
48 CONTRIBUTED RESEARCH ARTICLES

Raster Images in R Graphics
by Paul Murrell

Abstract The R graphics engine has new sup-
port for rendering raster images via the func-
tions rasterImage() and grid.raster(). This
leads to better scaling of raster images, faster
rendering to screen, and smaller graphics files.
Several examples of possible applications of
these new features are described.

Prior to version 2.11.0, the core R graphics engine
was entirely vector based. In other words, R was
only capable of drawing mathematical shapes, such
as lines, rectangles, and polygons (and text).

This works well for most examples of statistical
graphics because plots are typically made up of data
symbols (polygons) or bars (rectangles), with axes
(lines and text) alongside (see Figure 1).

Sepal.Length

2.0 3.0 4.0

●
●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●●

●●

●
●

●

●●

●

●

●

●●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●
●

●
●

●
●

● ●

●

●
●●

●
●

●

●

●

●

●●●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●
●

●

●●

●

●
●
●

●

●●●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●●
●●

●●

●
●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●
●●

●
●

●

●

●

●

●● ●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●●

●

●
●

●

●

●●●

●
●

●

●

0.5 1.5 2.5

4.
5

5.
5

6.
5

7.
5

●
●
●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
● ●
●●

●●

●
●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●
●

●
●

●
●
● ●

●

●
●●

●
●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●●

●

●
●

●

●

● ●●

●
●

●

●

2.
0

3.
0

4.
0

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

Sepal.Width
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●●●
● ●

●
● ●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

●●●●
●● ●● ●●

● ●●●
●

●●●
●
●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

●●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

●● ●
● ●

●
●●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

● ●●●
●● ● ●●●
● ●●●

●
●● ●
●

●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

● ●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

Petal.Length

1
2

3
4

5
6

7

●●●
●●

●
●●●●●●●

●●
●
●●

●
●

●
●

●

●
●
● ●●●
●● ●●●●
●●

●●
●

●●●
●

●

●
●
●●●

●
●
●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

●●
●

●
●●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

4.5 5.5 6.5 7.5

0.
5

1.
5

2.
5

●●●● ●

●
●

●●
●

●●
●●

●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●
●

●
●

●●●
●

●

●

●

●
●
● ●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●● ●● ●

●
●
●●

●
●●

●●
●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●
●

●
●

● ●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●● ●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

1 2 3 4 5 6 7

●●●●●

●
●
●●
●
●●
●●

●

●●
●●●

●

●

●

●

●●

●

●●●●

●

●
●●●●
●
●●
●●
●

●

●
●
●●●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
● ●

●

●

●
●
●

●

●
●
●
●

●●●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

Petal.Width

Figure 1: A typical statistical plot that is well-
described by vector elements: polygons, rectangles,
lines, and text.

However, some displays of data are inherently
raster . In other words, what is drawn is simply an
array of values, where each value is visualized as a
square or rectangular region of colour (see Figure 2).

It is possible to draw such raster elements using
vector primitives—a small rectangle can be drawn
for each data value—but this approach leads to at
least two problems: it can be very slow to draw lots
of small rectangles when drawing to the screen; and
it can lead to very large files if output is saved in a
vector file format such as PDF (and viewing the re-
sulting PDF file can be very slow).

26
00

8
04

00
6

63
00

1
28

02
8

28
03

2
31

00
7

24
00

5
19

00
5

16
00

4
15

00
4

22
01

0
24

00
1

28
01

9
30

00
1

28
02

1
15

00
5

09
00

8
11

00
5

28
03

6
62

00
1

27
00

3
26

00
3

62
00

2
65

00
5

84
00

4
03

00
2

20
00

2
12

01
2

22
01

3
37

01
3

14
01

6
27

00
4

49
00

6
24

01
1

08
01

1
62

00
3

12
02

6
31

01
1

43
00

1
24

01
7

68
00

3
12

00
6

24
01

0
24

02
2

08
00

1
12

00
7

01
00

5

37039_at
41237_at
37383_f_at
37420_i_at
1461_at
31508_at
41745_at
676_g_at
35016_at
38833_at
38095_i_at
1389_at
675_at
36795_at
38096_f_at
41215_s_at
37043_at
32378_at
37967_at
40369_f_at
36398_at
36798_g_at
39717_g_at
37320_at
34210_at
38968_at
32977_at
41723_s_at
36878_f_at
36773_f_at
41266_at
40570_at
40088_at
41193_at
36650_at
34362_at
38032_at
33774_at
35769_at
39327_at
35260_at
1134_at
35816_at
40480_s_at
2039_s_at
32116_at
39424_at
37413_at
38056_at
37225_at
873_at
40763_at
41448_at
32215_i_at
36092_at
1929_at
33405_at
39716_at
33193_at
40393_at
35663_at
33528_at
34098_f_at
1500_at
36149_at
34247_at
32475_at
205_g_at
31605_at
41348_at
37558_at
33936_at
38223_at
39635_at
37809_at
36873_at
1914_at
931_at
41191_at
39315_at
33358_at
35665_at
31615_i_at
34106_at
36897_at
177_at
38004_at
36777_at
37810_at
1947_g_at
41470_at
37251_s_at
34961_at
39135_at
41071_at
41401_at
38385_at
37724_at
176_at
35831_at
41478_at
1140_at
919_at
39210_at
37479_at
37193_at
33412_at
41779_at
40493_at
35256_at
37184_at
31472_s_at
1126_s_at
2036_s_at
38413_at
1973_s_at
37099_at
37978_at
40785_g_at
40784_at
1674_at
41743_i_at
41742_s_at
40504_at
1307_at
1928_s_at
1308_g_at
40953_at
33809_at
36275_at
33440_at
34699_at
32872_at
40167_s_at
33244_at
1992_at
35714_at
40692_at
41346_at
41397_at
37006_at
36536_at
37280_at
38631_at
34850_at
34789_at
41744_at
39556_at
2057_g_at
1463_at
1911_s_at
37539_at
38408_at
307_at
266_s_at
39781_at
40215_at
1039_s_at
36643_at
1007_s_at
37600_at
32562_at
402_s_at
1267_at
39837_s_at

Figure 2: An example of an inherently raster graph-
ical image: a heatmap used to represent microarray
data. This image is based on Cock (2010); the data
are from Chiaretti et al. (2004).

Another minor problem is that some PDF view-
ers have trouble reconciling their anti-aliasing algo-
rithms with a large number of rectangles drawn side
by side and may end up producing an ugly thin line
between the rectangles.

To avoid these problems, from R version 2.11.0
on, the R graphics engine supports rendering raster
elements as part of a statistical plot.

Raster graphics functions

The low-level R language interface to the new
raster facility is provided by two new func-
tions: rasterImage() in the graphics package and
grid.raster() in the grid package.

For both functions, the first argument provides
the raster image that is to be drawn. This argument
should be a "raster" object, but both functions will
accept any object for which there is an as.raster()
method. This means that it is possible to simply spec-
ify a vector, matrix, or array to describe the raster
image. For example, the following code produces a
simple greyscale image (see Figure 3).

> library(grid)

> grid.raster(1:10/11)

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 49

Figure 3: A simple greyscale raster image generated
from a numeric vector.

As the previous example demonstrates, a nu-
meric vector is interpreted as a greyscale image, with
0 corresponding to black and 1 corresponding to
white. Other possibilities are logical vectors, which
are interpreted as black-and-white images, and char-
acter vectors, which are assumed to contain either
colour names or RGB strings of the form "#RRGGBB".

The previous example also demonstrates that a
vector is treated as a matrix of pixels with a single
column. More usefully, the image to draw can be
specified by an explicit matrix (numeric, logical, or
character). For example, the following code shows a
simple way to visualize the first 100 named colours
in R.

> grid.raster(matrix(colors()[1:100], ncol=10),
+ interpolate=FALSE)

Figure 4: A raster image generated from a character
matrix (of the first 100 values in colors()).

It is also possible to specify the raster image as a
numeric array: either three-planes of red, green, and
blue channels, or four-planes where the fourth plane
provides an “alpha” (transparency) channel.

Greater control over the conversion to a "raster"
object is possible by directly calling the as.raster()
function, as shown below.

> grid.raster(as.raster(1:10, max=11))

Interpolation

The simple image matrix example above demon-
strates another important argument in both of the

new raster functions—the interpolate argument.

In most cases, a raster image is not going to be
rendered at its “natural” size (using exactly one de-
vice pixel for each pixel in the image), which means
that the image has to be resized. The interpolate
argument is used to control how that resizing occurs.

By default, the interpolate argument is TRUE,
which means that what is actually drawn by R is a
linear interpolation of the pixels in the original im-
age. Setting interpolate to FALSE means that what
gets drawn is essentially a sample from the pixels in
the original image. The former case was used in Fig-
ure 3 and it produces a smoother result, while the lat-
ter case was used in Figure 4 and the result is more
“blocky.” Figure 5 shows the images from Figures 3
and 4 with their interpolation settings reversed.

> grid.raster(1:10/11, interpolate=FALSE)

> grid.raster(matrix(colors()[1:100], ncol=10))

Figure 5: The raster images from Figures 3 and 4 with
their interpolation settings reversed.

The ability to use linear interpolation provides
another advantage over the old behaviour of draw-
ing a rectangle per pixel. For example, Figure 6
shows a greyscale version of the R logo image drawn
using both the old behaviour and with the new raster
support. The latter version of the image is smoother
thanks to linear interpolation.

> download.file("http://cran.r-project.org/Rlogo.jpg",
+ "Rlogo.jpg")
> library(ReadImages)
> logo <- read.jpeg("Rlogo.jpg")

> par(mar=rep(0, 4))
> plot(logo)

> grid.raster(logo)

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859



50 CONTRIBUTED RESEARCH ARTICLES

Figure 6: The R logo drawn using the old behaviour
of drawing a small rectangle for each pixel (left) and
using the new raster support with linear interpola-
tion (right), which produces a smoother result.

In situations where the raster image represents
actual data (e.g., microarray data), it is important to
preserve each individual “pixel” of data. If an image
is viewed at a reduced size, so that there are fewer
screen pixels used to display the image than there are
pixels in the image, then some pixels in the original
image will be lost (though this is true whether the
image is rendered as pixels or as small rectangles).

What has been described so far applies equally to
the rasterImage() function and the grid.raster()
function. The next few sections look at each of these
functions separately to describe their individual fea-
tures.

The rasterImage() function

The rasterImage() function is analogous to other
low-level graphics functions, such as lines() and
rect(); it is designed to add a raster image to the cur-
rent plot.

The image is positioned by specifying the loca-
tion of the bottom-left and top-right corners of the
image in user coordinates (i.e., relative to the axis
scales in the current plot).

To provide an example, the following code sets
up a matrix of normalized values based on a mathe-
matical function (taken from the first example on the
image() help page).

> x <- y <- seq(-4*pi, 4*pi, len=27)
> r <- sqrt(outer(x^2, y^2, "+"))
> z <- cos(r^2)*exp(-r/6)
> image <- (z - min(z))/diff(range(z))
>

The following code draws a raster image from this
matrix that occupies the entire plot region (see Fig-
ure 7). Notice that some work needs to be done to
correctly align the raster cells with axis scales when
the pixel coordinates in the image represent data val-
ues.

> step <- diff(x)[1]
> xrange <- range(x) + c(-step/2, step/2)
> yrange <- range(y) + c(-step/2, step/2)

> plot(x, y, ann=FALSE,
+ xlim=xrange, ylim=yrange,
+ xaxs="i", yaxs="i")
> rasterImage(image,
+ xrange[1], yrange[1],
+ xrange[2], yrange[2],
+ interpolate=FALSE)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−10 −5 0 5 10

−
10

−
5

0
5

10

Figure 7: An image drawn from a matrix of normal-
ized values using rasterImage().

It is also possible to rotate the image (about the
bottom-left corner) via the angle argument.

To avoid distorting an image, some calculations
using functions like xinch(), yinch(), and dim() (to
get the dimensions of the image) may be required.
More sophisticated support for positioning and siz-
ing the image is provided by grid.raster().

The grid.raster() function

The grid.raster() function works like any other
grid graphical primitive; it draws a raster image
within the current grid viewport.

By default, the image is drawn as large as possible
while still respecting its native aspect ratio (Figure 3
shows an example of this behaviour). Otherwise, the
image is positioned according to the arguments x and
y (justified by just, hjust, and vjust) and sized via
width and height. If only one of width or height is
given, then the aspect ratio of the image is preserved
(and the image may extend beyond the current view-
port).

Any of x, y, width, and height can be vectors, in
which case multiple copies of the image are drawn.
For example, the following code uses grid.raster()
to draw the R logo within each bar of a lattice bar-
chart.

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 51

> x <- c(0.00, 0.40, 0.86, 0.85, 0.69, 0.48,
+ 0.54, 1.09, 1.11, 1.73, 2.05, 2.02)
> library(lattice)

> barchart(1:12 ~ x, origin=0, col="white",
+ panel=function(x, y, ...) {
+ panel.barchart(x, y, ...)
+ grid.raster(logo, x=0, width=x, y=y,
+ default.units="native",
+ just="left",
+ height=unit(2/37,
+ "npc"))
+ })

x

1:
12

1

2

3

4

5

6

7

8

9

10

11

12

0.0 0.5 1.0 1.5 2.0

Figure 8: A lattice barchart of the change in the “level
of interest in R” during 1996 (see demo(graphics))
with the R logo image used to annotate each bar
(with apologies to Edward Tufte and all of his heirs
and disciples).

In addition to grid.raster(), there is also a
rasterGrob() function to create a raster image
graphical object.

Support for raster image packages

A common source of raster images is likely to be ex-
ternal files, such as digital photos and medical scans.
A number of R packages exist to read general raster
formats, such as JPEG or TIFF files, plus there are
many packages to support more domain-specific for-
mats, such as NIFTI and ANALYZE.

Each of these packages creates its own sort of
data structure to represent the image within R, so in
order to render an image from an external file, the
data structure must be converted to something that
rasterImage() or grid.raster() can handle.

Ideally, the package will provide a method for the
as.raster() function to convert the package-specific

image data structure into a "raster" object. In the
absence of that, the simplest path is to convert the
data structure into a matrix or array, for which there
already exist as.raster() methods.

In the example that produced Figure 6, the R
logo was loaded into R using the ReadImages pack-
age, which created an "imagematrix" object called
logo. This object could be passed directly to ei-
ther rasterImage() or grid.raster() because an
"imagematrix" is also an array, so the predefined
conversion for arrays did the job.

Profiling

This section briefly demonstrates that the claimed
improvements in terms of file size and speed of ren-
dering are actually true. The following code gener-
ates a simple random test case image (see Figure 9).
The only important feature of this image is that it is
a reasonably large image (in terms of number of pix-
els).

> z <- matrix(runif(500*500), ncol=500)

Figure 9: A simple random test image.

The following code demonstrates that a PDF ver-
sion of this image is more than three times larger if
drawn using a rectangle per pixel (via the image()
function) compared to a file that is generated using
grid.raster().

> pdf("image.pdf")
> image(z, col=grey(0:99/100))
> dev.off()

> pdf("gridraster.pdf")
> grid.raster(z, interp=FALSE)
> dev.off()

> file.info("image.pdf", "gridraster.pdf")["size"]

size
image.pdf 14893004
gridraster.pdf 1511027

The next piece of code can be used to demon-
strate that rendering speed is also much slower when
drawing an image to screen as many small rectan-
gles. The timings are from a run on a CentOS Linux

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859



52 CONTRIBUTED RESEARCH ARTICLES

system with the Cairo-based X11 device. There are
likely to be significant differences to these results if
this code is run on other systems.

> system.time({
+ for (i in 1:10) {
+ image(z, col=grey(0:99/100))
+ }
+ })

user system elapsed
42.017 0.188 42.484

> system.time({
+ for (i in 1:10) {
+ grid.newpage()
+ grid.raster(z, interpolate=FALSE)
+ }
+ })

user system elapsed
2.013 0.081 2.372

This is not a completely fair comparison because
there are different amounts of input checking and
housekeeping occurring inside the image() function
and the grid.raster() function, but more detailed
profiling (with Rprof()) was used to determine that
most of the time was being spent by image() doing
the actual rendering.

Examples

This section demonstrates some possible applica-
tions of the new raster support.

The most obvious application is simply to use the
new functions wherever images are currently being
drawn as many small rectangles using a function like
image(). For example, Granovskaia et al. (2010) used
the new raster graphics support in R in the produc-
tion of gene expression profiles (see Figure 10).

Having raster images as a graphical primitive
also makes it easier to think about performing some
graphical tricks that were not necessarily obvious be-
fore. An example is gradient fills, which are not ex-
plicitly supported by the R graphics engine. The fol-
lowing code shows a simple example where the bars
of a barchart are filled with a greyscale gradient (see
Figure 11).

> barchart(1:12 ~ x, origin=0, col="white",
+ panel=function(x, y, ...) {
+ panel.barchart(x, y, ...)
+ grid.raster(t(1:10/11), x=0,
+ width=x, y=y,
+ default.units="native",
+ just="left",
+ height=unit(2/37,
+ "npc"))
+ })

x
1:

12

1

2

3

4

5

6

7

8

9

10

11

12

0.0 0.5 1.0 1.5 2.0

Figure 11: A lattice barchart of the change in
the “level of interest in R” during 1996 (see
demo(graphics)) with the a greyscale gradient used
to fill each bar (once again, begging the forgiveness
of Edward Tufte).

Another example is non-rectangular clipping op-
erations via raster “masks” (R’s graphics engine only
supports clipping to rectangular regions). The code
below is used to produce a map of Spain that is filled
with black (see Figure 12).

> library(maps)
> par(mar=rep(0, 4))
> map(region="Spain", col="black", fill=TRUE)

Having produced this image on screen, the function
grid.cap() can be used to capture the current screen
image as a raster object.

> mask <- grid.cap()

An alternative approach would be produce a PNG
file and read that in, but grid.cap() is more conve-
nient for interactive use.

The following code reads in a raster image of
the Spanish flag from an external file (using the png
package), converting the image to a "raster" object.

> library(png)
> espana <- readPNG("1000px-Flag_of_Spain.png")
> espanaRaster <- as.raster(espana)

We now have two raster images in R. The follow-
ing code trims the flag image on its right edge and
trims the map of Spain on its bottom edge so that
the two images are the same size (demonstrating that
"raster" objects can be subsetted like matrices).

> espanaRaster <- espanaRaster[, 1:dim(mask)[2]]
> mask <- mask[1:dim(espanaRaster)[1], ]

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 53
82cdc

82cdc
rotcaf ahpla

rotcaf ahpla

0

50

100

150

200
0

50

100

150

200

YJL156W−A

0

50

100

150

200
0

50

100

150

200

FAR1 SSY5

124000 126000 128000

Chr 10(a)

82cdc
82cdc

rotcaf ahpla
rotcaf ahpla

0

50

100

150

200
0

50

100

150

200

0

50

100

150

200
0

50

100

150

200

TAF2

000602000402000202

Chr 3(b)

82cdc
82cdc

rotcaf ahpla
rotcaf ahpla

0

50

100

150

200
0

50

100

150

200

TOM5 MSS18 CTF4

0

50

100

150

200
0

50

100

150

200

000208000008000897

Chr 16(c)

82cdc
82cdc

rotcaf ahpla
rotcaf ahpla

0

50

100

150

200
0

50

100

150

200

YHR140W

0

50

100

150

200
0

50

100

150

200

YHR138C SPS100 YHR139C−A

000083000873

Chr 8(d)

82cdc
82cdc

rotcaf ahpla
rotcaf ahpla

0

50

100

150

200
0

50

100

150

200

0

50

100

150

200
0

50

100

150

200

YLR049C YLR050C YLR051C

244000 246000

Chr 12(e)
CDS

CDS dubious

TF binding site

Segment boundary

0

1

2

3

4

5

6

7

log2(expression level)

Figure 10: An example of the use of raster images in an R graphic (reproduced from Figure 3 of Granovskaia
et al., 2010, which was published as an open access article by Biomed Central).

Now, we use the map as a “mask” to set all pixels
in the flag image to transparent wherever the map
image is not black (demonstrating that assigning to
subsets also works for "raster" objects).

> espanaRaster[mask != "black"] <- "transparent"

The flag image can now be used to fill a map of Spain,
as shown by the following code (see Figure 12).

> par(mar=rep(0, 4))
> map(region="Spain")
> grid.raster(espanaRaster, y=1, just="top")
> map(region="Spain", add=TRUE)

Known issues

The raster image support has been implemented for
the primary screen graphics devices that are dis-
tributed with R—Cairo (for Linux), Quartz (for Ma-
cOS X), and Windows—plus the vector file format
devices for PDF and PostScript. The screen device
support also covers support for standard raster file
formats (e.g., PNG) on each platform.

The X11 device has basic raster support, but ro-
tated images can be problematic and there is no sup-
port for transparent pixels in the image. The Win-

dows device does not support images with a differ-
ent alpha level per pixel.1

There is no support for raster images for the XFig
or PICTEX devices.

A web page on the R developer web site, http:
//developer.r-project.org/Raster/raster-RFC.
html, will be maintained to show the ongoing state
of raster support.

Summary

The R graphics engine now has native support for
rendering raster images. This will improve render-
ing speed and memory efficiency for plots that con-
tain large raster images. It also broadens the set
of graphical effects that are possible (or convenient)
with R.

Acknowledgements

Thanks to the editors and reviewers for helpful com-
ments and suggestions that have significantly im-
proved this article.

1However, Brian Ripley has added support in the development version of R.

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

http://developer.r-project.org/Raster/raster-RFC.html
http://developer.r-project.org/Raster/raster-RFC.html
http://developer.r-project.org/Raster/raster-RFC.html


54 CONTRIBUTED RESEARCH ARTICLES

Figure 12: A raster image of the Spanish flag being used as a fill pattern for a map of Spain. On the left is a map
of spain filled in black (produced by the map() function from the maps package). In the middle is a PNG image
of Spanish flag (a public domain image from Wikimedia Commons, http://en.wikipedia.org/wiki/File:
Flag_of_Spain.svg), and on the right is the result of clipping the Spanish flag image using the map as a mask.

Bibliography

R. Bivand, F. Leisch, and M. Maechler. pixmap: Bitmap
Images (“Pixel Maps”), 2009. URL http://CRAN.
R-project.org/package=pixmap. R package ver-
sion 0.4-10.

S. Chiaretti, X. Li, R. Gentleman, A. Vitale, M. Vi-
gnetti, F. Mandelli, J. Ritz, and R. Foa. Gene
expression profile of adult T-cell acute lympho-
cytic leukemia identifies distinct subsets of pa-
tients with different response to therapy and sur-
vival. Blood, 103(7):2771–2778, 2004.

P. Cock. Using R to draw a heatmap from microar-
ray data, 2010. URL http://www2.warwick.ac.uk/
fac/sci/moac/students/peter_cock/r/heatmap.

O. S. code by Richard A. Becker and A. R. W. R. ver-
sion by Ray Brownrigg Enhancements by Thomas
P Minka <surname@stat.cmu.edu>. maps: Draw
Geographical Maps, 2009. URL http://CRAN.
R-project.org/package=maps. R package version
2.1-0.

M. V. Granovskaia, L. M. Jensen, M. E. Ritchie,
J. Toedling, Y. Ning, P. Bork, W. Huber, and
L. M. Steinmetz. High-resolution transcription
atlas of the mitotic cell cycle in budding yeast.
Genome Biology, 11(3):R24, 2010. URL http://
genomebiology.com/2010/11/3/R24.

M. Loecher. ReadImages: Image Reading Module for R,
2009. URL http://CRAN.R-project.org/package=
ReadImages. R package version 0.1.3.1.

D. Sarkar. lattice: Lattice Graphics, 2010. URL http:
//CRAN.R-project.org/package=lattice. R pack-
age version 0.18-3.

Paul Murrell
Department of Statistics
The University of Auckland
Private Bag 92019, Auckland
New Zealand
paul@stat.auckland.ac.nz

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

http://en.wikipedia.org/wiki/File:Flag_of_Spain.svg
http://en.wikipedia.org/wiki/File:Flag_of_Spain.svg
http://CRAN.R-project.org/package=pixmap
http://CRAN.R-project.org/package=pixmap
http://www2.warwick.ac.uk/fac/sci/moac/students/peter_cock/r/heatmap
http://www2.warwick.ac.uk/fac/sci/moac/students/peter_cock/r/heatmap
http://CRAN.R-project.org/package=maps
http://CRAN.R-project.org/package=maps
http://genomebiology.com/2010/11/3/R24
http://genomebiology.com/2010/11/3/R24
http://CRAN.R-project.org/package=ReadImages
http://CRAN.R-project.org/package=ReadImages
http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=lattice
mailto:paul@stat.auckland.ac.nz

