
60 FROM THE CORE

The New R Help System
by Duncan Murdoch and Simon Urbanek

Abstract: Version 2.10.0 of R includes new code
for processing ‘.Rd’ help files. There are some
changes to what is allowed, and some new capa-
bilities and opportunities.

One of the reasons for the success of R is that pack-
age authors are required to write documentation in a
structured format for all of the functions and datasets
that they make visible in their packages. This means
users can count on asking for help on a topic "foo"
using either the function call help("foo"), or one of
the shortcuts: entering ?foo in the console, or finding
help through the menu system in one of the graph-
ical user interfaces. The quality of the help is im-
proved by the structured format: the quality assur-
ance tools such as R CMD check can report inconsis-
tencies between the documentation and the code, un-
documented objects, and other errors, and it is possi-
ble to build indices automatically and do other com-
putations on the text.

The original help system was motivated by the
help system for S (Becker et al., 1988), and the look of
the input files was loosely based on LATEX (Lamport,
1986). Perl (Wall et al., 2000) scripts transformed the
input files into formatted text to display in the R con-
sole, LATEX input files to be processed into Postscript
or PDF documents, and HTML files to be viewed in
a web browser.

These Perl scripts were hard to maintain, and in-
consistencies crept into the system: different output
formats could inadvertently contain different con-
tent. Moreover, since the scripts could only look for
fairly simple patterns, the quality control software
had trouble detecting many errors which would slip
through and result in rendering errors in the help
pages, unknown to the author.

At the useR! 2008 meeting in Dortmund, one of
us (Murdoch) was convinced to write a full-fledged
parser for ‘.Rd’ files. This made it into the 2.9.0 re-
lease in April, 2009, but only as part of the quality
control system: and many package authors started
receiving warning and error messages. Over the
summer since then several members of the R Core
team (including especially Brian Ripley and Kurt
Hornik, as well as the authors of this article) have re-
fined that parser, and written renderers to replace the
Perl scripts, so that now all help processing is done
in R code. We have also added an HTTP server to
R to construct and deliver the help pages to a web
browser on demand, rather than relying on static
copies of the pages.

This article describes the components of the new
help system.

The Parser

In the new help system, the transformation from an
‘.Rd’ file to a ‘.tex’, ‘.html’ or ‘.txt’ file is a two-step pro-
cess. The parse_Rd() function in the tools package
converts the ‘.Rd’ file to an R object with class "Rd"
representing its structure, and the renderers convert
that to the target form.

Rd Syntax

The syntax of ‘.Rd’ files handled by the parser is in
some ways more complicated than the syntax of R it-
self. It contains LATEX-like markup, R-like sections of
code, and occasionally code from other languages as
well. Figure 1 shows a near-minimal example.
% Comments in .Rd files start with percent signs
\name{foo}
\alias{footopic}
\title{Title to Display at the Top of the Page}
\description{
A short description of what is being documented.

}
\usage{
foo(arg = "\n")

}
\arguments{
\item{arg}{the first argument.}

}
\seealso{
\code{\link{bar}}.

}
\examples{
call foo then \link{bar} in a loop
for (i in 1:10) {
foo(1)
bar(2)

}
}
\keyword{example}

Figure 1: The contents of a simplified ‘.Rd’ file.

Like LATEX, a comment is introduced by a per-
cent sign (%), and markup is prefixed with a back-
slash (\). Braces ({}) are used to delimit the argu-
ments to markup macros. However, notice that in
the \examples{} section, we follow R syntax: braces
are used to mark the body of the for loop.

In fact, there are three different modes that the
parser uses when parsing the ‘.Rd’ file. It starts out
in a LATEX-like mode, where backslashes and braces
are used to indicate macros and their arguments.
Some macros (e.g. \usage{} or \examples{}) switch
into R-like mode: macros are still recognized, but
braces are used in the code, and don’t necessarily in-
dicate the arguments to macros. The third mode is
mostly verbatim: it doesn’t recognize any macros at

The R Journal Vol. 1/2, December 2009 ISSN 2073-4859

FROM THE CORE 61

all. It is used in a few macros like \alias{}, where
we might want to set an alias involving backslashes,
for instance. There are further complications in that
strings in quotes in R-like mode (e.g. "\n") are han-
dled slightly differently again, so the newline is not
treated as a macro, and R comments in R-like mode
have their own special rules.

A good question to ask is why the syntax is so
complicated. Largely this is a legacy of the ear-
lier versions of the help system. Because there was
no parsing, just a single-step transformation to the
output format, special characters were handled on
a case-by-case basis, and not always consistently.
When writing the new parser, we wanted to min-
imize the number of previously correct ‘.Rd’ files
which triggered errors or were rendered incorrectly.
The three-mode syntax described above is the result.

The syntax rules are fully described in Murdoch
(2009), but most users should not need to know all
the details. In almost all cases, the syntax is designed
so that typing what you mean will give the result you
want. A quick summary is as follows:

• The characters \, %, { and } have special mean-
ing almost everywhere in an ‘.Rd’ file.

• The backslash \ is used both to introduce
macros and to escape the special meaning of
the other characters.

• Unless escaped, the percent % character starts
a comment. The comment is included in the
parsed object, but the renderers will not dis-
play it to the user.

• Unless escaped, the braces { and } delimit the
arguments to macros. In R-like or verbatim
text, they need not be escaped if they balance.

• End of line (newline) characters mark the end
of pieces of text, even when following a % com-
ment.

• Other whitespace (spaces, tabs, etc.) is in-
cluded as part of the text, though the renderers
may remove or change it.

• In R-like text, quoted strings follow R rules:
the delimiters must balance, and braces within
need not. Only a few macros are recognized in
R strings: \var and those related to links. Other
uses of a backslash, e.g. "\n" are taken to be
part of the string.

• In R-like text, R comments using # are taken to
be part of the text.

• The directives #ifdef ... #endif and
#ifndef ... #endif are treated as markup, so
other macros must be completely nested within
them or completely contain them.

There are more than 60 macros recognized by the
parser, from \acronym to \verb. Each of them takes
from 0 to 3 arguments in braces, and some of them
take optional arguments in brackets ([]). A complete
list is given in Murdoch (2009), and their interpreta-
tion is described in the Writing R Extensions manual
(R Development Core Team, 2009).

Rd Objects

The output of the parse_Rd() function is a list with
class "Rd". Currently this is mostly intended for in-
ternal use, and the only methods defined for that
class are as.character.Rd() and print.Rd(). The
elements of the list are the top level components of
the ‘.Rd’ file. Each element has an "RdTag" attribute
labelling it as one of the three kinds of text, or a com-
ment, or as a macro. There is a (currently internal)
function in the tools package to display all of the
tags. For example, using the help file from Figure
1, we get the following results.

> library(tools)
> parsed <- parse_Rd("foo.Rd")
> tools:::RdTags(parsed)

[1] "COMMENT" "TEXT"
[3] "\\name" "TEXT"
[5] "\\alias" "TEXT"
[7] "\\title" "TEXT"
[9] "\\description" "TEXT"

[11] "\\usage" "TEXT"
[13] "\\arguments" "TEXT"
[15] "\\seealso" "TEXT"
[17] "\\examples" "TEXT"
[19] "\\keyword" "TEXT"

The TEXT components between each section are sim-
ply the newlines that separate them, and can be ig-
nored. The components labelled with macro names
are themselves lists, with the same structure. For ex-
ample, component 15 is the \seealso section, and it
has this structure

> tools:::RdTags(parsed[[15]])

[1] "TEXT" "TEXT" "\\code" "TEXT"

and the \code macro within it is a list, etc. Most users
will have no need to look at "Rd" objects at this level,
but this is crucial for the internal quality assurance
code, and for the renderers described in the next sec-
tion. As R 2.10.0 is the first release where these ob-
jects are being fully used, there have been a number
of changes since they were introduced in R 2.9.0, and
there may still be further changes in future releases:
so users of the internal structure should pay close
attention to changes taking place on the R develop-
ment trunk.

The R Journal Vol. 1/2, December 2009 ISSN 2073-4859

62 FROM THE CORE

Incompatibilities

One of the design goals in writing the new parser
was to accept valid ‘.Rd’ files from previous versions.
This was mostly achieved, but there are some incom-
patibilities arising from the new syntax rules given
above. A full description is included in Murdoch
(2009); here we point out some highlights.

In previous versions, the \code{}macro was used
for both R code and code in other languages. How-
ever, the R code needs R-like parsing rules, and other
languages often need verbatim parsing. Since R code
is more commonly used, it was decided to restrict
\code{} to handle R code and introduce \verb{} for
the rest. At present, this mainly affects text contain-
ing quote marks, which must balance in a \code{}
block as in R code. At some point in the future legal
R syntax might be more strictly enforced.

The handling of #ifdef/#ifndef and the rules for
escaping characters are now more regular.

Error Handling

One final feature of parse_Rd() is worth mention-
ing. We make a great effort to report errors in ‘.Rd’
files at the point they occur, and because we now
fully parse the file, we have detected a large num-
ber of errors that previously went unnoticed. In most
cases these errors resulted in help pages that were
not being displayed as the author intended, but we
don’t want to suddenly make hundreds of packages
on CRAN unusable. The compromise we reached is
as follows: when the parser detects an error in a ‘.Rd’
file, it reports an error or warning, and attempts to
recover, possibly skipping some text. The package
installation code will report these messages, but will
not abort an installation because of them. Authors
should not ignore these messages: in most cases,
they indicate that something will not be displayed
as intended.

The Renderers

As of version 2.10.0, R will present help in three dif-
ferent formats: text, HTML, and PDF manuals. Pre-
vious versions also included compiled HTML on the
Windows platform; that format is no longer sup-
ported, due partly to security concerns (Microsoft
Support, 2007), partly to the fact that it will not sup-
port dynamic help, and partly to reduce the sup-
port load on the R Core team. The displayed type
is now controlled by a single option rather than a
collection of options: for example, to see HTML
help, use options(help_type="html") rather than
options(htmlhelp=TRUE).

The three formats are produced by the functions
Rd2txt(), Rd2HTML() and Rd2latex() in the tools
package. The main purpose of these functions is to

convert the parsed "Rd" objects to the output for-
mat; they also accept ‘.Rd’ files as input, calling
parse_Rd() if necessary.

There are two other related functions in tools.
The Rd2ex() function extracts example code from a
help page, and checkRd() performs checks on the
contents of an "Rd" object. The latter checks for the
presence of all necessary sections (at most once in
some cases, e.g. for the \title{}). It is used to report
errors and warnings during R CMD check processing
of a package.

One big change from earlier versions of R is that
these functions do their rendering on request. In ear-
lier versions, all help processing was done when the
package was installed, and the text files, HTML files,
and PDF manuals were installed with the package.
Now the "Rd" objects are produced at install time,
but the human-readable displays are produced at the
time the user asks to see them. As described be-
low, this means that help pages can include informa-
tion computed just before the page is displayed. Not
much use is made of this feature in 2.10.0, but the ca-
pability is there, and we expect to make more use of
it in later releases of base R, and to see it being used
in user-contributed packages even sooner.

Another advantage of “just-in-time” rendering is
that cross-package links between help pages are han-
dled better. In previous versions of R, the syntax

\link[stats]{weighted.mean}

meant that the HTML renderer should link to the
file named ‘weighted.mean.html’ in the stats package,
whereas

\link{weighted.mean}

meant to link to whatever file corresponded to the
alias weighted.mean in the current package. This dif-
ference was necessary because the installer needed to
build links at install time, but it could not necessar-
ily look up topics outside of the current package (the
target package might not be installed yet). Unfortu-
nately, the inconsistency was a frequent source of er-
rors, even in the base packages. Now that calculation
can be delayed until rendering time, R 2.10.0 sup-
ports both kinds of linking. For back-compatibility, it
gives priority to linking by filename, but if that fails,
it will try to link by topic.

The HTTP server

In order to produce the help display in a web
browser when the user requests, it was necessary to
add an HTTP server to R.

At a high level the goal of the server is to accept
connections from browsers, convert each HTTP re-
quest on a TCP/IP port into a call to an R function
and deliver the result back to the browser. Since the
main use is to provide a dynamic help system based

The R Journal Vol. 1/2, December 2009 ISSN 2073-4859

FROM THE CORE 63

on the current state of the R session (such as pack-
ages loaded, methods defined, . . .), it is important
that the function is evaluated in the current R session.
This makes the implementation more tricky as we
could not use regular socket connections and write
the server entirely in R.

Instead, a general asynchronous server infras-
tructure had to be created which handles multiple
simultaneous connections and is yet able to syn-
chronize them into synchronous calls of the R eval-
uator. The processing of each connection is dis-
patched to an asynchronous worker which keeps
track of the state of the connection, collects the en-
tire HTTP request and issues a message to R to pro-
cess the request when complete. The request is pro-
cessed by calling the httpd function with two ar-
guments: path from the URL and query parame-
ters. The query parameters are parsed from the
query string into a named string vector and de-
coded, so for example text=foo%3f&n=10 is passed
as c(text="foo?", n="10").

The httpd() function is expected to produce out-
put in the form of a list that is meaningful to the
browser. The list’s elements are interpreted in se-
quence as follows: payload, content-type, headers and
status code. Only the payload is mandatory so the re-
turned list can have one to four elements. The con-
tent type specifies the MIME-type of the payload (de-
fault is “text/html”), headers specify optional HTTP
response headers as a named character vector (with-
out CR/LF) and the error code is an integer speci-
fying the HTTP status code. The payload must be
either a string vector of length one or a raw vec-
tor. If the payload element is a string vector named
“file” then the string is interpreted as an absolute
path to a file to be sent as the payload (useful for
static content). Otherwise the payload is sent to the
browser in verbatim. The httpd function is evaluated
in a tryCatch block such that errors are returned as
a string from the function, resulting in a 500 status
code (internal server error). An example of a simple
httpd function is listed below:

httpd <- function(path, query, ...) {
if (is.null(query)) query <- character(0)
pkg <- query['package']
if (is.na(pkg)) pkg <- 'base'
fn <- system.file(path, package = pkg)
if (file.exists(fn)) return(list(file = fn))
list(paste("Cannot find", path),

"text/html", NULL, 404L)
}

The signature of the httpd function should in-
clude . . . for future extensions. The above function
checks for the package query parameter (defaulting
to “base”) then attempts to find a file given by path
in that package. If successful the content of the file is
served (as default text/html), otherwise a simple er-
ror page is created with a 404 HTTP status code “not

found”.
Although the HTTP server is quite general and

could be used for many purposes, R 2.10.0 has the
limitation of one server per R instance which makes
it currently dedicated to the dynamic help. The user
may set options("help.ports") to control which IP
port is used by the server. If not set, the port is as-
signed randomly to avoid collisions between differ-
ent R instances.

New Features in ‘.Rd’ Files

R Expressions in Help

As mentioned previously, help output is now being
produced just before display, and it is possible for the
author to customize the display at that time. This
is supported by the new macro \Sexpr{}, which is
modelled after the macro of the same name in cur-
rent versions of Sweave (Leisch, 2002).

Unlike Sweave, in ‘.Rd’ files the \Sexpr{} macro
takes optional arguments to control how it is dis-
played, and when it is calculated. For example,
\Sexpr[results=verbatim,echo=TRUE]{x<-10;x^2}
will result in a display similar to
> x<-10;x^2

[1] 100

when the help page is displayed.
Some of the options are similar to Sweave, but

not always with the same defaults. For example
the options (with defaults) eval=TRUE, echo=FALSE,
keep.source=TRUE, and strip.white=TRUE do more
or less the same things as in Sweave. That is, they
control whether the code is evaluated, echoed, refor-
matted, and stripped of white space before display,
respectively.

There are also options that are different from
Sweave. The results option has the following pos-
sible values:

results=text (the default) The result should be in-
serted into the text at the current point.

results=verbatim Print the result as if it was exe-
cuted at the console.

results=hide No result should be shown.

results=rd The result should be parsed as if it was
‘.Rd’ file code.

The stage option controls when the code is run.
It has the following values:

stage=build The code should be run when building
the package. This option is not currently im-
plemented, but is allowed; the code will not be
executed in R 2.10.0.

stage=install (the default) The code is run when
installing the package from source, or when
building a binary version of the package.

The R Journal Vol. 1/2, December 2009 ISSN 2073-4859

64 FROM THE CORE

stage=render The code is run just before the page is
rendered.

The \Sexpr{} macro enables a lot of improve-
ments to the help system. It will allow help pages
to include examples with results inline, so that they
can be mixed with descriptions, making explana-
tions clearer. The just-in-time rendering will also al-
low help pages to produce information customized
to a particular session: for example, it would be help-
ful to link from a page about a class to methods
which mention it in their signatures. It will also be
possible to prototype new types of summary pages
or indices for the whole help system, without requir-
ing changes to base R.

Conditional markup

The help files have supported #ifdef/#ifndef con-
ditionals for years, to allow selective inclusion of
text depending on the computing platform where
R is run. With version 2.10.0 more general condi-
tional selection has been added: the \if{}{} and
\ifelse{}{}{} macros. The first argument to these
describes the condition, the second is code to be in-
cluded at render time if that condition holds, and the
third if it does not.

The most common use of the conditionals is fore-
seen to be to select displays depending on the out-
put format, to extend the idea of the \eqn and \deqn
macros from previous versions. To support this use,
the condition is expressed as a comma-separated list
of formats, chosen from example, html, latex, text,
TRUE and FALSE. If the current output format or TRUE
is in the list, the condition is satisfied. The logi-
cals would normally be the result of evaluating an
\Sexpr{} expression, so general run-time conditions
are possible.

Verbatim output

Two new macros have been added to support out-
put of literal text. The \verb{} macro parses its ar-
gument as verbatim text, and the renderers output
it as parsed, inserting whatever escapes and conver-
sions are necessary so that it renders the same in all
formats. The \out{} macro works at a lower level.
It also parses its argument as verbatim text, but the
renderers output it in raw form, without any process-
ing. It would almost certainly be used in combina-
tion with \if or \ifelse. For example, to output a
Greek letter alpha, the markup

\ifelse{html}{\out{α}}{
\eqn{\alpha}{alpha}}

could be used: this will output α when pro-
ducing HTML and \alpha when producing LATEX,
both of which will render as α; it will output alpha
when producing text.

The Future

One of the development guidelines for R is that we
don’t introduce many new features in patch releases,
so R 2.10.1 is not likely to differ much from what is
described above. However, we would expect small
changes to the rendering of help pages as the render-
ers become more polished.

For version 2.11.0 or later, we would expect some
of the following to be implemented. The order of pre-
sentation is not necessarily the order in which they
will appear, and some may never appear.

• The \Sexpr{} macro will likely develop in sev-
eral ways:

– We will likely add in the processing
of stage=build macros when the R CMD
build code is rewritten in R.

– We will likely change the prompt(),
package.skeleton() and related func-
tions to make use of \Sexpr{} macros, e.g.
to display the version of a package, or to
list the classes supporting a method, etc.

– We will make information about the
run-time environment available to the
\Sexpr{} code, so that it can tailor its be-
haviour to the context in which it is being
run.

– We would expect users to develop con-
tributed packages to provide convenient
functions to use in \Sexpr{} macros.
Some of these may need changes to base
R.

– We would like to allow figures to be in-
serted into help displays.

• The quality control checks will continue to
evolve, as we notice common errors and add
code to checkRd() to detect them. There is al-
ready support for spell checking of ‘.Rd’ files in
the aspell() function.

• The ‘.Rd’ format is very idiosyncratic, and not
many tools exist outside of R for working with
it. There may be an advantage to switching
to a different input format (e.g. one based on
XML) in order to make use of more standard
tools. Such a change would require conversion
of the thousands of existing help pages already
in ‘.Rd’ format; the new parser may enable au-
tomatic translation if anyone wants to explore
this possibility.

• The HTTP server used in the help system is
quite general, but is currently limited to serv-
ing R help pages. It may be extended to allow
more general use in the future.

The R Journal Vol. 1/2, December 2009 ISSN 2073-4859

FROM THE CORE 65

Changing to the new help system has already
helped to diagnose hundreds of errors in help pages
that slipped by in the previous version, and diagnos-
tic messages are more informative than they were.
As the \Sexpr{} macro is used in core R and by pack-
age writers, we will see better help than ever before,
and the HTTP server will open up many other possi-
bilities for R developers.

Bibliography

R. A. Becker, J. M. Chambers, and A. R. Wilks. The
New S Language. Wadsworth, Pacific Grove, Cali-
fornia, 1988.

L. Lamport. LATEX: A Document Preparation System.
Addison-Wesley, Reading, Massachusetts, 1986.

F. Leisch. Sweave: Dynamic generation of statistical
reports using literate data analysis. In W. Härdle
and B. Rönz, editors, Compstat 2002 — Proceedings
in Computational Statistics, pages 575–580. Physica
Verlag, Heidelberg, 2002. URL http://www.stat.
uni-muenchen.de/~leisch/Sweave. ISBN 3-7908-
1517-9.

Microsoft Support. Ms05-026: A vulnerability in
html help could allow remote code execution,
2007. Retrieved from http://support.microsoft.
com/kb/896358 on November 5, 2009.

D. Murdoch. Parsing Rd files. 2009. URL http:
//developer.r-project.org/parseRd.pdf.

R Development Core Team. Writing R Extensions,
2009. Manual included with R version 2.10.0.

L. Wall, T. Christiansen, and J. Orwant. Programming
Perl. O’Reilly Media, third edition, 2000.

Duncan Murdoch
Dept. of Statistical and Actuarial Sciences
University of Western Ontario
London, Ontario, Canada
murdoch@stats.uwo.ca

Simon Urbanek
AT&T Labs – Statistics Research
Florham Park, NJ, USA
urbanek@research.att.com

The R Journal Vol. 1/2, December 2009 ISSN 2073-4859

http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://support.microsoft.com/kb/896358
http://support.microsoft.com/kb/896358
http://developer.r-project.org/parseRd.pdf
http://developer.r-project.org/parseRd.pdf
mailto:murdoch@stats.uwo.ca
mailto:urbanek@research.att.com

