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Generalized Simulated Annealing for
Global Optimization: The GenSA
Package
An Application to Non-Convex Optimization in Finance and Physics

by Yang Xiang, Sylvain Gubian, Brian Suomela and Julia Hoeng

Abstract Many problems in statistics, finance, biology, pharmacology, physics, mathematics, eco-
nomics, and chemistry involve determination of the global minimum of multidimensional functions.
R packages for different stochastic methods such as genetic algorithms and differential evolution
have been developed and successfully used in the R community. Based on Tsallis statistics, the R
package GenSA was developed for generalized simulated annealing to process complicated non-linear
objective functions with a large number of local minima. In this paper we provide a brief introduction
to the R package and demonstrate its utility by solving a non-convex portfolio optimization problem
in finance and the Thomson problem in physics. GenSA is useful and can serve as a complementary
tool to, rather than a replacement for, other widely used R packages for optimization.

Introduction

Many problems in statistics, biology, physics, mathematics, economics, and chemistry involve the
determination of the global minimum of multidimensional functions (Agostini et al., 2006; Serra
et al., 1997; Guire et al., 2010; Xiang et al., 1997; Xiang and Gong, 2000a; Xiang et al., 2000). Methods
of optimization can generally be classified as either deterministic or stochastic. For simple non-
convex functions with only a few dimensions and well separated local minima, standard deterministic
methods such as simplex optimization, steepest descent method, and the quasi-Newton method
can provide reasonable results. While being fast, deterministic methods have the tendency to trap
the system within a local minimum. By comparison, many stochastic methods are far less likely to
get stuck in a local minimum, and may find a good approximation of the global minimum using a
modest amount of computation. Many stochastic methods have been developed for the solution of
global optimization problems such as genetic algorithms (Holland, 1975), evolution algorithms (Storn
and Price, 1997), simulated annealing (Kirkpatrick et al., 1983), and taboo search (Glover et al., 1993;
Cvijovic and Klinowski, 2002, 1995).

In metallurgy, annealing a molten metal causes it to reach its crystalline state which is the global
minimum in terms of thermodynamic energy. The simulated annealing algorithm was developed to
simulate the annealing process to find a global minimum of the objective function (Kirkpatrick et al.,
1983). In the simulated annealing algorithm, the objective function is treated as the energy function of a
molten metal and one or more artificial temperatures are introduced and gradually cooled, analagous
to the annealing technique. This artificial temperature (or set of temperatures) acts as a source of
stochasticity, which is convenient for the systems to eventually escape from local minima. Near the
end of the annealing process, the system is hopefully inside the attractive basin of the global minimum
(or in one of the global minima if more than one global minimum exists).

In contrast to the simulation of the annealing process of molten metal, genetic algorithms (Holland,
1975) were developed by mimicing the process of natural evolution. A population of strings which
encode candidate solutions for an optimization problem evolve over many iterations toward better
solutions. In general the solutions are represented by bitstrings, but other encodings such as floating-
point numbers are also widely used. The evolution usually starts from a population of randomly
generated individuals. In each generation, the fitness of each individual in the population is evaluated.
New members of the population in the next generation are generated by cross-over, mutation, and
selection (based on their fitness). Differential evolution belongs to a class of genetic algorithms.

The basic idea behind the taboo search method (Glover et al., 1993) is to forbid the search to return
to points already visited in the (usually discrete) search space, at least for the upcoming few steps.
Similar to simulated annealing, taboo search can temporarily accept new solutions which are worse
than earlier solutions, in order to avoid paths already investigated. Taboo search has traditionally
been applied to combinatorial optimization problems and it has been extended to be applicable to
continuous global optimization problems by a discrete approximation (encoding) of the problem
(Cvijovic and Klinowski, 2002, 1995).

For a review of stochastic optimization algorithms, please refer to Fouskakis and Draper (2002).
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The R language and environment for statistical computing enables rapid prototyping of algorithms,
access to a wide range of tools for statistical modeling, and the ability to easily generate customized
plots of results. These advantages make use of R preferable in many situations over the use of other
programming languages like Java, C++, Fortran, and Pascal (Mullen et al., 2011).

Theussl (2011) provided a comprehensive summary of the currently available R packages for
solving optimization problems. No one method is the best for all the optimization problems. The best
method for one specific problem depends on the problem itself. For example, simulated annealing
could be chosen for optimization problems such as scheduling in the multiprocessor flowshop (Figiel-
ska, 2009), or pathway-based microarray analysis (Pavlidis et al., 2011), while genetic algorithms could
be more appropriate for optimization problems such as design of an ATM network (Thompson and
Bilbro, 2000). R users can choose the most appropriate method/package to handle different types
of global optimization problems facilitated by the work of Mullen et al. (2011); Ardia et al. (2011);
Mebane Jr and Sekhon (2011); Powell (2009) and other contributors listed in Theussl (2011). For
example, the Nelder-Mead and BFGS quasi newton method in the function optim are appropriate to
handle non-smooth and smooth functions with few local minima; packages for stochastic searches,
such as DEoptim (Mullen et al., 2011; Ardia et al., 2011) and rgenoud (Mebane Jr and Sekhon, 2011),
are a good choice for more complicated objective functions with many local minima. While the
simulated annealing algorithm is also suitable to solve complicated objective functions with many
local minima, the only package of simulated annealing serving as a general purpose continuous solver
in R is sann in optim (Theussl, 2011). Several R packages, ConsPlan (VanDerWal and Januchowski,
2010), likelihood (Murphy, 2008), dclone (Sólymos, 2010), and subselect (Cerdeira et al., 2011), make
use of the simulated annealing algorithm within their specific applications. As sann in optim cannot
handle simple box constraints and it performs poorly compared to DEoptim for the Rastrigin function
(Ardia et al., 2011), many R users would benefit from a new R package for simulated annealing which
is suitable for box constraints and quickly solves global optimization problems.

Here we have developed an innovative R package GenSA, which is an implementation of modified
generalized simulated annealing, which outperforms the classical simulated annealing algorithm
(Xiang et al., 1997; Xiang and Gong, 2000a,b; Serra et al., 1997). GenSA can process complicated
non-linear objective functions with a large number of local minima. The kernel function of GenSA is
written in C++ to ensure the package runs as efficiently as possible.

In the remainder of this paper we will elaborate further on the background and improvements
of GSA (in Section 1) and on the content of the package GenSA (in Section 2). The utility of this R
package for financial and physical applications is demonstrated by solving a non-convex portfolio
optimization problem and the famous Thomson problem in physics, respectively (in Section 3).

Generalized simulated annealing

Classical simulated annealing (CSA) was proposed by Kirkpatrick et al. (1983). Due to the inherent
statistical nature of simulated annealing, in principle local minima can be hopped over more easily
than for gradient methods. Using the simulated annealing technique, one or more artificial tempera-
tures are introduced and gradually cooled to simulate thermal noise. A fast simulated annealing (FSA)
method was proposed by Szu and Hartley (Szu and Hartley, 1987). CSA and FSA can be generalized
according to Tsallis statistics with a unified picture called the generalized simulated annealing algo-
rithm (Tsallis and Stariolo, 1996). GSA uses a distorted Cauchy-Lorentz visiting distribution, with its
shape controlled by the parameter qv

gqv (∆x(t)) ∝

[
Tqv (t)

]− D
3−qv[

1 + (qv − 1) (∆x(t))2

[Tqv (t)]
2

3−qv

] 1
qv−1 +

D−1
2

. (1)

Here t is the artificial time. This visiting distribution is used to generated a trial jump distance ∆x(t)
of variable x(t) under artificial temperature Tqv (t). The trial jump is accepted if it is downhill (in
terms of the objective function). If the jump is uphill it might be accepted according to an acceptance
probability. A generalized Metropolis algorithm is used for the acceptance probability:

pqa = min {1, [1− (1− qa)β∆E]
1

1−qa }, (2)

where qa is a parameter. For qa < 1, zero acceptance probability is assigned to the cases where

[1− (1− qa)β∆E] < 0. (3)
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The artificial temperature Tqv (t) is decreased according to

Tqv (t) = Tqv (1)
2qv−1 − 1

(1 + t)qv−1 − 1
. (4)

When qv = 1 and qa = 1, GSA recovers CSA; when qv = 2 and qa = 1, GSA recovers FSA. When
qv > 2, the cooling is faster than that of CSA and FSA. When T → 0, GSA behaves like the steepest
descent algorithm. GSA not only converges faster than FSA and CSA, but also has the ability to escape
from a local minimum more easily than FSA and CSA. Since GSA has a large probability to have a
long jump, the probability of finding the global minimum with GSA is larger than that with FSA and
CSA. Bigger qv (< 3) makes the cooling faster and jumping further. Negative qa with bigger absolute
value makes GSA accept less hill climbing. Default values of qv and qa in our package GenSA are
set to be 2.62 and −5 respectively according to our experience and our package works well with the
default values in many applications. We also provide users the flexibility of changing the value of qv
and qa easily in the control argument of GenSA for advanced usage of GenSA. For example, users
can set any value between 2 and 3 for qv and any value < 0 for qa.

A simple technique to speed up the convergence is to set the acceptance temperature equal to the
visiting temperature divided by the number of time steps, i.e. Tqa =

Tqv
t . Our testing shows that this

simple technique works well (Xiang et al., 2000), so this technique is used in GenSA to speed up the
convergence.

For more details on GSA, we refer the readers to Tsallis and Stariolo (1996), Xiang and Gong (2000a)
and Xiang et al. (1997).

The package GenSA

The core function of package GenSA is the function GenSA, whose arguments are:

• par: Numeric vector. Initial values for the parameters to be optimized over. Default is NULL, in
which case initial values will be generated automatically.

• lower: Numeric vector with length of par. Lower bounds for the parameters to be optimized
over.

• upper: Numeric vector with length of par. Upper bounds for the parameters to be optimized
over.

• fn: A function to be minimized, with first argument the vector of parameters over which
minimization is to take place. It should return a scalar result.

• ...: allows the user to pass additional arguments to the function fn.

• control: A list of control parameters, discussed below.

The control argument is a list that can be used to control the behavior of the algorithm. Some
components of control are the following:

• maxit: Integer. Maximum number of iterations of the algorithm. Default value is 5000, which
could be increased by the user for the optimization of a very complicated objective function.

• threshold.stop: Numeric. The program will stop when the objective function value is <=
threshold.stop. Default value is NULL.

• smooth: Logical. TRUE when the objective function is smooth, or differentiable almost every-
where, and FALSE otherwise. Default value is TRUE.

• max.call: Integer. Maximum number of calls of the objective function. Default is 10000000.

• max.time: Numeric. Maximum running time in seconds.

• temperature: Numeric. Initial value for temperature.

The default values of the control components are set for a complicated optimization problem.
For typical optimization problems with medium complexity, GenSA can find a reasonable solution
quickly so the user is strongly recommended to let GenSA stop earlier by setting threshold.stop to the
expected function value, or by setting max.time if the user just want to run GenSA for max.time seconds,
or by setting max.call if the user just want to run GenSA within max.call function calls. Please refer
to the examples below. For very complicated optimization problems, the user is recommended to
increase maxit and temperature.

The returned value is a list with the following fields:
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• par: The best set of parameters found.

• value: The value of fn corresponding to par.

• trace.mat: A matrix which contains the history of the algorithm. (By columns: Step number,
temperature, current objective function value, current minimum objective function value).

• counts: Total number of calls of the objective function.

For more details about GenSA, the reader can refer to the manual (by typing ?GenSA).

Packages DEoptim and rgenoud have been widely used to successfully solve optimization prob-
lems arising in diverse fields (Ardia et al., 2011; Mullen et al., 2011; Mebane Jr and Sekhon, 2011).
Since these two packages both use evolutionary strategies (Ardia et al., 2011), we have chosen one
of them, DEoptim, as our gold standard for comparison purposes of various global optimization
packages. Similar to Ardia et al. (2011), let us briefly illustrate the usage of package GenSA with the
minimization of the Rastrigin function with 2 dimensions, which is a standard test function for global
optimization:

> Rastrigin <- function(x) {
+ fn.call <<- fn.call + 1
+ sum(x^2 - 10 * cos(2 * pi * x)) + 10 * length(x)
+ }

The Rastrigin function with 2 dimensions has many local minima. The global minimum f opt = 0 at
point xopt = (0, 0). Please note that the dimension of x of the above Rastrigin function can be more
than 2.

Since we chose DEoptim as our gold standard for global optimization packages, let’s run DEoptim
first:

> options(digits = 10)
> dimension <- 2
> lower <- rep(-5.12, dimension)
> upper <- rep(5.12, dimension)
> set.seed(1234)
> sink("tmp.txt")
> fn.call <<- 0
> library(DEoptim)
> out.DEoptim <- DEoptim(fn = Rastrigin, lower = lower, upper = upper,
+ control = list(storepopfrom = 1))
> sink(NULL)
> out.DEoptim$optim[c(1, 2, 3)]
$bestmem

par1 par2
-4.775211422e-07 6.390004611e-08

$bestval
[1] 4.60502747e-11

$nfeval
[1] 402

> cat("DEoptim call functions", fn.call, "times.\n")
DEoptim call functions 4020 times.

The best value that DEoptim found is 4.60502747e-11, which is fairly close to the global minimum
0. However the latest version of DEoptim, 2.2.1, gave a wrong number of function calls nfeval, 402,
which should be 4020 as shown by fn.call.

The simulated annealing solver sann in optim is applied to the Rastrigin function.

> set.seed(1234)
> x.ini <- lower + runif(length(lower)) * (upper - lower)
> fn.call <- 0
> out.sann <- optim(par = x.ini, fn = Rastrigin, method = "SANN")
> out.sann[c("value","par","counts")]
$value
[1] 3.980605068

$par
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[1] -1.98836973902 -0.00123560529

$counts
function gradient

10000 NA

sann does not find the global minimum although 10000 function calls (the default stopping criterion in
sann) are performed.

GenSA also searches for a minimum of the Rastrigin function between the same lower and upper
bounds. A call to GenSA can be made as follows:

> set.seed(1234)
> library(GenSA)
> expected.val <- 0
> absTol <- 1e-13
> fn.call <- 0
> out.GenSA <- GenSA(par = NULL, lower = lower, upper = upper, fn = Rastrigin,
+ control = list(threshold.stop = expected.val + absTol))
> out.GenSA[c("value", "par", "counts")]
$value
[1] 0

$par
[1] 2.750668687e-12 -2.889218652e-12

$counts
[1] 196

> cat("GenSA call functions", fn.call, "times.\n")
GenSA call functions 196 times.

The above call specifies a random vector as initial values for the parameters by setting par as
NULL, the lower and upper bounds on the parameters, and, via the control argument, that we will stop
searching after GenSA finds the expected global minimum f opt = 0 within the absolute tolerance
∆ = 1e−13. GenSA actually found the global minimum f opt = 0 after 196 function calls. GenSA
and DEoptim both converge to the the global minimum but GenSA obtains a more accurate result
with fewer function calls than DEoptim. sann performs poorly since it does not find the global
minimum after a much larger number of function calls (10000) compared to DEoptim and GenSA.

The result of DEoptim can be further improved with a local search, large-scale bound-constrained
BFGS (Byrd et al., 1995; Zhu et al., 1997), as below:

> out.DEoptim_BFGS <- optim(par = out.DEoptim$optim$bestmem, fn = Rastrigin,
+ lower = lower, upper = upper, method = "L-BFGS-B")
> out.DEoptim_BFGS[c("value","par")]
$value
[1] 0

$par
par1 par2

-9.362433236e-12 1.250185258e-12

So DEoptim + large-scale bound-constrained BFGS generated a comparable result to GenSA, however,
with more function calls. L-BFGS-B and bobyqa are good local search methods for smooth functions
while Nelder-Mead is recommended for local search of non-smooth functions although Nelder-Mead
can manage both smooth and non-smooth functions (Zhu et al., 1997; Nash, 1990; Powell, 2009). It
could be a good idea to run a local search for further refinement after running DEoptim. The user of
GenSA does not need to run a local search for refinement after running GenSA since the local search
refinement was performed within GenSA.

The Rastrigin function with 30 dimentions belongs to the most difficult class of problems for
many optimization algorithms (including evolutionary programming) (Yao et al., 1999; Mebane Jr and
Sekhon, 2011). However GenSA can find the global minimum in no more than 2 seconds (CPU: Xeon
E5450), as shown below.

> set.seed(1234)
> dimension <- 30
> lower <- rep(-5.12, dimension)
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> upper <- rep(5.12, dimension)
> fn.call <- 0
> out.GenSA <- GenSA(lower = lower, upper = upper, fn = Rastrigin,
+ control = list(max.time=1.9, verbose=TRUE))
> out.GenSA[c("value")]
$value
[1] 0

Of course the time for solving the above problem using GenSA may vary depending on the computing
power used. DEoptim and sann did not find the global minimum of Rastrigin function with 30
dimensions by using default settings.

To compare the performance of the above packages/methods more precisely, GenSA, DEoptim,
sann, and DEoptim+ large-scale bound-constrained BFGS (denoted as DEoptim_BFGS) were run
100 times randomly. The testing function was Rastrigin with 2 dimensions. We noticed that the
implementation in the package DEoptim is very flexible, but only default values of parameters were
used in the comparison. Similarly only default values of parameters in GenSA were used in the
comparison. Various absolute tolerances ∆ ∈ {1e−05, 1e−07, 1e−08, 1e−09} were explored. The
global minimum f opt = 0 was considered to have been reached if the current function value f
surpasses f opt + ∆. A run was successful if the global minimum was reached. Figures 1 and 2 show
the percentage of the 100 runs that were successful, and the average number of function calls to reach
the global minimum (for the successful runs), respectively. The error bar in Figure 2 represents the
average number of function calls ± its standard error (SE).

None of the 100 runs for sann were successful, so the result of sann is not shown in Figure 1 and
Figure 2.

In Figure 1, the percentage of successful runs for DEoptim was 88% for ∆ = 1e−05, but decreased
to 22% for ∆ = 1e−09. The percentage of successful runs for GenSA and DEoptim_BFGS were
100% and 98% respectively for all absolute tolerances ∆. GenSA, DEoptim and DEoptim_BFGS had
a similar percentage of successful runs when the absolute tolerance ∆ was large, while GenSA and
DEoptim_BFGS were much more likely to be successful than DEoptim as the absolute tolerance ∆
was set to smaller values.

In Figure 2, the average number of function calls for GenSA was 479 for ∆ = 1e−05, and increased
only slightly to 483 for ∆ = 1e−09. The average number of function calls for DEoptim was 2692 for
∆ = 1e−05, and increased significantly to 3344 for ∆ = 1e−09. The average number of function
calls for DEoptim_BFGS was 2829 for ∆ = 1e−05, and increased to 3877 for ∆ = 1e−09. A student
t-test was performed to determine if the average number of function calls of GenSA was significantly
smaller than the average number of function calls of DEoptim and DEoptim_BFGS. The p-values
shown above the error bars in Figure 2 indicate that the average number of function calls of GenSA is
significantly smaller than the average number of function calls of both DEoptim and DEoptim_BFGS.
The Wilcoxon rank-sum test gave a similar result.

GenSA, DEoptim, DEoptim_BFGS solve the Rastrigin problem more efficiently than sann. To
show how the performance of the above R packages change with the dimensions of testing functions,
we test them in more functions: generalized Rosenbrock function (ROS) (Mebane Jr and Sekhon, 2011)
with 4 dimensions (dimension = 2, 10, 20, 30), Rastrigin function (RAS) (Mebane Jr and Sekhon, 2011)
with 4 dimensions (dimension = 2, 10, 20, 30), Branin function (BRA) (Serra et al., 1997), Goldstein-
Prices function (GP) (Serra et al., 1997). The range of coordindates of functions Rosenbrock, Rastrigin,
and Goldstein-Prices, are [−30, 30], [−5.12, 5.12], and [−2, 2], respectively. The range of the first and
the second coordinate of function Branin are [−5, 10] and [0, 15] respectively. Four different tolerance
levels, 1e−5, 1e−7, 1e−8, 1e−9, were used. The results for tolerance level 1e−08 are shown in Table
1. For Rosenbrock function with low dimension 2, GenSA, DEoptim and DEoptim_BFGS found the
global minimum with 100% success. For Rosenbrock function with dimension = 10, 20, 30, DEoptim
and DEoptim_BFGS failed to find the global minimum (tolerance level 1e−08), while GenSA found
the global minimum (tolerance level 1e−08) with a 100% success rate. For Rosenbrock function with
dimension 2, 10, 20, 30, the average number of function calls of GenSA is significantly smaller than
that of DEoptim and DEoptim_BFGS. For Rastrigin function with dimension ≤ 30, the success rate
of GenSA is 100% regardless of the number of dimensions, but the success rate of DEoptim and
DEoptim_BFGS decreased drastically with an increasing number of dimensions. DEoptim failed
to find the global minimum (tolerance level 1e−08) of the Rastrigin function for dimension ≥ 20.
For Branin function and Goldstein-Prices function, although GenSA, DEoptim and DEoptim_BFGS
found the global minimum with a 100% success rate, the average number of function calls of GenSA
is significantly smaller than that of DEoptim and DEoptim_BFGS.

Please note that the performance testing was based on the usage of the R packages with only the
default parameter settings of GenSA, DEoptim, and optim.
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Figure 1: Percentage of successful runs vs. different absolute tolerances for GenSA (green), DEoptim
(blue), and DEoptim_BFGS (yellow) in the test function Rastrigin. None of the runs for sann was
successful, so the result of sann is not shown in this figure.
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Figure 2: Average number of function calls to reach the global minimum in the successful runs for
various absolute tolerances using GenSA (green), DEoptim (blue), and DEoptim_BFGS (yellow) in
the test function Rastrigin. The error bar represents the average number of function calls± its standard
error. The p-values for comparison DEoptim and DEoptim_BFGS vs. GenSA are found above the
error bar. None of the runs for sann was successful, so the result of sann is not shown in this figure.
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func GenSA DEoptim DEoptim-BFGS func GenSA DEoptim DEoptim-BFGS
ROS-2D 100.0% 100.0% 100.0% RAS-10D 100.0% 0.0% 2.0%

106.0 (B) 1561.0 (B) 1561.0 (B) 2919.0 (B) NA (B) 20248.0 (B)
1617.8 (A) 2483.1 (A) 2483.1 (A) 5878.2 (A) NA (A) 20258.5 (A)
± 167.9 (S) ± 50.5 (S) ± 50.5 (S) ± 165.8 (S) ± NA (S) ± 10.5 (S)
4689.0 (W) 3864.0 (W) 3864.0 (W) 11820.0 (W) NA (W) 20269.0 (W)
1618.7 (T) 4020.0 (T) 4108.9 (T) 5879.4 (T) 20100.0 (T) 20290.3 (T)

ROS-10D 100.0% 0.0% 0.0% RAS-20D 100.0% 0.0% 0.0%
5545.0 (B) NA (B) NA (B) 6869.0 (B) NA (B) NA (B)

17562.3 (A) NA (A) NA (A) 14682.6 (A) NA (A) NA (A)
± 696.3 (S) ± NA (S) ± NA (S) ± 318.2 (S) ± NA (S) ± NA (S)
31234.0 (W) NA (W) NA (W) 21893.0 (W) NA (W) NA (W)
17564.1 (T) 20100.0 (T) 21657.8 (T) 14683.6 (T) 40200.0 (T) 40585.8 (T)

ROS-20D 100.0% 0.0% 0.0% RAS-30D 100.0% 0.0% 0.0%
11866.0 (B) NA (B) NA (B) 12713.0 (B) NA (B) NA (B)
33547.9 (A) NA (A) NA (A) 27820.7 (A) NA (A) NA (A)
± 1401.9 (S) ± NA (S) ± NA (S) ± 683.2 (S) ± NA (S) ± NA (S)
65427.0 (W) NA (W) NA (W) 56432.0 (W) NA (W) NA (W)
33552.2 (T) 40200.0 (T) 45165.9 (T) 27823.6 (T) 60300.0 (T) 60922.8 (T)

ROS-30D 100.0% 0.0% 0.0% BRA 100.0% 100.0% 100.0%
30192.0 (B) NA (B) NA (B) 26.0 (B) 287.0 (B) 287.0 (B)
52874.3 (A) NA (A) NA (A) 35.7 (A) 788.9 (A) 788.9 (A)
± 1403.8 (S) ± NA (S) ± NA (S) ± 0.7 (S) ± 27.4 (S) ± 27.4 (S)
117795.0 (W) NA (W) NA (W) 51.0 (W) 1769.0 (W) 1769.0 (W)
52878.8 (T) 60300.0 (T) 67613.9 (T) 36.7 (T) 4020.0 (T) 4046.3 (T)

RAS-2D 100.0% 35.0% 98.0% GP 100.0% 100.0% 100.0%
41.0 (B) 1975.0 (B) 1975.0 (B) 41.0 (B) 794.0 (B) 794.0 (B)

482.4 (A) 3253.3 (A) 3753.6 (A) 158.7 (A) 1023.0 (A) 1023.0 (A)
± 23.6 (S) ± 88.6 (S) ± 49.2 (S) ± 11.5 (S) ± 9.4 (S) ± 9.4 (S)
1242.0 (W) 3991.0 (W) 4041.0 (W) 585.0 (W) 1263.0 (W) 1263.0 (W)
483.5 (T) 4020.0 (T) 4115.5 (T) 159.7 (T) 4020.0 (T) 4125.0 (T)

Table 1: Comparison result for tolerance level 1e-08. ROS: Rosenbrock function; RAS: Rastrigin
function ; BRA: Branin function; GP: Goldstein-Price function. For ROS and RAS, the number after
the hyphen gives the dimension. E.g. ROS-30D is Rosenbrock with 30 dimensions. For each cell in
this table, we show the percentage of successful runs %, minimum (B), average (A), standard error (S),
and maximum (W), of number of function calls to reach the global minimum among all the successful
runs, and average number of total function calls among the 100 runs (denoted by T) respectively.

Derivative-based deterministic methods, e.g. BFGS, are recommended for smooth functions with
only a few local minima such as generalized Rosenbrock functions with few dimensions. Pure stochas-
tic methods such as differential evolution and generalized simulated annealing are for complicated
functions with multiple minima such as the Rastrigin function, since local minima can be hopped
much more easily in stochastic methods than in deterministic methods, due to the inherent statistical
nature of stochastic methods.

Application

Risk allocation portfolios

Mean-risk models were developed in the 1950s for portfolio selection problems. Value-at-Risk (VaR)
and Conditional Value-at-Risk (CVaR) are the most popular measures of downside risk. Mullen et al.
(2011) and Ardia et al. (2011) used DEoptim to find the portfolio weights for which the portfolio
has the lowest CVaR and each investment can contribute at most 22.5% to total portfolio CVaR risk.
For details, please refer to Mullen et al. (2011); Ardia et al. (2011). The code for objective function in
portfolio optimization are from Ardia et al. (2011).

> library("quantmod")
> tickers <- c("GE", "IBM", "JPM", "MSFT", "WMT")
> getSymbols(tickers, from = "2000-12-01", to = "2010-12-31")
[1] "GE" "IBM" "JPM" "MSFT" "WMT"
> P <- NULL
> for(ticker in tickers) {
+ tmp <- Cl(to.monthly(eval(parse(text = ticker))))
+ P <- cbind(P, tmp)
+ }
> colnames(P) <- tickers
> R <- diff(log(P))
> R <- R[-1,]
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> mu <- colMeans(R)
> sigma <- cov(R)
> library("PerformanceAnalytics")
> pContribCVaR <- ES(weights = rep(0.2, 5),
+ method = "gaussian", portfolio_method = "component",
+ mu = mu, sigma = sigma)$pct_contrib_ES
> obj <- function(w) {
+ fn.call <<- fn.call + 1
+ if (sum(w) == 0) { w <- w + 1e-2 }
+ w <- w / sum(w)
+ CVaR <- ES(weights = w,
+ method = "gaussian", portfolio_method = "component",
+ mu = mu, sigma = sigma)
+ tmp1 <- CVaR$ES
+ tmp2 <- max(CVaR$pct_contrib_ES - 0.225, 0)
+ out <- tmp1 + 1e3 * tmp2
+ return(out)
+ }

We first run DEoptim with the same setting as in Ardia et al. (2011).

> set.seed(1234)
> fn.call <- 0
> sink("tmp.txt")
> out.DEoptim <- DEoptim(fn = obj, lower = rep(0, 5), upper = rep(1, 5))
> sink(NULL)
> fn.call.DEoptim <- fn.call
> out.DEoptim$optim$bestval
[1] 0.1142884416
> out.DEoptim$optim$nfeval
[1] 402
> cat("DEoptim call functions", fn.call.DEoptim, "times.\n")
DEoptim call functions 10050 times.

The minimum found by DEoptim was 0.1142884416 after 10050 function calls. The latest version
of DEoptim, 2.2.1, gave a wrong number of function calls nfeval again. Nelder-Mead method can be
used for further refinement since this objective function is non-smooth.

> out.DEoptim.fur <- optim(par = out.DEoptim$optim$bestmem, fn = obj, method = "Nelder-Mead")
> out.DEoptim.fur$value
[1] 0.1141564043

Note that the best value found by DEoptim was further improved by the use of a local search
method. We ran GenSA as in the example below:

> set.seed(1234)
> fn.call <<- 0
> out.GenSA <- GenSA(fn = obj, lower = rep(0, 5), upper = rep(1, 5),
+ control = list(smooth = FALSE, max.call = 3000))
> fn.call.GenSA <- fn.call
> out.GenSA$value
[1] 0.1141484884
> out.GenSA$counts
[1] 3000
> cat("GenSA call functions", fn.call.GenSA, "times.\n")
GenSA call functions 3000 times.
> wstar.GenSA <- out.GenSA$par
> wstar.GenSA <- wstar.GenSA / sum(wstar.GenSA)
> rbind(tickers, round(100 * wstar.GenSA, 2))

[,1] [,2] [,3] [,4] [,5]
tickers "GE" "IBM" "JPM" "MSFT" "WMT"

"18.92" "21.23" "8.33" "15.92" "35.6"
> 100 * (sum(wstar.GenSA * mu) - mean(mu))
[1] 0.03790568876

GenSA found a minimum 0.1141484884 within 3000 function calls. Though both GenSA and
DEoptim find good approximations to the global minimum of the portfolio objective function, the
result of GenSA is closer to the global minimum with fewer function calls.
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Thomson problem in physics

The objective of the Thomson problem is to find the global energy minimum of N equal point charges
on a sphere (Thomson, 1904). The Thomson model has been widely studied in physics (Erber and
Hockney, 1991; Altschuler et al., 1994; Morris et al., 1996; Xiang et al., 1997; Xiang and Gong, 2000a;
Levin and Arenzon, 2003; Wales and Ulker, 2006; Altschuler and Pérez-Garrido, 2006; Ji-Sheng, 2007;
Wales et al., 2009). In the Thomson model, the energy of N point charges constrained on a sphere is

E =
1
2 ∑

j 6=i

1∣∣∣~ri −~rj

∣∣∣ . (5)

For the Thomson problem, the number of metastable structures grows exponentially with N (Erber
and Hockney, 1991). Moreover, the region containing the global minimum is often small compared
with those of other minima (Morris et al., 1996). This adds to the difficulty of the Thomson problem
and in part explains why it has served as a benchmark for global optimization algorithms in a number
of previous studies (Erber and Hockney, 1991; Xiang et al., 1997; Xiang and Gong, 2000a; Altschuler
and Pérez-Garrido, 2006). The Thomson problem has been tackled by several methods such as
steepest descent (Erber and Hockney, 1991), constrained global optimization (CGO) (Altschuler et al.,
1994), generalized simulated annealing algorithm (Xiang et al., 1997; Xiang and Gong, 2000a), genetic
algorithms (Morris et al., 1996), and variants of Monte Carlo (Wales and Ulker, 2006; Wales et al., 2009).
Typically, deterministic methods such as steepest descent with multiple starts can provide a good
solution when there are fewer point charges (Erber and Hockney, 1991). When N is large, there are an
enormous number of local minima since it increases exponentially with N (Erber and Hockney, 1991).
For large N, the stochastic methods such as generalized simulated annealing, genetic algorithms, and
variants of Monte Carlo, can give reasonable results (Xiang et al., 1997; Xiang and Gong, 2000a; Morris
et al., 1996; Wales and Ulker, 2006; Wales et al., 2009).

We can define an R function for the Thomson problem.

> Thomson.fn <- function(x) {
+ fn.call <<- fn.call + 1
+ x <- matrix(x, ncol = 2)
+ y <- t(apply(x, 1, function(z) {
+ c(sin(z[1]) * cos(z[2]),
+ sin(z[1]) * sin(z[2]), cos(z[1]))\}))
+ n <- nrow(x)
+ tmp <- matrix(NA, nrow = n, ncol = n)
+ index <- cbind(as.vector(row(tmp)), as.vector(col(tmp)))
+ index <- index[index[, 1] < index[, 2], , drop=F]
+ rdist <- apply(index, 1, function(z) {
+ tmp <- 1/sqrt(sum((y[z[1], ] - y[z[2], ])^2))
+ })
+ res <- sum(rdist)
+ return(res)
+ }

In this example we chose a small number of point charges (12), since our purpose is only to show
how to use GenSA. The global energy minimum of 12 equal point charges on the unit sphere is
49.16525306 with the corresponding configuration of an icosahedron (Erber and Hockney, 1991; Morris
et al., 1996; Wales and Ulker, 2006).

We applied DEoptim with default settings to the Thomson problem.

> n.particles <- 12
> lower.T <- rep(0, 2 * n.particles)
> upper.T <- c(rep(pi, n.particles), rep(2 * pi, n.particles))
>
> options(digits = 10)
> set.seed(1234)
> sink("tmp.txt")
> fn.call <<- 0
> out.DEoptim <- DEoptim(fn = Thomson.fn, lower = lower.T, upper = upper.T)
> sink(NULL)
> fn.call.DEoptim <- fn.call
> out.DEoptim$optim[c(2, 3)]
$bestval
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[1] 49.59590424

$nfeval
[1] 402

> cat("DEoptim call functions", fn.call.DEoptim, "times.\n")
DEoptim call functions 48240 times.

DEoptim used 48240 function calls to reach the function value 49.59590424, which is still far from the
global minimum 49.16525306. Then we used a local search method to further refine the best value
given by DEoptim.

> out.DEoptim_BFGS <- optim(par = out.DEoptim$optim$bestmem, fn = Thomson.fn,
+ lower = lower.T, upper = upper.T, method = "L-BFGS-B")
> out.DEoptim_BFGS[c("value")]
$value
[1] 49.16525309

L-BFGS-B refined the function value to 49.16525309, which is close to the global minimum 49.16525306.

We applied GenSA to the Thomson problem with the same number of function calls as that of
DEoptim:

> set.seed(1234)
> fn.call <<- 0
> out.GenSA <- GenSA(par = NULL, lower = lower.T, upper = upper.T,
+ fn = Thomson.fn, control = list(max.call = fn.call.DEoptim))
> out.GenSA[c("value", "counts")]
$value
[1] 49.16525306

$counts
[1] 48240

> cat("GenSA call functions", fn.call, "times.\n")
GenSA call functions 48240 times.

We plotted the cumulative minimum of function value Fmin vs. number of function calls (#fn.call)
for GenSA (green) and DEoptim (blue) in the Thomson problem in Figure 3. GenSA reached the
global minimum (red asterisk) after 2791 function calls while DEoptim does not reach the global mini-
mum after a much larger number of function calls (48240). Following the instruction for termination
criteria in setion "The package GenSA", solving the Thomson problem with just 12 point charges is
easy and we can stop GenSA much earlier by setting a smaller max.call.

For the Thomson problem, both DEoptim and GenSA converge to the global minimum. GenSA
obtained more accurate results with fewer function calls than DEoptim.

GenSA relies on repeated evaluation of the objective function, so users who are interested in
making GenSA run as fast as possible should ensure that evaluation of the objective function is also
as efficient as possible.

Summary

Many R packages for solving optimization problems such as DEoptim and rgenoud have been
developed and successfully used in the R community. Based on Tsallis statistics, an R package
GenSA was developed for generalized simulated annealing. We propose GenSA be added to the
tool kit for solving optimization problems in R. The package GenSA has proven to be a useful tool
for solving global optimization problems. The applicability of GenSA was demonstrated with a
standard test function, the Rastrigin function, a simple example of a stylized non-convex portfolio risk
contribution allocation, and the Thomson problem in physics. As no single method is the best for all
the optimization problems, GenSA can serve as a complementary tool to, rather than a replacement
for, other widely used R packages for optimization. We hope that the availability of GenSA will allow
users to have more choices when they process difficult objective functions. The results are based on
GenSA version 1.1.3, DEoptim version 2.2.1, and R 2.15.2.
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Figure 3: Cumulative minimum of function value Fmin vs. number of function calls (#fn.call) for
GenSA (green) and DEoptim (blue) in the Thomson problem (number of point charges is 12). GenSA
reaches the global minimum (red asterisk) after 2791 function calls while DEoptim does not reach the
global minimum after a much larger number of function calls (48240).
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