefficients for the factor levels

If the factors are used as controls only, the above procedure is all we have to worry about, but if we
also need the group coefficients α̂, what econometricians often refer to as the fixed effects, we can solve
the equation

Dα̂ = (I − P)(y− Xβ̂), (2)

for α̂. The right hand side is easily computed when we have β̂, PX and Py. The equation is solved
by the Kaczmarz method (Kaczmarz, 1937), as described in Gaure (2013a). The method is available
as a function kaczmarz(), but the wrapper getfe() is more useful. A solution of equation (2) is not
unique, the matrix D dummy-encodes all the factor levels, hence there will be multicollinearities
(unless there is only one factor), both the obvious ones, but there can also be spurious ones. The
multicollinearities are resolved by applying an estimable function. lfe contains a function efactory()
for creating estimable functions, but users can also supply their own.

getfe() returns a ’data.frame’ with some information in addition to the coefficients. The reason
for this is that the intended use of lfe is for factors with so many levels that they probably anyway must
be analyzed according to the researcher’s needs prior to being presented. We continue the example:

> alpha <- getfe(est)
> nrow(alpha)

[1] 20000

> alpha[9998:10003,]

effect obs comp fe idx
f1.9998 -0.2431720 9 1 f1 9998
f1.9999 -0.9733257 5 1 f1 9999
f1.10000 -0.8456289 9 1 f1 10000
f2.1 0.4800013 9 1 f2 1
f2.2 1.4868744 14 1 f2 2
f2.3 1.5002583 11 1 f2 3

The 'obs' column is the number of observations of this level. The 'fe' and 'idx' columns are
factors containing the same information as the row name, but split into the name of the factor and
the level for convenience. The 'comp' column is important in that it is used for identification purposes,
and here is a main deviation from how lm() treats identification in the presence of factors. The
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default method when using lm() is taken from the global 'contrasts' option which defaults to using
treatment contrasts for each factor. It introduces a reference level for each factor, this is equivalent to
forcing the coefficient for the reference level to zero, and the other coefficients are only meaningful
when compared to this zero coefficient. It is also possible to specify different constraints for the lm()
coefficients, such as forcing the sum of the coefficients to zero, or an arbitrary one via the 'contrasts'
option, or the 'contrasts' argument to lm(), but typically a single constraint is used for each factor.

Identification when the factors have many levels can be a more complicated matter. The standard
example in the econometrics literature is the one found in Abowd et al. (1999), elaborated in Abowd
et al. (2002). In this case there are two factors, one for employees and one for firms. It may happen that
one set of employees move between one set of firms, whereas another disjoint set of employees move
between some other firms. There are no movements between these mobility groups, hence coefficients
from different groups can not be compared. A useful construction for analysis of this problem is the
undirected, bipartite graph which has the factor levels as vertices, and an edge between levels that
occur in the same observation. The mobility groups are then the connected components of this graph.
It is shown in Abowd et al. (2002, Appendix 1) that for identification of the coefficients, it is sufficient to
introduce a single reference level in each of the disjoint mobility groups, either a firm or an employee.
This was previously established by Eccleston and Hedayat (1974) in a different context, and there is
another argument in Gaure (2013a) using spectral graph theory. The 'comp' column in the return value
from getfe() when using estimable functions from efactory() is a factor enumerating these groups,
i.e. the connected components. efactory() chooses by default the level with the highest number of
observations as a reference level, and sets the coefficient to 0. When interpreting the coefficients, they
should never be compared between the components; a coefficient is only meaningful relative to the
reference level in the component it belongs to. For this reason, one may choose to restrict attention to
the largest component only, the one with comp == 1, if this is feasible for the problem at hand.

To the author’s knowledge, the identification problem when there are more than two factors
has not been solved in general. efactory()’s behaviour with more than two factors is to assume
that the connected components of the two first factors are sufficient for identification, and a single
reference is used in each of the remaining factors. lfe contains a probabilistic test for estimability
in this case, the one described in Gaure (2013a, Remark 6.2), and getfe() will issue a warning if it
finds an identification problem. The test is also available as the function is.estimable(). In theory,
the test can fail only on a set of measure zero. Specifically, the test uses the fact that an estimable
function must evaluate to the same value on all solutions of equation (2). Different solutions can be
obtained by running the Kaczmarz algorithm with different initial vectors. By starting with the zero
vector we obtain the solution with least Euclidean norm. The test works by comparing the value of
the candidate estimable function on the least norm solution and a solution obtained by drawing the
initial vector η at random. The test will only fail to find an identification problem if η happens to lie in
a particular, but unknown, subspace of positive codimension, i.e. in a set of Lebesgue measure zero.
However, due to numerical inaccuracies, finite arithmetic, and bad luck, the test may in practice fail to
find an identification problem even if there is one, with some very small positive probability. It does
however not report identification problems when there are none. If there are identification problems
which are unaccounted for, then some, or all of the resulting coefficients are non-estimable, i.e. they
are meaningless.

Sometimes, an identification problem can be alleviated by changing the order of the G() terms in
the formula supplied to felm(). To illustrate, consider a situation where we add a third factor to the
example in the Introduction, nkids, the number of an individual’s offspring, with only 5 levels. If our
formula contains G(firm) + G(nkids) + G(id), it is likely that the graph associated with the two first
factors, firm and nkids, is connected, and there can be many mobility groups which are unaccounted
for. getfe() issues a warning, the returned coefficients are non-estimable; there is no correct indication
of which mobility groups the coefficients belong to, and therefore, we do not know which coefficients
can be meaningfully compared. If we change the model specification to G(id) + G(firm) + G(nkids),
or G(id) + G(firm) + nkids, the mobility groups are found, and accounted for.

Another approach to the identification problem is found in Carneiro et al. (2012). They restrict
attention to a subset of the dataset in which, by construction, all elementary contrasts, i.e. differences
between coefficients, are estimable, as described by Weeks and Williams (1964). Such a partitioning
of the dataset can be found by constructing a graph with the observations as vertices, and with
an edge between two observations if they differ in at most a single factor. The partitions of the
dataset correspond to connected components of the graph. They can be found by the function
compfactor(...,WW=TRUE), which returns a factor enumerating the partitions. It can be used to select
a subset of the dataset prior to calling felm(). When there are only two factors, this partitioning
structure coincides with the mobility groups discussed above. In some datasets, like the one in Torres
et al. (2013), the largest partition comprises almost the entire dataset, but if it does not, such a selection
may introduce bias in the coefficients. An extreme example:
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> set.seed(42)
> f1 <- factor(sample(50, 1000, replace=TRUE))
> f2 <- factor(sample(50, 1000, replace=TRUE))
> f3 <- factor(sample(50, 1000, replace=TRUE))
> ww <- compfactor(list(f1,f2,f3), WW=TRUE)
> head(table(ww))

ww
1 2 3 4 5 6
29 20 19 16 14 14

The largest partition has 29 observations, fewer than the number of levels, even though far more
estimable functions exist. This can be seen by computing the rank deficiency of the matrix D with
the function rankMatrix() from package Matrix. Indeed, it is sufficient with two references in the 3
factors:

> D <- t(do.call('rBind', lapply(list(f1,f2,f3), as, 'sparseMatrix')))
> ncol(D) - as.integer(rankMatrix(D))

[1] 2

The standard method of efactory(), to analyze the connected components of the first two factors only,
works well in this particular case. It will find a reference among the two first factors, and a reference
in the last, and differences between coefficients within each factor will be estimable:

> x <- rnorm(1000)
> y <- 3.14*x + log(1:50)[f1] + cos(1:50)[f2] + exp(sqrt(1:50))[f3] + rnorm(1000, sd=0.5)
> est <- felm(y ~ x + G(f1) + G(f2) + G(f3))
> coef(est)

x
3.139781

> is.estimable(efactory(est), est$fe)

[1] TRUE

This can happen because the construction in Weeks and Williams (1964, Theorem 1) does not find a
maximal subset, only a subset which is guaranteed to have the desired property.

Yet another algorithm for finding estimable functions is described by Godolphin and Godolphin
(2001), but lfe does not implement it.

Specifying an estimable function

The function efactory() in lfe is by default called by getfe() to create an estimable function for
a factor structure. The default is to use reference levels as described above, some other estimable
functions are also available. However, researchers may have other needs, so it is possible to supply a
user written estimable function to getfe(). We describe this interface with an example, for a small
dataset. The function takes as an argument a vector of length the sum of the number of levels of the
factors, i.e. a solution to equation (2), applies an estimable function of choice, and returns the result. It
is not necessary to include a full set of estimable functions; if so desired, our function may return just
a single difference between two specific factor levels, or even some nonlinear transformation thereof.
It should, however, evaluate to the same value on all the different solutions of equation (2).

We make a small dataset with 100 observations, a covariate x and 3 factors with a handful of levels.

> set.seed(42)
> x <- rnorm(100)
> f1 <- factor(sample(4, 100, replace=TRUE))
> f2 <- factor(sample(5, 100, replace=TRUE))
> f3 <- factor(sample(6, 100, replace=TRUE))
> e1 <- sin(1:4)[f1] + 0.02*((1:5)^2)[f2] + 0.17*((1:6)^3)[f3] + rnorm(100)
> y <- 2.5*x + (e1-mean(e1))
> est <- felm(y ~ x + G(f1) + G(f2) + G(f3))

Then we create an estimable function which is the same as the one provided by lm() when using
treatment contrasts. The addnames argument is there because in the event that the estimable function
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is used in bootstrapping, adding names to very long vectors would only contribute to exercising R’s
memory management; hence names should only be added when required. It is also possible to add an
attribute called 'extra', which is a named list of vectors of the same length as the names, for adding
additional information to the result of getfe(). This attribute is added by the estimable functions
returned by efactory() to provide the 'obs', 'fe', 'comp' and 'idx' columns, but the content is not
used for anything inside lfe.

> ef <- function(gamma, addnames) {
+ ref1 <- gamma[1] # first level of f1
+ ref2 <- gamma[5] # first level of f2
+ ref3 <- gamma[10] # first level of f3
+ # put the intercept in the first coordinate
+ icpt <- ref1 + ref2 + ref3
+ # subtract the references for each factor
+ # unlike the efactory() functions, we omit the zero coefficients.
+ result <- c(icpt, gamma[2:4]-ref1, gamma[6:9]-ref2, gamma[11:15]-ref3)
+ if(addnames) {
+ names(result) <- c('(Intercept)',
+ paste('f1', levels(f1)[2:4], sep=''),
+ paste('f2', levels(f2)[2:5], sep=''),
+ paste('f3', levels(f3)[2:6], sep=''))
+ attr(result, 'extra') <- list(fe=factor(
+ c('icpt', rep('f1',3),
+ rep('f2',4), rep('f3',5))),
+ idx=factor(c(1, 2:4, 2:5, 2:6)))
+ }
+ result
+ }

We now check that our function is estimable:

> is.estimable(ef, list(f1,f2,f3))

[1] TRUE

The estimable function is supplied to getfe() via the argument ef. In this example we also request
bootstrapped standard errors with the arguments se and bN, we elaborate on this in the next section.

> getfe(est, ef=ef, se=TRUE, bN=1000)

effect fe idx se
(Intercept) -10.9016327 icpt 1 0.3077378
f12 -0.1265879 f1 2 0.2356162
f13 -0.7541019 f1 3 0.2896058
f14 -1.7409436 f1 4 0.2776542
f22 0.4611797 f2 2 0.3012931
f23 0.6852553 f2 3 0.2898361
f24 0.8467309 f2 4 0.3232411
f25 0.5886517 f2 5 0.2841049
f32 1.0898551 f3 2 0.3364884
f33 4.3490898 f3 3 0.3058420
f34 10.7505266 f3 4 0.3377505
f35 21.3832700 f3 5 0.3649107
f36 36.7369397 f3 6 0.3059049

getfe() performs no automatic addition of columns like 'idx' or 'comp', they have to be provided
by the estimable function. The reason being that getfe() does not know the structure imposed by the
user written function. If bootstrapped standard errors are requested via the se argument, the 'se'
column is added also for user written functions. If you are certain that your function is estimable, you
can add an attribute to it, attr(ef,'verified') <- TRUE, this causes getfe() to skip the estimability
test, and may save significant amounts of time with datasets for which convergence is slow. The
functions produced by efactory() for one and two factors have this attribute set.

Standard errors

The standard errors for β̂ are easily computed, and are identical to the the standard errors from lm() if
we were to run it with all the dummies. However, there is a minor difference. The degrees of freedom
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depends on the rank of the matrix D, or DtD, or the trace of P. The rank is easily computed for the
cases with one or two factors, but requires a much more time consuming approach for 3 or more
factors. The default approach of felm() is to assume that the column rank deficiency of D is e− 1
when there are e > 2 factors. This may result in a too high value for the rank, hence a too low value
for the degrees of freedom, which will yield too high standard errors. In most real cases the author
has witnessed, the error is negligible. felm() has an argument exactDOF which may be set to TRUE
to activate a more accurate computation of the rank. It does a sparse pivoted Cholesky factorization
of DtD + εI for some small ε and finds the rank deficiency by counting small pivots. This is not a
perfect method, as noted by Higham (1990), but it seems to work well for the matrices the author
has encountered, and it is much faster than rankMatrix() from package Matrix. To use rankMatrix()
instead, one may specify exactDOF='rM'. If, for some reason, one happens to know the degrees of
freedom in advance, they can be specified as a numeric, like exactDOF=12536819.

The standard errors for α̂, the coefficients for the factor levels, can be estimated by bootstrapping.
This requires resampling the residuals with replacement, and do the whole estimation over and over
again, an operation which can be very time consuming. It can be requested, as in the above example,
by the se argument to getfe(), the number of samples can be specified in the bN argument. The
common practice of resampling observations rather than residuals is not useful for this kind of model,
it results in a different factor structure, hence possibly a different set of identified coefficients in each
sample.

Instrumental variables

lfe supports instrumental variables estimation through 2SLS, i.e. two step OLS (Wooldridge, 2002,
Chapter 5).

Here is an example. We first create some covariates:

> set.seed(276709)
> x <- rnorm(10000)
> x2 <- rnorm(length(x))
> x3 <- rnorm(length(x))

Then we create some factors, and their effects:

> id <- factor(sample(2000, length(x), replace=TRUE))
> firm <- factor(sample(1300, length(x), replace=TRUE))
> id.eff <- rnorm(nlevels(id))
> firm.eff <- rnorm(nlevels(firm))

and a normally distributed error term u, and an outcome y:

> u <- rnorm(length(x))
> y <- x + 0.5*x2 + id.eff[id] + firm.eff[firm] + u

We create a covariate Q which is correlated with the other covariates, the instrument x3, and the error
term, and add it to the outcome:

> Q <- 0.3*x3 + x + 0.2*x2 + 0.5*id.eff[id] + 0.7*u + rnorm(length(x), sd=0.3)
> y <- y + 0.9*Q

Estimation is now carried out by specifying the instrumented variable equation with the iv
argument of felm. Only the instrument variable, in this case x3, is needed, the other covariates are
added by felm().

> ivest <- felm(y ~ x + x2 + G(id) + G(firm) + Q, iv=Q ~ x3)
> summary(ivest)

Call:
felm(formula = y ~ x + x2 + G(id) + G(firm) + Q, iv = Q ~ x3)

Residuals:
Min 1Q Median 3Q Max

-6.036142 -0.903260 0.000759 0.913758 4.971614

Coefficients:
Estimate Std. Error t value Pr(>|t|)

x 0.94963 0.03975 23.89 <2e-16 ***
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x2 0.49567 0.01449 34.20 <2e-16 ***
`Q(fit)` 0.94297 0.03816 24.71 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.668 on 6717 degrees of freedom
Multiple R-squared: 0.8112 Adjusted R-squared: 0.7189
F-statistic: 8.791 on 3282 and 6717 DF, p-value: < 2.2e-16

felm() supports more than one instrumented variable, in this case the iv argument must be a list
of formulas, one for each instrumented variable, with all the instruments on the right hand side.

The author has been made aware that both the G() syntax and the handling of instrumental
variables equations could be done in a smoother fashion with multi-part formulas. Such a syntax is
not presently available in lfe.

Estimation time

It is a fact of life that both felm() and getfe() may take quite a while to complete. What is more
unfortunate is that time to completion does not only depend on the size of the dataset, but also on its
structure. In particular, the dependencies between the factors, beyond the pure identification problems,
have a huge impact. The rate of convergence for the general method of alternating projections has
been analyzed by Aronszajn (1950); Kayalar and Weinert (1988); Gearhart and Koshy (1989); Deutsch
and Hundal (1997); Bauschke et al. (2003); Badea et al. (2012), among others. Their results are in terms
of the cosine c of generalized angles between the subspaces corresponding to the projections Pi. For
two factors, the convergence rate in operator norm is known to be

‖(P1P2)
n − P‖ = c2n−1, (3)

where 0 ≤ c < 1. The convergence is linear in the case with two factors, but the rate depends heavily
on the structure of the factors. With 3 or more factors, the convergence rate depends on both the
structure of the factors and their order in the iterations, in a quite complicated way (Deutsch and
Hundal, 1997, Theorem 2.7). The theoretical convergence results are also valid for the Kaczmarz
method used by getfe(), as this is a special case of the method of alternating projections (Deutsch
and Hundal, 1997, Section 4). Though, for our Kaczmarz step the number of projections is the number
of observations, not the number of factors.

We do not offer general results which relate intuitive properties of the factors to the convergence
rate, but here are some small examples to illustrate the complexity.

In our first example the factors f1 and f2 are independent:

> set.seed(54)
> x <- rnorm(100000)
> f1 <- sample(10000, length(x), replace=TRUE)
> f2 <- sample(300, length(x), replace=TRUE)
> y <- x + cos(f1) + log(f2+1) + rnorm(length(x), sd=0.5)

We time the estimation:

> system.time(est <- felm(y ~ x + G(f1) + G(f2)))

user system elapsed
2.420 0.008 1.955

> system.time(alpha <- getfe(est))

user system elapsed
0.256 0.008 0.263

This is a quite fast example, in general it is the author’s experience that datasets with this kind of full
independence between the factors converge quite fast. Convergence is equally fast with 10,000 levels
in the second factor as well.

But then we introduce a dependence which makes convergence slow. We let the second factor be
closely related to the first, with some stochasticity, but we do not increase the number of levels. In this
example, the second factor f3 can only have 5 different values for each value of f1.
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> f3 <- (f1 + sample(5, length(x), replace=TRUE)) %% 300
> y <- x + cos(f1) + log(f3+1) + rnorm(length(x), sd=0.5)
> system.time(est <- felm(y ~ x + G(f1) + G(f3)))

user system elapsed
34.624 0.000 18.804

> system.time(alpha <- getfe(est))

user system elapsed
3.868 0.008 3.880

Execution time increases by an order of magnitude, even though the size of the dataset is the same as
before. In this example, with only 300 levels in the second factor, we may as well encode it as ordinary
dummies, reducing our model to the classical within groups estimator, with 300 covariates:

> system.time(est <- felm(y ~ x + G(f1) + factor(f3)))

user system elapsed
10.340 0.832 5.379

> length(coef(est))

[1] 300

> system.time(alpha <- getfe(est))

user system elapsed
0.192 0.000 0.192

This is far from being the whole story. A “small” change to the second factor brings the execution
time back down. We still have only 5 different values of the second factor f4 for each value of f1, but
they are spread irregularly apart:

> f4 <- (f1 + sample(5, length(x), replace=TRUE)^3) %% 300
> y <- x + cos(f1) + log(f4+1) + rnorm(length(x), sd=0.5)
> system.time(est <- felm(y ~ x + G(f1) + G(f4)))

user system elapsed
2.564 0.000 2.081

> system.time(alpha <- getfe(est))

user system elapsed
0.240 0.004 0.244

To better appreciate the complexity, we create two more examples which are similar to the previous
one, but the randomly drawn numbers are spread regularly apart. The first one results in slow
convergence:

> f5 <- (f1 + sample(seq(1,197,49), length(x), replace=TRUE)) %% 300
> y <- x + cos(f1) + log(f5+1) + rnorm(length(x), sd=0.5)
> system.time(est <- felm(y ~ x + G(f1) + G(f5)))

user system elapsed
32.636 0.000 17.368

> system.time(alpha <- getfe(est))

user system elapsed
3.972 0.000 3.975

The second one converges fast:

> f6 <- (f1 + sample(seq(1,201,50), length(x), replace=TRUE)) %% 300
> y <- x + cos(f1) + log(f6+1) + rnorm(length(x), sd=0.5)
> system.time(est <- felm(y ~ x + G(f1) + G(f6)))

user system elapsed
2.548 0.000 2.073
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> system.time(alpha <- getfe(est))

user system elapsed
0.244 0.000 0.244

By comparing the “user” and “elapsed” times for felm() in the above examples, it can be inferred
that most of the time in the fast examples is spent in bookkeeping outside the centring, otherwise
“user” time would be close to twice the “elapsed” time, since the actual centring of y and x is done in
parallel. This means that the actual centring convergence rate differences are larger than the reported
differences in execution time. For a careful analysis of centring times only, the centring process should
be timed directly, as mentioned in Gaure (2013a, top of p. 17).

The author has not succeeded in finding general intuitive guidelines for the convergence rate.
However, with two factors, a relevant concept seems to be the bipartite graph where the vertices are
factor levels and there is an edge between levels which are observed together. It is the connected
components of this graph which determines estimability. The graph can be analyzed with the tools in
package igraph (Csardi and Nepusz, 2006) as follows:

> library(igraph)
> mkgraph <- function(flist) {
+ graph.adjacency(tcrossprod(do.call('rBind',
+ lapply(flist, as, 'sparseMatrix')))>0,
+ 'undirected', diag=FALSE)
+ }

We make a list of the associated graphs:

> glist <- lapply(list(f2,f3,f4,f5,f6),
+ function(f) mkgraph(lapply(list(f1,f), factor)))

The graphs, except for the last, are connected:

> sapply(glist, no.clusters)

[1] 1 1 1 1 50

The average degrees, i.e. the number of edges in the graph, show no convincing signs of being strongly
related to the estimation time:

> sapply(glist, function(g) mean(degree(g)))

[1] 19.100301 8.404311 8.410719 8.400039 8.423925

A property of the graph which shows some promise of correlating with the convergence rate is the
diameter . To get some intuituion of what this is, consider the example with firms and employees. The
associated graph has as vertices the firms and employees, and there is an edge between a firm and an
employee if the employee has worked for the firm. A path between e.g. two employees Roy and Floyd
can be constructed by finding a firm that Roy has worked for, then another employee Warshall of this
firm, then another firm for Warshall, zigzagging between firms and their employees until we reach
the employee Floyd. For each pair of vertices (i.e. firms and employees) in a mobility group, there is
a shortest path. The length of the longest of the shortest paths among all vertex pairs is the graph’s
diameter.

In these particular examples, it turns out that in the cases with fast convergence (the first, third,
and fifth), the shortest paths between pairs of vertices are typically much shorter than in the slowly
converging cases. We do not compute the diameter as a typical fast algorithm for this, the Roy-Warshall-
Floyd algorithm, has complexity of order O(n3), where n is the number of vertices, i.e. 10300 in our
example. Below, for simplicity, we exclude the last graph, it is disconnected, hence of infinite diameter,
though the diameters of its (comparably small) components are relevant. A component of this graph
would typically contain only about 300/50 = 6 different levels of the second factor f6, so its diameter
can’t possibly be very large.

> for(gr in glist[1:4])
+ print(fivenum(shortest.paths(gr, v=sample(V(gr),10), to=sample(V(gr),10))))

[1] 2 2 4 4 4
[1] 2 20 39 62 76
[1] 2 4 6 6 8
[1] 2 18 40 58 76
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Also, the many variants of factor structures in Markussen and Røed (2012) (described in Gaure
(2013a)) and ongoing subsequent works, use factors which are interactions of other factors, in such a
way that there are a few collinearities by design. This is not a conceptual problem when the factors
are used as controls, but manually removing these known collinearities by merging some levels into
a common “reference” level, yields performance improvements of up to two orders of magnitude
(Markussen, 2013), a phenomenon which was not noted in Gaure (2013a). Incidentally, this also leads
to shorter paths via the common reference level.

This suggests that, loosely speaking, datasets with six degrees of separation converge fast, whereas
less well connected datasets converge slower. However, we cannot rule out other structural differences
which may have an impact on the convergence rate; there is no such thing as “larger diameter, ceteris
paribus” for graphs. It is possible that a diameter path could be used to construct a lower bound for
the c in equation (3), but the author has not found a proof for such an assertion.

The convergence rate with more than two factors is more complicated, the theoretical results
of Deutsch and Hundal (1997) are less complete, the rate is not a function of the cosines of pairs of
subspaces, and even the order of the projections matters. In cases where only some of the factors
have many levels, the remaining factors may be specified without G(), treating them as ordinary
dummy-encoded covariates.

lfe utilizes two acceleration techniques for the alternating projections methods. In demeanlist(),
which is used by felm() to centre the covariates, the line search method in Bauschke et al. (2003,
Theorem 3.16) is used, even though their Example 3.24 shows that in some special cases with more
than two factors, this method is in fact slower. For the Kaczmarz method, random shuffling of the
equations is used, as suggested by Gaure (2013a).

Parallelism

felm() is thread parallelized over the vectors to be centred, i.e. all variables in the model except
those enclosed in G(). The number of processors is fetched with getOptions('lfe.threads') which
is initialized upon loading of lfe from the environment variable LFE_THREADS or OMP_NUM_THREADS, or
otherwise from an heuristic snatched from package multicore (Urbanek, 2011). It may of course be set
manually after loading the package. There is no benefit from specifying more threads than there are
variables to centre. getfe() is not parallelized as such, but bootstrapping with getfe(...,se=TRUE) is.

Elsewhere

lfe is similar in function, but not in method, to the Stata (StataCorp., 2013) modules A2reg (Ouazad,
2008) and felsdvreg (Cornelißen, 2008). It is the same algorithm as in the Stata module reg2hdfe
(Guimarães, 2009), described by Guimarães and Portugal (2010) in terms of Gauss-Seidel iterations.

Summary

The package lfe contains methods for estimating ordinary least square models with multiple factors
with too many levels for conventional methods like lm(). Such models may exhibit non-trivial
identification problems. These are satisfactorily solved for the two factor case, and the package also
includes some partial solutions for the case with more factors. Instrumental variable regression via the
two step OLS is also supported. Convergence rate can be an issue for some datasets, and the present
paper suggests some intuitive structural reasons for this.

The method employed by lfe is known as the method of alternating projections, a somewhat old and
well studied method which to the author’s knowledge has not been applied to the particular problem
of linear regression with dummy variables before.
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