
CONTRIBUTED RESEARCH ARTICLES 61

The RecordLinkage Package: Detecting
Errors in Data
by Murat Sariyar and Andreas Borg

Abstract Record linkage deals with detecting
homonyms and mainly synonyms in data. The
package RecordLinkage provides means to per-
form and evaluate different record linkage meth-
ods. A stochastic framework is implemented
which calculates weights through an EM al-
gorithm. The determination of the necessary
thresholds in this model can be achieved by tools
of extreme value theory. Furthermore, machine
learning methods are utilized, including deci-
sion trees (rpart), bootstrap aggregating (bag-
ging), ada boost (ada), neural nets (nnet) and
support vector machines (svm). The generation
of record pairs and comparison patterns from
single data items are provided as well. Com-
parison patterns can be chosen to be binary or
based on some string metrics. In order to reduce
computation time and memory usage, blocking
can be used. Future development will concen-
trate on additional and refined methods, perfor-
mance improvements and input/output facili-
ties needed for real-world application.

Introduction

When dealing with data from different sources that
stem from and represent one realm, it is likely that
homonym and especially synonym errors occur. In
order to reduce these errors either different data files
are linked or one data file is deduplicated. Record
linkage is the task of reducing such errors through
a vast number of different methods. These methods
can be divided into two classes. One class consists of
stochastic methods based on the framework of Fel-
legi and Sunter (1969). The other class comprises
non-stochastic methods from the machine learning
context. Methods from both classes need preliminary
steps in order to generate data pairs from single data
items. These record pairs are then transformed into
comparison patterns. An exemplary comparison pat-
tern is of the form γ = (1,0,1,0,1,0,0,0) where only
agreement and non-agreement of eight attributes
are evaluated. This transformation and other pre-
processing steps are described in the next section.
Stochastic record linkage is primarily defined by the
assumption of a probability model concerning prob-
abilities of agreement of attributes conditional on the
matching status of the underlying data pair. Machine
learning methods reduce the problem of record link-

age to a classification problem.
The package RecordLinkage is designed to facil-

itate the application of record linkage in R. The idea
for this package evolved whilst using R for record
linkage of data stemming from a German cancer reg-
istry. An evaluation of different methods thereafter
lead to a large number of functions and data struc-
tures. The organisation of these functions and data
structures as an R package eases the evaluation of
record linkage methods and facilitates the applica-
tion of record linkage to different data sets. These
are the main goals behind the package described in
this paper.

RecordLinkage is available from our project
home page on R-Forge1 as well as from CRAN.

Data preprocessing

First steps in data preprocessing usually include
standardization of data, for example conversion of
accented characters or enforcing a well-defined date
format. However, such methods are not included in
RecordLinkage. In the package, the user is respon-
sible for providing the data in the form the package
expects it.

Data must reside in a data frame where each
row holds one record and columns represent at-
tributes. The package includes two example data
sets, RLdata500 and RLdata10000, which differ in the
number of records.2 The following example shows
the structure of RLdata500.

> library(RecordLinkage)
> data(RLdata500)
> RLdata500[1:5,]

fname_c1 fname_c2 lname_c1 lname_c2 by bm bd
1 CARSTEN <NA> MEIER <NA> 1949 7 22
2 GERD <NA> BAUER <NA> 1968 7 27
3 ROBERT <NA> HARTMANN <NA> 1930 4 30
4 STEFAN <NA> WOLFF <NA> 1957 9 2
5 RALF <NA> KRUEGER <NA> 1966 1 13

The fields in this data set are first name and fam-
ily name, each split into a first and second compo-
nent, and the date of birth, with separate components
for day, month and year.

Column names are reused for comparison pat-
terns (see below). If a record identifier other than
the row number is desired, it should be included as
a separate column instead of using row.names.

1http://r-forge.r-project.org/projects/recordlinkage/
2The data were created randomly from German name statistics and have no relation to existing persons.

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://cran.r-project.org/package=RecordLinkage
http://r-forge.r-project.org/projects/recordlinkage/

62 CONTRIBUTED RESEARCH ARTICLES

Building comparison patterns

We include two functions for the creation of compari-
son patterns from data sets: compare.dedup for dedu-
plication of a single data set and compare.linkage for
linking two data sets together. In the case of three
or more data sets, iteratively two of them are linked
and replaced by the data set which is the result of the
linkage. This leads to n− 1 linkages for n data sets.

Both compare functions return an object of class
"RecLinkData" which includes, among other compo-
nents, the resulting comparison patterns as compo-
nent pairs. In the following, such an object will be
referred to as a data object .

> rpairs <- compare.dedup(RLdata500,
+ identity = identity.RLdata500)
> rpairs$pairs[1:5,]

id1 id2 fname_c1 fname_c2 lname_c1 lname_c2 by
1 1 2 0 NA 0 NA 0
2 1 3 0 NA 0 NA 0
3 1 4 0 NA 0 NA 0
4 1 5 0 NA 0 NA 0
5 1 6 0 NA 0 NA 0
bm bd is_match

1 1 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 1 0 0

The printed slice of datapairs$pairs shows the
structure of comparison patterns: The row numbers
of the underlying records are followed by their cor-
responding comparison vector. Note that a missing
value in either of two records results in a NA in the
corresponding column of the comparison pattern.
The classification procedures described in the follow-
ing sections treat these NAs as zeros by default. If
this behaviour is undesired, further preprocessing by
the user is necessary. Column is_match denotes the
true matching status of a pair (0 means non-match,
1 means match). It can be set externally by using
the optional argument identity of the compare func-
tions.3 This allows evaluation of record linkage pro-
cedures based on labeled data as a gold standard.

Blocking

Blocking is the reduction of the amount of data pairs
through focusing on specified agreement patterns.

Unrestricted comparison yields comparison pat-
terns for all possible data pairs: n(n− 1)/2 for dedu-
plication of n records, n ·m for linking two data sets
with n and m records. Blocking is a common strategy
to reduce computation time and memory consump-
tion by only comparing records with equal values for

a subset of attributes, called blocking fields. A block-
ing specification can be supplied to the compare func-
tions via the argument blockfld. The most simple
specification is a vector of column indices denoting
the attributes on which two records must agree (pos-
sibly after applying a phonetic code, see below) to
appear in the output. Combining several such spec-
ifications in a list leads to the union of the sets ob-
tained by the individual application of the specifica-
tions. In the following example, two records must
agree in either the first component of the first name
or the complete date of birth to appear in the result-
ing set of comparison patterns.

> rpairs <- compare.dedup(RLdata500,
+ blockfld = list(1, 5:7),
+ identity = identity.RLdata500)
> rpairs$pairs[c(1:3, 1203:1204),]

id1 id2 fname_c1 fname_c2 lname_c1 lname_c2
1 17 119 1 NA 0 NA
2 61 106 1 NA 0 NA
3 61 175 1 NA 0 NA
1203 37 72 0 NA 0 NA
1204 44 339 0 NA 0 NA

by bm bd is_match
1 0 0 0 0
2 0 0 1 0
3 0 0 1 0
1203 1 1 1 1
1204 1 1 1 0

Phonetic functions and string comparators

Phonetic functions and string comparators are sim-
ilar, yet distinct approaches to dealing with ty-
pographical errors in character strings. A pho-
netic function maps words in a natural language to
strings representing their pronunciation (the pho-
netic code). The aim is that words which sound
similar enough get the same phonetic code. Obvi-
ously one needs different phonetic functions for dif-
ferent languages.4 Package RecordLinkage includes
the popular Soundex algorithm for English and a
German language algorithm introduced by Michael
(1999), implemented through functions soundex and
pho_h respectively. The argument phonetic of the
compare functions controls the application of the
phonetic function, which defaults to pho_h and can
be set by argument phonfun. Typically, an integer
vector is supplied which specifies the indices of the
data columns for which a phonetic code is to be com-
puted before comparison with other records. Note
that the phonetic function, if requested, is applied
before the blocking process, therefore the equality
restrictions imposed by blocking apply to phonetic
codes. Consider, for example, a call with arguments
phonetic = 1:4 and blockfld = 1. In this case, the

3See documentation for compare.* for details.
4For this reason, problems may arise when records in one file stem from individuals from different nationalities.

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 63

actual blocking criterion is agreement on phonetic
code of the first attribute.

String comparators measure the similarity be-
tween strings, usually with a similarity measure in
the range [0,1], where 0 denotes maximal dissimilar-
ity and 1 equality. This allows ‘fuzzy’ comparison
patterns as displayed in the following example.5

> rpairsfuzzy <- compare.dedup(RLdata500,
+ blockfld = c(5, 6), strcmp = TRUE)
> rpairsfuzzy$pairs[1:5,]

id1 id2 fname_c1 fname_c2 lname_c1 lname_c2
1 357 414 1.0000000 NA 1.0000000 NA
2 389 449 0.6428571 NA 0.0000000 NA
3 103 211 0.7833333 NA 0.5333333 NA
4 6 328 0.4365079 NA 0.4444444 NA
5 37 72 0.9750000 NA 0.9500000 NA
by bm bd is_match

1 1 1 0.7000000 NA
2 1 1 0.6666667 NA
3 1 1 0.0000000 NA
4 1 1 0.0000000 NA
5 1 1 1.0000000 NA

Controlling the application of string comparators
works in the same manner as for phonetic functions,
via the arguments strcmp and strcmpfun. The al-
gorithms by Winkler (1990) (function jarowinkler)
and one based on the edit distance by Leven-
shtein (function levenshteinSim) are included in
the package. String comparison and phonetic en-
coding cannot be used simultaneously on one at-
tribute but can be applied to different attributes
within one set of comparison patterns, as in the
function call compare.dedup(RLdata500, phonetic
= 1:4, strcmp = 5:7). We refer to the reference
manual for further information.

Stochastic record linkage

Theory

Stochastic record linkage relies on the assumption of
conditional probabilities concerning comparison pat-
terns. The probabilities of the random vector γ =
(γ1, ...,γn) having value γ̃ = (γ̃1, ..., γ̃n) conditional
on the match status Z are defined by

uγ̃ = P(γ = γ̃ | Z = 0), mγ̃ = P(γ = γ̃ | Z = 1),

where Z = 0 stands for a non-match and Z = 1 for a
match. In the Fellegi-Sunter model these probabili-
ties are used to compute weights of the form

wγ̃ = log
(

P(γ = γ̃ | Z = 1)
P(γ = γ̃ | Z = 0)

)
.

These weights are used in order to discern between
matches and non-matches.

There are several ways of estimating the proba-
bilities involved in this model. In RecordLinkage an
EM algorithm is used as a promising method for re-
liable estimations. The backbone of this algorithm
is described by Haber (1984). We extended and im-
plemented this algorithm in C in order to improve
its performance. Without a proper stochastic model,
the probabilities have to be fixed manually. If only
weights are to be computed without relying on the
assumptions of probabilities, then simple methods
like the one implemented by Contiero et al. (2005)
are suitable. Further details of these methods are also
found in Sariyar et al. (2009).

Weight calculation based on the EM algorithm
and the method by Contiero et al. (2005) are im-
plemented by functions emWeights and epiWeights.
Both take a data set object as argument and return a
copy with the calculated weights stored in additional
components. Calling summary on the result shows the
distribution of weights in histogram style. This infor-
mation can be helpful for determining classification
thresholds, e.g. by identifying clusters of record pairs
with high or low weights as non-matches or matches
respectively.

> rpairs <- epiWeights(rpairs)
> summary(rpairs)

Deduplication Data Set

500 records
1221 record pairs

49 matches
1172 non-matches
0 pairs with unknown status

Weight distribution:

[0.15,0.2] (0.2,0.25] (0.25,0.3] (0.3,0.35]
1011 0 89 30

(0.35,0.4] (0.4,0.45] (0.45,0.5] (0.5,0.55]
29 8 7 1

(0.55,0.6] (0.6,0.65] (0.65,0.7] (0.7,0.75]
14 19 10 2

(0.75,0.8]
1

Discernment between matches and non-matches
is achieved by means of computing weight thresh-
olds. In the Fellegi-Sunter model, thresholds are
computed via specification of destined (and feasi-
ble) values of homonym and synonym errors so that
the amount of doubtable cases is minimized. In
the package three auspicious variants for determin-
ing the threshold are implemented. The most com-
mon practice is to determine thresholds by cleri-
cal review, either a single threshold which separates
links and non-links or separate thresholds for links

5Blocking is used in this example for the purpose of reducing computation time.

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

64 CONTRIBUTED RESEARCH ARTICLES

and non-links which define a range of doubtable
cases between them. RecordLinkage supports this
by the function getPairs, which shows record pairs
aligned in two consecutive lines along with their
weight (see the following example). When appropri-
ate thresholds are found, classification is performed
with emClassify or epiClassify, which take as argu-
ments the data set object and one or two classification
thresholds.

> tail(getPairs(rpairs, 0.6, 0.5))

Weight id fname_c1 fname_c2 lname_c1
25 0.5924569 266 KARIN <NA> HORN
26 437 KARINW <NA> HORN
27 0.5924569 395 GISOELA <NA> BECK
28 404 GISELA <NA> BECK
29 0.5067013 388 ANDREA <NA> WEBER
30 408 ANDREA <NA> SCHMIDT

lname_c2 by bm bd
25 <NA> 2002 6 4
26 <NA> 2002 6 4
27 <NA> 2003 4 16
28 <NA> 2003 4 16
29 <NA> 1945 5 20
30 <NA> 1945 2 20

> result <- epiClassify(rpairs, 0.55)

The result is an object of class "RecLinkResult",
which differs from the data object in having a com-
ponent prediction that represents the classification
result. Calling summary on such an object shows error
measures and a table comparing true and predicted
matching status.6

> summary(result)

Deduplication Data Set

[...]

46 links detected
0 possible links detected
1175 non-links detected

alpha error: 0.061224
beta error: 0.000000
accuracy: 0.997543

Classification table:

classification
true status N P L

FALSE 1172 0 0
TRUE 3 0 46

One alternative to threshold determination by
clerical review needs labeled training data on which
the threshold for the whole data set is computed by
minimizing the number of wrongly classified pairs.

After weights have been calculated for these data,
the classification threshold can be obtained by call-
ing optimalThreshold on the training data object.

The other alternative for determining thresholds
is an unsupervised procedure based on concepts of
extreme value statistics. A mean excess plot is gener-
ated on which the interval representing the relevant
area for false match rates is to be determined. Based
on the assumption that this interval corresponds to a
fat tail of the empirical weights distribution, the gen-
eralized Pareto distribution is used to compute the
threshold discerning matches and non-matches. De-
tails of this latter procedure will be found in a forth-
coming paper which is still under review.

A function getParetoThreshold is included in
the package which encapsulates the necessary steps.
Called on a data set for which weights have been
calculated, it brings up a mean excess plot of the
weights. By clicking on the graph, the boundaries of
the weight range in which matches and non-matches
presumably overlap are selected. This area is usu-
ally discernible as a relatively long, approximately
linear section in the middle region of the mean ex-
cess graph. This corresponds to the assumption that
the generalized Pareto distribution is applicable. The
data sets in the package provide only weak support
for this assumption, especially because of their lim-
ited size. Figure 1 shows an example plot where the
appropriate limits are displayed as dashed lines. The
return value is a threshold which can be used with
emClassify or epiClassify, depending on the type
of weights. We refer to the package vignette Classify-
ing record pairs by means of Extreme Value Theory for an
example application.

−60 −40 −20 0 20

0
5

10
15

20
25

30

Threshold

M
R

L

Figure 1: Example mean excess plot of weights with
selected limits.

6True status is denoted by TRUE and FALSE, classification result by "N" (non-link),"L" (link) and "P" (possible link). To save space, some
output is omitted, marked by ‘[...]’ in this and some of the following examples

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 65

Machine learning methods

Record Linkage can be understood as a classification
problem with comparison pattern γ as input and the
matching status variable Z as output. With this view,
a vast range of machine learning procedures, such
as clustering methods, decision trees or support vec-
tor machines, becomes available for deduplicating or
linking personal data. The following describes the
application of machine learning to record linkage as
it is implemented in the package.

Unsupervised classification

Unsupervised classification methods are attractive as
they eliminate the necessity to provide representa-
tive training data, which can turn out to be a time-
consuming task, involving either manual review or
the finding of an adequate mechanism to generate
artificial data. Motivated by this advantage, unsu-
pervised clustering is incorporated into the package
by means of the classifyUnsup function, which uses
k-means clustering via kmeans or bagged clustering
via bclust from package e1071 (Dimitriadou et al.,
2009). It must be noted that the quality of the re-
sulting classification varies significantly for different
data sets and poor results can occur. The following
example shows the invocation of k-means clustering
and the resulting classification.

> summary(classifyUnsup(rpairs, method = "kmeans"))

Deduplication Data Set

[...]

62 links detected
0 possible links detected
1159 non-links detected

alpha error: 0.000000
beta error: 0.011092
accuracy: 0.989353

Classification table:

classification
true status N P L

FALSE 1159 0 13
TRUE 0 0 49

Supervised classification

Training data for calibrating supervised classification
methods can be obtained in a variety of ways in the
context of this package. An important distinction is
to be made between cases where additional training
data with known true identity status are available
and those where a training set has to be determined
from the data on which linkage is performed. In the

former case, one can provide a distinct set of records
which are compared by one of the compare functions
(see above) to obtain a training set. In the latter case,
two approaches exist, first through what we call a
minimal training set , second through unsupervised
classification.

To construct a minimal training set, compari-
son patterns in a data set are grouped according
to their configuration of agreement values. For ev-
ery present configuration, one representative is ran-
domly chosen. Naturally, this procedure is only fea-
sible for binary comparisons (agreement or disagree-
ment coded as 1 and 0).

In our experience, the use of supervised classifi-
cation with a minimal training set can yield results
similar to those that might be achieved with ran-
domly sampled training sets of a substantially larger
size. Their small magnitude allows minimal training
sets to be classified by clerical review with manage-
able effort.

Two functions in RecordLinkage facilitate the use
of minimal training sets. A set with the defined prop-
erties can be assembled by calling getMinimalTrain
on a data object. Calling editMatch on the result
opens an edit window which prints each record pair
on two consecutive lines and allows for setting its
matching status (as displayed in Figure 2). In the fol-
lowing example, 17 comparison patterns are selected
randomly as a minimal training set.

> minTrain <- getMinimalTrain(rpairs)
> minTrain <- editMatch(minTrain)

Figure 2: Edit window for clerical review

The second approach to obtaining training data
when no labelled data are available, provided by
function genSamples, uses unsupervised clustering
in a manner similar to classifyUnsup. Instead of di-
rectly classifying all the data, a subset is extracted
and classified by bagged clustering. It can then be
used to calibrate a supervised classifier which is ul-
timately applied to the remaining set. Arguments to
genSamples are the original data set, the number of
non-matches to appear in the training set and the

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://cran.r-project.org/package=e1071

66 CONTRIBUTED RESEARCH ARTICLES

desired ratio of matches to non-matches. For ex-
ample, the call genSamples(datapairs, num.non =
200, des.mprop = 0.1) tries to build a training set
with 200 non-matches and 20 matches. The return
value is a list with two disjoint sets named train and
valid.

In an scenario where different record linkage ap-
proaches are evaluated, it is useful to split a data
set into training and validation sets. Such a split
can be performed by splitData. The return value
is a list with components train and valid as in the
case of genSamples. The most basic usage is to spec-
ify a fraction of patterns that is drawn randomly
as a training set using the argument prop. For ex-
ample, splitData(rpairs, prop = 0.1) selects one
tenth of the data for training. By setting keep.mprop
= TRUE it can be enforced that the original ratio of
matches to non-matches is retained in the resulting
sets. Another possibility is to set the desired num-
ber of non-matches and the match ratio through ar-
guments num.non and mprop as with genSamples().

Classification functions

All classification methods share two interface
functions: trainSupv for calibrating a classifier,
classifySupv for classifying new data. At least two
arguments are required for trainSupv, the data set
on which to train and a string representing the clas-
sification method. Currently, the supported methods
are:

"rpart" Recursive partitioning trees, provided by
package rpart (Therneau et al., 2009).

"bagging" Bagging of decision trees, provided by
package ipred (Peters and Hothorn, 2009).

"ada" Stochastic boosting, provided by package ada
(Culp et al., 2006).

"svm" Support vector machines, provided by pack-
age e1071 (Dimitriadou et al., 2009).

"nnet" Single-hidden-layer neural networks, pro-
vided by package e1071 (ibid.).

Of the further arguments, use.pred is notewor-
thy. Setting it to TRUE causes trainSupv to treat the
result of a previous prediction as outcome variable.
This has to be used if the training data stem from a
run of genSamples. Another application is to obtain a
training set by classifying a fraction of the data set by
the process of weight calculation and manual setting
of thresholds. In order to train a supervised classifier
with this training set, one would have to set use.pred
= TRUE.

The return value is an object of class
"RecLinkClassif". Classification of new data is car-
ried out by passing it and a "RecLinkData" object to

classifySupv. The following example shows the ap-
plication of bagging based on the minimal training
set minTrain from the example above.

> model <- trainSupv(minTrain, method = "bagging")
> result <- classifySupv(model, newdata = rpairs)
> summary(result)

Deduplication Data Set

[...]

53 links detected
0 possible links detected
1168 non-links detected

alpha error: 0.020408
beta error: 0.004266
accuracy: 0.995086

Classification table:

classification
true status N P L

FALSE 1167 0 5
TRUE 1 0 48

Discussion

During its development, the functionalities of the
package RecordLinkage have already been used by
the authors for a period of about one year, individual
functions even before that. Thanks to this process of
parallel development and usage, bugs were detected
early and new requirements that became apparent
were accounted for by implementing new features.
Therefore, the package is generally in a usable state.
However, there is still potential for future improve-
ments, mainly regarding data handling and perfor-
mance.

RecordLinkage was developed mainly as a tool
for empirical evaluation of record linkage methods,
i.e. the main focus of our research was on the perfor-
mance of particular record linkage methods. Only
in one case, the evaluation of a deterministic record
linkage procedure used in a German cancer registry,
were we actually interested in detecting duplicates.
Development of the package followed the needs
of this detection process. But many other desir-
able improvements concerning data processing and
input/ouput facilities are needed for a real-world
record linkage process, such as:

• The possibility to use a database connection for
data input and output.

• Improved print facilities for clerical review,
such as highlighting of agreement or disagree-
ment in record pairs.

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://cran.r-project.org/package=rpart
http://cran.r-project.org/package=ipred
http://cran.r-project.org/package=ada
http://cran.r-project.org/package=e1071
http://cran.r-project.org/package=e1071

CONTRIBUTED RESEARCH ARTICLES 67

• The possibility to output a deduplicated data
set based on the matching result. This is not
a trivial task as it requires choosing the most
likely record from each group of matching
items which can be accomplished by means of
linear programming.

Another important future task is performance en-
hancement. When handling large data sets of about
106 or more record pairs, high memory consumption
often leads to errors or destabilizes the computer sys-
tem R is run on. We are currently working on code
changes to avoid unnecessary copying of objects and
plan to incorporate these in future releases. Another
possibility, which needs further evaluation, is to use
more sophisticated ways of storing data, such as a
database or one of the various R packages for large
data sets. The current disadvantage of R concerning
performance and memory can be compensated by an
elaborated blocking strategy.

As a general improvement, it is intended to sup-
port the usage of algorithms not considered in the
package through a generic interface for supervised
or unsupervised classification.

We are aware that RecordLinkage lacks an im-
portant subtask of record linkage, the standardiza-
tion of records. However, this is an area that itself
would need extensive research efforts. Moreover, the
appropriate procedures depend heavily on the data
to be linked. It is therefore left to the users to tai-
lor standardization methods fitting the requirements
of their data. We refer to R’s capabilities to handle
regular expressions and to the CRAN task view Nat-
uralLanguageProcessing7.

Bibliography

P. Contiero et al. The Epilink record linkage software.
Methods Inf Med., 44(1):66–71, 2005.

M. Culp, K. Johnson, and G. Michailidis. ada:
Performs boosting algorithms for a binary response,
2006. URL http://www.stat.lsa.umich.edu/
~culpm/math/ada/img.html. R package version
2.0-1.

E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and
A. Weingessel. e1071: Misc Functions of the Depart-
ment of Statistics (e1071), TU Wien, 2009. URL http:

//CRAN.R-project.org/package=e1071. R pack-
age version 1.5-19.

I. Fellegi and A. Sunter. A theory for record link-
age. Journal of the American Statistical Association,
64:1183–1210, 1969.

E. Haber. AS207: Fitting a general log-linear model.
Applied Statistics, 33:358–362, 1984.

J. Michael. Doppelgänger gesucht – ein Programm
für kontextsensitive phonetische Textumwand-
lung. c’t, 17(25):252–261, 1999. URL http://www.
heise.de/ct/ftp/99/25/252/.

A. Peters and T. Hothorn. ipred: Improved Predictors,
2009. URL http://CRAN.R-project.org/package=
ipred. R package version 0.8-7.

M. Sariyar, A. Borg, and K. Pommerening. Evalua-
tion of record linkage methods for iterative inser-
tions. Methods Inf Med., 48(5):429–437, 2009.

T. M. Therneau, B. Atkinson, and B. Ripley (R port).
rpart: Recursive Partitioning, 2009. URL http://
CRAN.R-project.org/package=rpart. R package
version 3.1-45.

W. E. Winkler. String comparator metrics and
enhanced decision rules in the Fellegi-Sunter
model of record linkage. In Proceedings of the
Section on Survey Research Methods, American
Statistical Association, pages 354–369, 1990. URL
www.amstat.org/sections/srms/proceedings/
papers/1990_056.pdf.

Murat Sariyar
Institute of Medical Biostatistics, Epidemiology and Infor-
matics
Mainz
Germany
sariyar@imbei.uni-mainz.de

Andreas Borg
Institute of Medical Biostatistics, Epidemiology and Infor-
matics
Mainz
Germany
borg@imbei.uni-mainz.de

7http://cran.r-project.org/view=NaturalLanguageProcessing

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://CRAN.R-project.org/view=NaturalLanguageProcessing
http://CRAN.R-project.org/view=NaturalLanguageProcessing
http://www.stat.lsa.umich.edu/~culpm/math/ada/img.html
http://www.stat.lsa.umich.edu/~culpm/math/ada/img.html
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071
http://www.heise.de/ct/ftp/99/25/252/
http://www.heise.de/ct/ftp/99/25/252/
http://CRAN.R-project.org/package=ipred
http://CRAN.R-project.org/package=ipred
http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=rpart
www.amstat.org/sections/srms/proceedings/papers/1990_056.pdf
www.amstat.org/sections/srms/proceedings/papers/1990_056.pdf
mailto:sariyar@imbei.uni-mainz.de
mailto:borg@imbei.uni-mainz.de
http://cran.r-project.org/view=NaturalLanguageProcessing

