
CONTRIBUTED RESEARCH ARTICLES 5

Solving Differential Equations in R
by Karline Soetaert, Thomas Petzoldt and R. Woodrow
Setzer1

Abstract Although R is still predominantly ap-
plied for statistical analysis and graphical repre-
sentation, it is rapidly becoming more suitable
for mathematical computing. One of the fields
where considerable progress has been made re-
cently is the solution of differential equations.
Here we give a brief overview of differential
equations that can now be solved by R.

Introduction

Differential equations describe exchanges of matter,
energy, information or any other quantities, often as
they vary in time and/or space. Their thorough ana-
lytical treatment forms the basis of fundamental the-
ories in mathematics and physics, and they are in-
creasingly applied in chemistry, life sciences and eco-
nomics.

Differential equations are solved by integration,
but unfortunately, for many practical applications
in science and engineering, systems of differential
equations cannot be integrated to give an analytical
solution, but rather need to be solved numerically.

Many advanced numerical algorithms that solve
differential equations are available as (open-source)
computer codes, written in programming languages
like FORTRAN or C and that are available from
repositories like GAMS (http://gams.nist.gov/) or
NETLIB (www.netlib.org).

Depending on the problem, mathematical for-
malisations may consist of ordinary differential
equations (ODE), partial differential equations
(PDE), differential algebraic equations (DAE), or de-
lay differential equations (DDE). In addition, a dis-
tinction is made between initial value problems (IVP)
and boundary value problems (BVP).

With the introduction of R-package odesolve
(Setzer, 2001), it became possible to use R (R Devel-
opment Core Team, 2009) for solving very simple ini-
tial value problems of systems of ordinary differen-
tial equations, using the lsoda algorithm of Hind-
marsh (1983) and Petzold (1983). However, many
real-life applications, including physical transport
modeling, equilibrium chemistry or the modeling of
electrical circuits, could not be solved with this pack-
age.

Since odesolve, much effort has been made to
improve R’s capabilities to handle differential equa-
tions, mostly by incorporating published and well
tested numerical codes, such that now a much more

complete repertoire of differential equations can be
numerically solved.

More specifically, the following types of differen-
tial equations can now be handled with add-on pack-
ages in R:

• Initial value problems (IVP) of ordinary differ-
ential equations (ODE), using package deSolve
(Soetaert et al., 2010b).

• Initial value differential algebraic equations
(DAE), package deSolve .

• Initial value partial differential equations
(PDE), packages deSolve and ReacTran
(Soetaert and Meysman, 2010).

• Boundary value problems (BVP) of ordinary
differential equations, using package bvpSolve
(Soetaert et al., 2010a), or ReacTran and root-
Solve (Soetaert, 2009).

• Initial value delay differential equations
(DDE), using packages deSolve or PBSddes-
olve (Couture-Beil et al., 2010).

• Stochastic differential equations (SDE), using
packages sde (Iacus, 2008) and pomp (King
et al., 2008).

In this short overview, we demonstrate how to
solve the first four types of differential equations
in R. It is beyond the scope to give an exhaustive
overview about the vast number of methods to solve
these differential equations and their theory, so the
reader is encouraged to consult one of the numer-
ous textbooks (e.g., Ascher and Petzold, 1998; Press
et al., 2007; Hairer et al., 2009; Hairer and Wanner,
2010; LeVeque, 2007, and many others).

In addition, a large number of analytical and nu-
merical methods exists for the analysis of bifurca-
tions and stability properties of deterministic sys-
tems, the efficient simulation of stochastic differen-
tial equations or the estimation of parameters. We
do not deal with these methods here.

Types of differential equations

Ordinary differential equations

Ordinary differential equations describe the change
of a state variable y as a function f of one independent
variable t (e.g., time or space), of y itself, and, option-
ally, a set of other variables p, often called parameters:

y′ =
dy
dt

= f (t,y, p)

1The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental
Protection Agency

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://gams.nist.gov/
www.netlib.org
http://cran.r-project.org/package=deSolve
http://cran.r-project.org/package=deSolve
http://cran.r-project.org/package=deSolve
http://cran.r-project.org/package=ReacTran
http://cran.r-project.org/package=bvpSolve
http://cran.r-project.org/package=ReacTran
http://cran.r-project.org/package=rootSolve
http://cran.r-project.org/package=rootSolve
http://cran.r-project.org/package=deSolve
http://cran.r-project.org/package=PBSddesolve
http://cran.r-project.org/package=PBSddesolve
http://cran.r-project.org/package=sde
http://cran.r-project.org/package=pomp

6 CONTRIBUTED RESEARCH ARTICLES

In many cases, solving differential equations re-
quires the introduction of extra conditions. In the fol-
lowing, we concentrate on the numerical treatment
of two classes of problems, namely initial value prob-
lems and boundary value problems.

Initial value problems

If the extra conditions are specified at the initial value
of the independent variable, the differential equa-
tions are called initial value problems (IVP).

There exist two main classes of algorithms to nu-
merically solve such problems, so-called Runge-Kutta
formulas and linear multistep formulas (Hairer et al.,
2009; Hairer and Wanner, 2010). The latter contains
two important families, the Adams family and the
backward differentiation formulae (BDF).

Another important distinction is between explicit
and implicit methods, where the latter methods can
solve a particular class of equations (so-called “stiff”
equations) where explicit methods have problems
with stability and efficiency. Stiffness occurs for in-
stance if a problem has components with different
rates of variation according to the independent vari-
able. Very often there will be a tradeoff between us-
ing explicit methods that require little work per inte-
gration step and implicit methods which are able to
take larger integration steps, but need (much) more
work for one step.

In R, initial value problems can be solved with
functions from package deSolve (Soetaert et al.,
2010b), which implements many solvers from ODE-
PACK (Hindmarsh, 1983), the code vode (Brown
et al., 1989), the differential algebraic equation solver
daspk (Brenan et al., 1996), all belonging to the linear
multistep methods, and comprising Adams meth-
ods as well as backward differentiation formulae.
The former methods are explicit, the latter implicit.
In addition, this package contains a de-novo imple-
mentation of a rather general Runge-Kutta solver
based on Dormand and Prince (1980); Prince and
Dormand (1981); Bogacki and Shampine (1989); Cash
and Karp (1990) and using ideas from Butcher (1987)
and Press et al. (2007). Finally, the implicit Runge-
Kutta method radau (Hairer et al., 2009) has been
added recently.

Boundary value problems

If the extra conditions are specified at different
values of the independent variable, the differen-
tial equations are called boundary value problems
(BVP). A standard textbook on this subject is Ascher
et al. (1995).

Package bvpSolve (Soetaert et al., 2010a) imple-
ments three methods to solve boundary value prob-
lems. The simplest solution method is the single
shooting method, which combines initial value prob-
lem integration with a nonlinear root finding algo-

rithm (Press et al., 2007). Two more stable solu-
tion methods implement a mono implicit Runge-
Kutta (MIRK) code, based on the FORTRAN code
twpbvpC (Cash and Mazzia, 2005), and the collocation
method, based on the FORTRAN code colnew (Bader
and Ascher, 1987). Some boundary value problems
can also be solved with functions from packages Re-
acTran and rootSolve (see below).

Partial differential equations

In contrast to ODEs where there is only one indepen-
dent variable, partial differential equations (PDE)
contain partial derivatives with respect to more than
one independent variable, for instance t (time) and
x (a spatial dimension). To distinguish this type
of equations from ODEs, the derivatives are repre-
sented with the ∂ symbol, e.g.

∂y
∂t

= f (t, x,y,
∂y
∂x

, p)

Partial differential equations can be solved by sub-
dividing one or more of the continuous independent
variables in a number of grid cells, and replacing the
derivatives by discrete, algebraic approximate equa-
tions, so-called finite differences (cf. LeVeque, 2007;
Hundsdorfer and Verwer, 2003).

For time-varying cases, it is customary to discre-
tise the spatial coordinate(s) only, while time is left in
continuous form. This is called the method-of-lines,
and in this way, one PDE is translated into a large
number of coupled ordinary differential equations,
that can be solved with the usual initial value prob-
lem solvers (cf. Hamdi et al., 2007). This applies to
parabolic PDEs such as the heat equation, and to hy-
perbolic PDEs such as the wave equation.

For time-invariant problems, usually all indepen-
dent variables are discretised, and the derivatives ap-
proximated by algebraic equations, which are solved
by root-finding techniques. This technique applies to
elliptic PDEs.

R-package ReacTran provides functions to gener-
ate finite differences on a structured grid. After that,
the resulting time-varying cases can be solved with
specially-designed functions from package deSolve,
while time-invariant cases can be solved with root-
solving methods from package rootSolve .

Differential algebraic equations

Differential-algebraic equations (DAE) contain a
mixture of differential (f) and algebraic equations
(g), the latter e.g. for maintaining mass-balance con-
ditions:

y′ = f (t,y, p)
0 = g(t,y, p)

Important for the solution of a DAE is its index.
The index of a DAE is the number of differentiations

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://cran.r-project.org/package=deSolve
http://cran.r-project.org/package=bvpSolve
http://cran.r-project.org/package=ReacTran
http://cran.r-project.org/package=ReacTran
http://cran.r-project.org/package=rootSolve
http://cran.r-project.org/package=ReacTran
http://cran.r-project.org/package=deSolve
http://cran.r-project.org/package=rootSolve

CONTRIBUTED RESEARCH ARTICLES 7

needed until a system consisting only of ODEs is ob-
tained.

Function daspk (Brenan et al., 1996) from pack-
age deSolve solves (relatively simple) DAEs of index
at most 1, while function radau (Hairer et al., 2009)
solves DAEs of index up to 3.

Implementation details

The implemented solver functions are explained by
means of the ode-function, used for the solution of
initial value problems. The interfaces to the other
solvers have an analogous definition:

ode(y, times, func, parms, method = c("lsoda",
"lsode", "lsodes", "lsodar",
"vode", "daspk", "euler", "rk4",
"ode23", "ode45", "radau", "bdf",
"bdf_d", "adams", "impAdams",
"impAdams_d"), ...)

To use this, the system of differential equations
can be defined as an R-function (func) that computes
derivatives in the ODE system (the model definition)
according to the independent variable (e.g. time t).
func can also be a function in a dynamically loaded
shared library (Soetaert et al., 2010c) and, in addition,
some solvers support also the supply of an analyti-
cally derived function of partial derivatives (Jacobian
matrix).

If func is an R-function, it must be defined as:
func <- function(t, y, parms, ...)

where t is the actual value of the independent vari-
able (e.g. the current time point in the integration),
y is the current estimate of the variables in the ODE
system, parms is the parameter vector and ... can be
used to pass additional arguments to the function.

The return value of func should be a list, whose
first element is a vector containing the derivatives
of y with respect to t, and whose next elements are
optional global values that can be recorded at each
point in times. The derivatives must be specified in
the same order as the state variables y.

Depending on the algorithm specified in argu-
ment method, numerical simulation proceeds either
exactly at the time steps specified in times, or us-
ing time steps that are independent from times and
where the output is generated by interpolation. With
the exception of method euler and several fixed-step
Runge-Kutta methods all algorithms have automatic
time stepping, which can be controlled by setting ac-
curacy requirements (see below) or by using optional
arguments like hini (initial time step), hmin (minimal
time step) and hmax (maximum time step). Specific
details, e.g. about the applied interpolation methods
can be found in the manual pages and the original
literature cited there.

Numerical accuracy

Numerical solution of a system of differential equa-
tions is an approximation and therefore prone to nu-
merical errors, originating from several sources:

1. time step and accuracy order of the solver,

2. floating point arithmetics,

3. properties of the differential system and stabil-
ity of the solution algorithm.

For methods with automatic stepsize selection,
accuracy of the computation can be adjusted us-
ing the non-negative arguments atol (absolute tol-
erance) and rtol (relative tolerance), which control
the local errors of the integration.

Like R itself, all solvers use double-precision
floating-point arithmetics according to IEEE Stan-
dard 754 (2008), which means that it can represent
numbers between approx. ±2.25 10−308 to approx.
±1.8 10308 and with 16 significant digits. It is there-
fore not advisable to set rtol below 10−16, except set-
ting it to zero with the intention to use absolute tol-
erance exclusively.

The solvers provided by the packages presented
below have proven to be quite robust in most prac-
tical cases, however users should always be aware
about the problems and limitations of numerical
methods and carefully check results for plausibil-
ity. The section “Troubleshooting” in the package vi-
gnette (Soetaert et al., 2010d) should be consulted as
a first source for solving typical problems.

Examples

An initial value ODE

Consider the famous van der Pol equation (van der
Pol and van der Mark, 1927), that describes a non-
conservative oscillator with non-linear damping and
which was originally developed for electrical cir-
cuits employing vacuum tubes. The oscillation is de-
scribed by means of a 2nd order ODE:

z′′ − µ(1− z2)z′ + z = 0

Such a system can be routinely rewritten as a system
of two 1st order ODEs, if we substitute z′′ with y′1 and
z′ with y2:

y′1 = y2

y′2 = µ · (1− y1
2) · y2 − y1

There is one parameter, µ, and two differential
variables, y1 and y2 with initial values (at t = 0):

y1(t=0)
= 2

y2(t=0)
= 0

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://cran.r-project.org/package=deSolve

8 CONTRIBUTED RESEARCH ARTICLES

The van der Pol equation is often used as a test
problem for ODE solvers, as, for large µ, its dy-
namics consists of parts where the solution changes
very slowly, alternating with regions of very sharp
changes. This “stiffness” makes the equation quite
challenging to solve.

In R, this model is implemented as a function
(vdpol) whose inputs are the current time (t), the val-
ues of the state variables (y), and the parameters (mu);
the function returns a list with as first element the
derivatives, concatenated.

vdpol <- function (t, y, mu) {
list(c(
y[2],
mu * (1 - y[1]^2) * y[2] - y[1]

))
}

After defining the initial condition of the state
variables (yini), the model is solved, and output
written at selected time points (times), using de-
Solve’s integration function ode. The default rou-
tine lsoda, which is invoked by ode automatically
switches between stiff and non-stiff methods, de-
pending on the problem (Petzold, 1983).

We run the model for a typically stiff (mu = 1000)
and nonstiff (mu = 1) situation:

library(deSolve)
yini <- c(y1 = 2, y2 = 0)
stiff <- ode(y = yini, func = vdpol,

times = 0:3000, parms = 1000)

nonstiff <- ode(y = yini, func = vdpol,
times = seq(0, 30, by = 0.01),
parms = 1)

The model returns a matrix, of class deSolve,
with in its first column the time values, followed by
the values of the state variables:

head(stiff, n = 3)

time y1 y2
[1,] 0 2.000000 0.0000000000
[2,] 1 1.999333 -0.0006670373
[3,] 2 1.998666 -0.0006674088

Figures are generated using the S3 plot method
for objects of class deSolve:

plot(stiff, type = "l", which = "y1",
lwd = 2, ylab = "y",
main = "IVP ODE, stiff")

plot(nonstiff, type = "l", which = "y1",
lwd = 2, ylab = "y",
main = "IVP ODE, nonstiff")

0 500 1000 1500 2000 2500 3000

−
2

−
1

0
1

2

IVP ODE, stiff

time

y

Figure 1: Solution of the van der Pol equation, an
initial value ordinary differential equation, stiff case,
µ = 1000.

0 5 10 15 20 25 30

−
2

−
1

0
1

2

IVP ODE, nonstiff

time

y

Figure 2: Solution of the van der Pol equation, an
initial value ordinary differential equation, non-stiff
case, µ = 1.

solver non-stiff stiff

ode23 0.37 271.19
lsoda 0.26 0.23
adams 0.13 616.13
bdf 0.15 0.22
radau 0.53 0.72

Table 1: Comparison of solvers for a stiff and a
non-stiff parametrisation of the van der Pol equation
(time in seconds, mean values of ten simulations on
an AMD AM2 X2 3000 CPU).

A comparison of timings for two explicit solvers,
the Runge-Kutta method (ode23) and the adams
method, with the implicit multistep solver (bdf,
backward differentiation formula) shows a clear ad-
vantage for the latter in the stiff case (Figure 1). The
default solver (lsoda) is not necessarily the fastest,
but shows robust behavior due to automatic stiff-
ness detection. It uses the explicit multistep Adams
method for the non-stiff case and the BDF method
for the stiff case. The accuracy is comparable for all

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://cran.r-project.org/package=deSolve
http://cran.r-project.org/package=deSolve

CONTRIBUTED RESEARCH ARTICLES 9

solvers with atol= rtol= 10−6, the default.

A boundary value ODE

The webpage of Jeff Cash (Cash, 2009) contains many
test cases, including their analytical solution (see be-
low), that BVP solvers should be able to solve. We
use equation no. 14 from this webpage as an exam-
ple:

ξy′′ − y = −(ξπ2 + 1)cos(πx)

on the interval [−1,1], and subject to the boundary
conditions:

y(x=−1) = 0

y(x=+1) = 0

The second-order equation first is rewritten as two
first-order equations:

y′1 = y2

y′2 = 1/ξ · (y1 − (ξπ2 + 1)cos(πx))

It is implemented in R as:

Prob14 <- function(x, y, xi) {
list(c(
y[2],
1/xi * (y[1] - (xi*pi*pi+1) * cos(pi*x))

))
}

With decreasing values of ξ, this problem becomes
increasingly difficult to solve. We use three val-
ues of ξ, and solve the problem with the shooting,
the MIRK and the collocation method (Ascher et al.,
1995).

Note how the initial conditions yini and the con-
ditions at the end of the integration interval yend
are specified, where NA denotes that the value is not
known. The independent variable is called x here
(rather than times in ode).

library(bvpSolve)
x <- seq(-1, 1, by = 0.01)
shoot <- bvpshoot(yini = c(0, NA),

yend = c(0, NA), x = x, parms = 0.01,
func = Prob14)

twp <- bvptwp(yini = c(0, NA), yend = c(0,
NA), x = x, parms = 0.0025,
func = Prob14)

coll <- bvpcol(yini = c(0, NA),
yend = c(0, NA), x = x, parms = 1e-04,
func = Prob14)

The numerical approximation generated by bvptwp
is very close to the analytical solution, e.g. for ξ =
0.0025:

xi <- 0.0025
analytic <- cos(pi * x) + exp((x -

1)/sqrt(xi)) + exp(-(x + 1)/sqrt(xi))
max(abs(analytic - twp[, 2]))

[1] 7.788209e-10

A similar low discrepancy (4 · 10−11) is noted for
the ξ = 0.0001 as solved by bvpcol; the shooting
method is considerably less precise (1.4 · 10−5), al-
though the same tolerance (atol = 10−8) was used
for all runs.

The plot shows how the shape of the solution
is affected by the parameter ξ, becoming more and
more steep near the boundaries, and therefore more
and more difficult to solve, as ξ gets smaller.

plot(shoot[, 1], shoot[, 2], type = "l", lwd = 2,
ylim = c(-1, 1), col = "blue",
xlab = "x", ylab = "y", main = "BVP ODE")

lines(twp[, 1], twp[, 2], col = "red", lwd = 2)
lines(coll[, 1], coll[, 2], col = "green", lwd = 2)
legend("topright", legend = c("0.01", "0.0025",
"0.0001"), col = c("blue", "red", "green"),
title = expression(xi), lwd = 2)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

BVP ODE

x

y

ξ

0.01
0.0025
0.0001

Figure 3: Solution of the BVP ODE problem, for dif-
ferent values of parameter ξ.

Differential algebraic equations

The so called “Rober problem” describes an auto-
catalytic reaction (Robertson, 1966) between three
chemical species, y1, y2 and y3. The problem can be
formulated either as an ODE (Mazzia and Magherini,
2008), or as a DAE:

y′1 = −0.04y1 + 104y2y3

y′2 = 0.04y1 − 104y2y3 − 3107y2
2

1 = y1 + y2 + y3

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

10 CONTRIBUTED RESEARCH ARTICLES

where the first two equations are differential
equations that specify the dynamics of chemical
species y1 and y2, while the third algebraic equation
ensures that the summed concentration of the three
species remains 1.

The DAE has to be specified by the residual func-
tion instead of the rates of change (as in ODEs).

r1 = −y′1 − 0.04y1 + 104y2y3

r2 = −y′2 + 0.04y1 − 104y2y3 − 3 107y2
2

r3 = −1 + y1 + y2 + y3

Implemented in R this becomes:

daefun<-function(t, y, dy, parms) {
res1 <- - dy[1] - 0.04 * y[1] +

1e4 * y[2] * y[3]
res2 <- - dy[2] + 0.04 * y[1] -

1e4 * y[2] * y[3] - 3e7 * y[2]^2
res3 <- y[1] + y[2] + y[3] - 1
list(c(res1, res2, res3),

error = as.vector(y[1] + y[2] + y[3]) - 1)
}

yini <- c(y1 = 1, y2 = 0, y3 = 0)
dyini <- c(-0.04, 0.04, 0)
times <- 10 ^ seq(-6,6,0.1)

The input arguments of function daefun are the
current time (t), the values of the state variables and
their derivatives (y, dy) and the parameters (parms).
It returns the residuals, concatenated and an output
variable, the error in the algebraic equation. The lat-
ter is added to check upon the accuracy of the results.

For DAEs solved with daspk, both the state vari-
ables and their derivatives need to be initialised (y
and dy). Here we make sure that the initial condi-
tions for y obey the algebraic constraint, while also
the initial condition of the derivatives is consistent
with the dynamics.

library(deSolve)
print(system.time(out <-daspk(y = yini,
dy = dyini, times = times, res = daefun,
parms = NULL)))

user system elapsed
0.07 0.00 0.11

An S3 plot method can be used to plot all vari-
ables at once:

plot(out, ylab = "conc.", xlab = "time",
type = "l", lwd = 2, log = "x")

mtext("IVP DAE", side = 3, outer = TRUE,
line = -1)

There is a very fast initial change in concentra-
tions, mainly due to the quick reaction between y1
and y2 and amongst y2. After that, the slow reaction
of y1 with y2 causes the system to change much more
smoothly. This is typical for stiff problems.

1e−06 1e+00 1e+06

0.
0

0.
4

0.
8

y1

time

co
nc

.

1e−06 1e+00 1e+06

0e
+

00
2e

−
05

y2

time

co
nc

.

1e−06 1e+00 1e+06

0.
0

0.
4

0.
8

y3

time

co
nc

.

1e−06 1e+00 1e+06

−
5e

−
09

−
2e

−
09

1e
−

09

error

time

co
nc

.

IVP DAE

Figure 4: Solution of the DAE problem for the sub-
stances y1,y2,y3; mass balance error: deviation of to-
tal sum from one.

Partial differential equations

In partial differential equations (PDE), the func-
tion has several independent variables (e.g. time and
depth) and contains their partial derivatives.

Many partial differential equations can be solved
by numerical approximation (finite differencing) af-
ter rewriting them as a set of ODEs (see Schiesser,
1991; LeVeque, 2007; Hundsdorfer and Verwer,
2003).

Functions tran.1D, tran.2D, and tran.3D from
R package ReacTran (Soetaert and Meysman, 2010)
implement finite difference approximations of the
diffusive-advective transport equation which, for the
1-D case, is:

− 1
Ax
·
[

∂

∂x
Ax

(
−D · ∂C

∂x

)
− ∂

∂x
(Ax · u · C)

]
Here D is the “diffusion coefficient”, u is the “advec-
tion rate”, and Ax is some property (e.g. surface area)
that depends on the independent variable, x.

It should be noted that the accuracy of the finite
difference approximations can not be specified in the
ReacTran functions. It is up to the user to make sure
that the solutions are sufficiently accurate, e.g. by in-
cluding more grid points.

One dimensional PDE

Diffusion-reaction models are a fundamental class of
models which describe how concentration of matter,
energy, information, etc. evolves in space and time
under the influence of diffusive transport and trans-
formation (Soetaert and Herman, 2009).

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://cran.r-project.org/package=ReacTran
http://cran.r-project.org/package=ReacTran

CONTRIBUTED RESEARCH ARTICLES 11

As an example, consider the 1-D diffusion-
reaction model in [0,10]:

∂C
∂t

=
∂

∂x

(
D · ∂C

∂x

)
−Q

with C the concentration, t the time, x the distance
from the origin, Q, the consumption rate, and with
boundary conditions (values at the model edges):

∂C
∂x x=0

= 0

Cx=10 = Cext

To solve this model in R, first the 1-D model Grid is
defined; it divides 10 cm (L) into 1000 boxes (N).

library(ReacTran)
Grid <- setup.grid.1D(N = 1000, L = 10)

The model equation includes a transport term,
approximated by ReacTran function tran.1D and
a consumption term (Q). The downstream bound-
ary condition, prescribed as a concentration (C.down)
needs to be specified, the zero-gradient at the up-
stream boundary is the default:

pde1D <-function(t, C, parms) {
tran <- tran.1D(C = C, D = D,

C.down = Cext, dx = Grid)$dC
list(tran - Q) # return value: rate of change

}

The model parameters are:

D <- 1 # diffusion constant
Q <- 1 # uptake rate
Cext <- 20

In a first application, the model is solved to
steady-state, which retrieves the condition where the
concentrations are invariant:

0 =
∂

∂x

(
D · ∂C

∂x

)
−Q

In R, steady-state conditions can be estimated using
functions from package rootSolve which implement
amongst others a Newton-Raphson algorithm (Press
et al., 2007). For 1-dimensional models, steady.1D is
most efficient. The initial “guess” of the steady-state
solution (y) is unimportant; here we take simply N
random numbers. Argument nspec = 1 informs the
solver that only one component is described.

Although a system of 1000 equations needs to be
solved, this takes only a fraction of a second:

library(rootSolve)
print(system.time(
std <- steady.1D(y = runif(Grid$N),
func = pde1D, parms = NULL, nspec = 1)

))

user system elapsed
0.02 0.00 0.02

The values of the state-variables (y) are plotted
against the distance, in the middle of the grid cells
(Grid$x.mid).

plot (Grid$x.mid, std$y, type = "l",
lwd = 2, main = "steady-state PDE",
xlab = "x", ylab = "C", col = "red")

0 2 4 6 8 10
−

30
−

10
0

10
20

steady−state PDE

x

C

Figure 5: Steady-state solution of the 1-D diffusion-
reaction model.

The analytical solution compares well with the
numerical approximation:

analytical <- Q/2/D*(Grid$x.mid^2 - 10^2) + Cext
max(abs(analytical - std$y))

[1] 1.250003e-05

Next the model is run dynamically for 100 time
units using deSolve function ode.1D, and starting
with a uniform concentration:

require(deSolve)
times <- seq(0, 100, by = 1)
system.time(
out <- ode.1D(y = rep(1, Grid$N),
times = times, func = pde1D,
parms = NULL, nspec = 1)

)

user system elapsed
0.61 0.02 0.63

Here, out is a matrix, whose 1st column contains
the output times, and the next columns the values of
the state variables in the different boxes; we print the
first columns of the last three rows of this matrix:

tail(out[, 1:4], n = 3)

time 1 2 3
[99,] 98 -27.55783 -27.55773 -27.55754
[100,] 99 -27.61735 -27.61725 -27.61706
[101,] 100 -27.67542 -27.67532 -27.67513

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://cran.r-project.org/package=ReacTran
http://cran.r-project.org/package=rootSolve
http://cran.r-project.org/package=deSolve

12 CONTRIBUTED RESEARCH ARTICLES

We plot the result using a blue-yellow-red color
scheme, and using deSolve’s S3 method image. Fig-
ure 6 shows that, as time proceeds, gradients develop
from the uniform distribution, until the system al-
most reaches steady-state at the end of the simula-
tion.

image(out, xlab = "time, days",
ylab = "Distance, cm",
main = "PDE", add.contour = TRUE)

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PDE

time, days

D
is

ta
nc

e,
 c

m

 −25

 −20

 −15

 −10

 −5

 0

 5

 10

 15

Figure 6: Dynamic solution of the 1-D diffusion-
reaction model.

It should be noted that the steady-state model is
effectively a boundary value problem, while the tran-
sient model is a prototype of a “parabolic” partial dif-
ferential equation (LeVeque, 2007).

Whereas R can also solve the other two main
classes of PDEs, i.e. of the “hyperbolic” and “ellip-
tic” type, it is well beyond the scope of this paper to
elaborate on that.

Discussion

Although R is still predominantly applied for statis-
tical analysis and graphical representation, it is more
and more suitable for mathematical computing, e.g.
in the field of matrix algebra (Bates and Maechler,
2008). Thanks to the differential equation solvers, R
is also emerging as a powerful environment for dy-
namic simulations (Petzoldt, 2003; Soetaert and Her-
man, 2009; Stevens, 2009).

The new package deSolve has retained all the
funtionalities of its predecessor odesolve (Setzer,
2001), such as the potential to define models both in

R code, or in compiled languages. However, com-
pared to odesolve, it includes a more complete set
of integrators, and a more extensive set of options to
tune the integration routines, it provides more com-
plete output, and has extended the applicability do-
main to include also DDEs, DAEs and PDEs.

Thanks to the DAE solvers daspk (Brenan et al.,
1996) and radau (Hairer and Wanner, 2010) it is now
also possible to model electronic circuits or equilib-
rium chemical systems. These problems are often of
index ≤ 1. In many mechanical systems, physical
constraints lead to DAEs of index up to 3, and these
more complex problems can be solved with radau.

The inclusion of BVP and PDE solvers have
opened up the application area to the field of re-
active transport modelling (Soetaert and Meysman,
2010), such that R can now be used to describe quan-
tities that change not only in time, but also along
one or more spatial axes. We use it to model how
ecosystems change along rivers, or in sediments, but
it could equally serve to model the growth of a tu-
mor in human brains, or the dispersion of toxicants
in human tissues.

The open source matrix language R has great po-
tential for dynamic modelling, and the tools cur-
rently available are suitable for solving a wide va-
riety of practical and scientific problems. The perfor-
mance is sufficient even for larger systems, especially
when models can be formulated using matrix alge-
bra or are implemented in compiled languages like
C or Fortran (Soetaert et al., 2010b). Indeed, there
is emerging interest in performing statistical analysis
on differential equations, e.g. in package nlmeODE
(Tornøe et al., 2004) for fitting non-linear mixed-
effects models using differential equations, pack-
age FME (Soetaert and Petzoldt, 2010) for sensitiv-
ity analysis, parameter estimation and Markov chain
Monte-Carlo analysis or package ccems for combina-
torially complex equilibrium model selection (Radi-
voyevitch, 2008).

However, there is ample room for extensions
and improvements. For instance, the PDE solvers
are quite memory intensive, and could benefit from
the implementation of sparse matrix solvers that are
more efficient in this respect2. In addition, the meth-
ods implemented in ReacTran handle equations de-
fined on very simple shapes only. Extending the
PDE approach to finite elements (Strang and Fix,
1973) would open up the application domain of R to
any irregular geometry. Other spatial discretisation
schemes could be added, e.g. for use in fluid dynam-
ics.

Our models are often applied to derive unknown
parameters by fitting them against data; this relies on
the availability of apt parameter fitting algorithms.

Discussion of these items is highly welcomed, in
the new special interest group about dynamic mod-

2for instance, the “preconditioned Krylov” part of the daspk method is not yet supported
3 https://stat.ethz.ch/mailman/listinfo/r-sig-dynamic-models

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://cran.r-project.org/package=deSolve
http://cran.r-project.org/package=odesolve
http://cran.r-project.org/package=odesolve
http://cran.r-project.org/package=nlmeODE
http://cran.r-project.org/package=FME
http://cran.r-project.org/package=ccems
http://cran.r-project.org/package=ReacTran
https://stat.ethz.ch/mailman/listinfo/r-sig-dynamic-models

CONTRIBUTED RESEARCH ARTICLES 13

els3 in R.

Bibliography

U. Ascher, R. Mattheij, and R. Russell. Numerical So-
lution of Boundary Value Problems for Ordinary Dif-
ferential Equations. Philadelphia, PA, 1995.

U. M. Ascher and L. R. Petzold. Computer Methods
for Ordinary Differential Equations and Differential-
Algebraic Equations. SIAM, Philadelphia, 1998.

G. Bader and U. Ascher. A new basis implementa-
tion for a mixed order boundary value ODE solver.
SIAM J. Scient. Stat. Comput., 8:483–500, 1987.

D. Bates and M. Maechler. Matrix: A Matrix Package
for R, 2008. R package version 0.999375-9.

P. Bogacki and L. Shampine. A 3(2) pair of Runge-
Kutta formulas. Appl. Math. Lett., 2:1–9, 1989.

K. E. Brenan, S. L. Campbell, and L. R. Pet-
zold. Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations. SIAM Classics in
Applied Mathematics, 1996.

P. N. Brown, G. D. Byrne, and A. C. Hindmarsh.
VODE, a variable-coefficient ode solver. SIAM J.
Sci. Stat. Comput., 10:1038–1051, 1989.

J. C. Butcher. The Numerical Analysis of Ordinary Dif-
ferential Equations, Runge-Kutta and General Linear
Methods. Wiley, Chichester, New York, 1987.

J. R. Cash. 35 Test Problems for Two Way Point Bound-
ary Value Problems, 2009. URL http://www.ma.ic.
ac.uk/~jcash/BVP_software/PROBLEMS.PDF.

J. R. Cash and A. H. Karp. A variable order
Runge-Kutta method for initial value problems
with rapidly varying right-hand sides. ACM Trans-
actions on Mathematical Software, 16:201–222, 1990.

J. R. Cash and F. Mazzia. A new mesh selection
algorithm, based on conditioning, for two-point
boundary value codes. J. Comput. Appl. Math., 184:
362–381, 2005.

A. Couture-Beil, J. T. Schnute, and R. Haigh. PB-
Sddesolve: Solver for Delay Differential Equations,
2010. R package version 1.08.11.

J. R. Dormand and P. J. Prince. A family of embed-
ded Runge-Kutta formulae. J. Comput. Appl. Math.,
6:19–26, 1980.

E. Hairer and G. Wanner. Solving Ordinary Differen-
tial Equations II: Stiff and Differential-Algebraic Prob-
lems. Second Revised Edition. Springer-Verlag, Hei-
delberg, 2010.

E. Hairer, S. P. Noørsett, and G. Wanner. Solving Ordi-
nary Differential Equations I: Nonstiff Problems. Sec-
ond Revised Edition. Springer-Verlag, Heidelberg,
2009.

S. Hamdi, W. E. Schiesser, and G. W. Griffiths.
Method of lines. Scholarpedia, 2(7):2859, 2007.

A. C. Hindmarsh. ODEPACK, a systematized collec-
tion of ODE solvers. In R. Stepleman, editor, Scien-
tific Computing, Vol. 1 of IMACS Transactions on Sci-
entific Computation, pages 55–64. IMACS / North-
Holland, Amsterdam, 1983.

W. Hundsdorfer and J. Verwer. Numerical Solution of
Time-Dependent Advection-Diffusion-Reaction Equa-
tions. Springer Series in Computational Mathematics.
Springer-Verlag, Berlin, 2003.

S. M. Iacus. sde: Simulation and Inference for Stochas-
tic Differential Equations, 2008. R package version
2.0.3.

IEEE Standard 754. Ieee standard for floating-point
arithmetic, Aug 2008.

A. A. King, E. L. Ionides, and C. M. Breto. pomp: Sta-
tistical Inference for Partially Observed Markov Pro-
cesses, 2008. R package version 0.21-3.

R. J. LeVeque. Finite Difference Methods for Ordinary
and Partial Differential Equations, Steady State and
Time Dependent Problems. SIAM, 2007.

F. Mazzia and C. Magherini. Test Set for Initial Value
Problem Solvers, release 2.4. Department of Mathe-
matics, University of Bari, Italy, 2008. URL http://
pitagora.dm.uniba.it/~testset. Report 4/2008.

L. R. Petzold. Automatic selection of methods for
solving stiff and nonstiff systems of ordinary dif-
ferential equations. SIAM J. Sci. Stat. Comput., 4:
136–148, 1983.

T. Petzoldt. R as a simulation platform in ecological
modelling. R News, 3(3):8–16, 2003.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes: The Art of Scien-
tific Computing. Cambridge University Press, 3rd
edition, 2007.

P. J. Prince and J. R. Dormand. High order embed-
ded Runge-Kutta formulae. J. Comput. Appl. Math.,
7:67–75, 1981.

R Development Core Team. R: A Language and Envi-
ronment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2009. URL
http://www.R-project.org. ISBN 3-900051-07-0.

T. Radivoyevitch. Equilibrium model selection:
dTTP induced R1 dimerization. BMC Systems Bi-
ology, 2:15, 2008.

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://www.ma.ic.ac.uk/~jcash/BVP_software/PROBLEMS.PDF
http://www.ma.ic.ac.uk/~jcash/BVP_software/PROBLEMS.PDF
http://pitagora.dm.uniba.it/~testset
http://pitagora.dm.uniba.it/~testset
http://www.R-project.org

14 CONTRIBUTED RESEARCH ARTICLES

H. H. Robertson. The solution of a set of reaction rate
equations. In J. Walsh, editor, Numerical Analysis:
An Introduction, pages 178–182. Academic Press,
London, 1966.

W. E. Schiesser. The Numerical Method of Lines: In-
tegration of Partial Differential Equations. Academic
Press, San Diego, 1991.

R. W. Setzer. The odesolve Package: Solvers for Ordi-
nary Differential Equations, 2001. R package version
0.1-1.

K. Soetaert. rootSolve: Nonlinear Root Finding, Equi-
librium and Steady-State Analysis of Ordinary Differ-
ential Equations, 2009. R package version 1.6.

K. Soetaert and P. M. J. Herman. A Practical Guide
to Ecological Modelling. Using R as a Simulation Plat-
form. Springer, 2009. ISBN 978-1-4020-8623-6.

K. Soetaert and F. Meysman. ReacTran: Reactive
Transport Modelling in 1D, 2D and 3D, 2010. R pack-
age version 1.2.

K. Soetaert and T. Petzoldt. Inverse modelling, sensi-
tivity and Monte Carlo analysis in R using package
FME. Journal of Statistical Software, 33(3):1–28, 2010.
URL http://www.jstatsoft.org/v33/i03/.

K. Soetaert, J. R. Cash, and F. Mazzia. bvpSolve:
Solvers for Boundary Value Problems of Ordinary Dif-
ferential Equations, 2010a. R package version 1.2.

K. Soetaert, T. Petzoldt, and R. W. Setzer. Solving dif-
ferential equations in R: Package deSolve. Journal
of Statistical Software, 33(9):1–25, 2010b. ISSN 1548-
7660. URL http://www.jstatsoft.org/v33/i09.

K. Soetaert, T. Petzoldt, and R. W. Setzer. R Pack-
age deSolve: Writing Code in Compiled Languages,
2010c. deSolve vignette - R package version 1.8.

K. Soetaert, T. Petzoldt, and R. W. Setzer. R Package
deSolve: Solving Initial Value Differential Equations,
2010d. deSolve vignette - R package version 1.8.

M. H. H. Stevens. A Primer of Ecology with R. Use R
Series. Springer, 2009. ISBN: 978-0-387-89881-0.

G. Strang and G. Fix. An Analysis of The Finite Element
Method. Prentice Hall, 1973.

C. W. Tornøe, H. Agersø, E. N. Jonsson, H. Mad-
sen, and H. A. Nielsen. Non-linear mixed-effects
pharmacokinetic/pharmacodynamic modelling in
nlme using differential equations. Computer Meth-
ods and Programs in Biomedicine, 76:31–40, 2004.

B. van der Pol and J. van der Mark. Frequency de-
multiplication. Nature, 120:363–364, 1927.

Karline Soetaert
Netherlands Institute of Ecology
K.Soetaert@nioo.knaw.nl

Thomas Petzoldt
Technische Universität Dresden
Thomas.Petzoldt@tu-dresden.de

R. Woodrow Setzer
US Environmental Protection Agency
Setzer.Woodrow@epamail.epa.gov

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://www.jstatsoft.org/v33/i03/
http://www.jstatsoft.org/v33/i09
mailto:K.Soetaert@nioo.knaw.nl
mailto:Thomas.Petzoldt@tu-dresden.de
mailto:Setzer.Woodrow@epamail.epa.gov

CONTRIBUTED RESEARCH ARTICLES 15

Table 2: Summary of the main functions that solve differential equations.

Function Package Description

ode deSolve IVP of ODEs, full, banded or arbitrary sparse Jacobian
ode.1D deSolve IVP of ODEs resulting from 1-D reaction-transport problems
ode.2D deSolve IVP of ODEs resulting from 2-D reaction-transport problems
ode.3D deSolve IVP of ODEs resulting from 3-D reaction-transport problems
daspk deSolve IVP of DAEs of index ≤ 1, full or banded Jacobian
radau deSolve IVP of DAEs of index ≤ 3, full or banded Jacobian
dde PBSddesolve IVP of delay differential equations, based on Runge-Kutta formu-

lae
dede deSolve IVP of delay differential equations, based on Adams and BDF for-

mulae
bvpshoot bvpSolve BVP of ODEs; the shooting method
bvptwp bvpSolve BVP of ODEs; mono-implicit Runge-Kutta formula
bvpcol bvpSolve BVP of ODEs; collocation formula
steady rootSolve steady-state of ODEs; full, banded or arbitrary sparse Jacobian
steady.1D rootSolve steady-state of ODEs resulting from 1-D reaction-transport prob-

lems
steady.2D rootSolve steady-state of ODEs resulting from 2-D reaction-transport prob-

lems
steady.3D rootSolve steady-state of ODEs resulting from 3-D reaction-transport prob-

lems
tran.1D ReacTran numerical approximation of 1-D advective-diffusive transport

problems
tran.2D ReacTran numerical approximation of 2-D advective-diffusive transport

problems
tran.3D ReacTran numerical approximation of 3-D advective-diffusive transport

problems

Table 3: Summary of the auxilliary functions that solve differential equations.

Function Package Description

lsoda deSolve IVP ODEs, full or banded Jacobian, automatic choice for stiff or
non-stiff method

lsodar deSolve same as lsoda, but includes a root-solving procedure.
lsode, vode deSolve IVP ODEs, full or banded Jacobian, user specifies if stiff or non-

stiff
lsodes deSolve IVP ODEs, arbitrary sparse Jacobian, stiff method
rk4, rk, euler deSolve IVP ODEs, using Runge-Kutta and Euler methods
zvode deSolve IVP ODEs, same as vode, but for complex variables
runsteady rootSolve steady-state ODEs by dynamically running, full or banded Jaco-

bian
stode rootSolve steady-state ODEs by Newton-Raphson method, full or banded

Jacobian
stodes rootSolve steady-state ODEs by Newton-Raphson method, arbitrary sparse

Jacobian

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

