
54 CONTRIBUTED RESEARCH ARTICLES

Easier Parallel Computing in R with
snowfall and sfCluster
by Jochen Knaus, Christine Porzelius, Harald Binder and
Guido Schwarzer

Many statistical analysis tasks in areas such as bioin-
formatics are computationally very intensive, while
lots of them rely on embarrassingly parallel compu-
tations (Grama et al., 2003). Multiple computers or
even multiple processor cores on standard desktop
computers, which are widespread nowadays, can
easily contribute to faster analyses.

R itself does not allow parallel execution. There
are some existing solutions for R to distribute calcu-
lations over many computers — a cluster — for ex-
ample Rmpi, rpvm, snow, nws or papply. However
these solutions require the user to setup and manage
the cluster on his own and therefore deeper knowl-
edge about cluster computing itself is needed. From
our experience this is a barrier for lots of R users, who
basically use it as a tool for statistical computing.

Parallel computing has several pitfalls. A single
program can easily affect a complete computing in-
frastructure on maloperation such as allocating too
many CPUs or RAM leaving no resources for other
users and their processes, or degrading the perfor-
mance of one or more individual machines. Another
problem is the difficulty of keeping track of what is
going on in the cluster, which is sometimes hard if
the program fails for some reason on a slave.

We developed the management tool sfCluster
and the corresponding R package snowfall, which
are designed to make parallel programming easier
and more flexible. sfCluster completely hides the
setup and handling of clusters from the user and
monitors the execution of all parallel programs for
problems affecting machines and the cluster. To-
gether with snowfall it allows the use of parallel
computing in R without further knowledge of clus-
ter implementation and configuration.

snowfall

The R package snowfall is built as an extended ab-
straction layer above the well established snow pack-
age by L. Tierney, A. J. Rossini, N. Li and H. Sev-
cikova (Rossini et al., 2007). Note this is not a techni-
cal layer, but an enhancement in useablity. snowfall
can use all networking types implemented in snow,
which are socket, MPI, PVM and NetWorkSpaces.

snowfall is also usable on its own (without
sfCluster), which makes it handy on single multicore
machines, for development or for distribution inside
packages.

The design goal was to make parallel computing

accessible to R programmers without further general
computing knowledge. The Application Program-
ming Interface (API) of snowfall is similar to snow
and indeed snow functions can be called directly. So
porting of existing snow programs is very simple.

The main snowfall features are as follows:

• All cluster functions and snow wrappers in-
clude extended error handling with stopping
on error, which makes it easier to find improper
behaviour for users without deeper knowledge
of clusters.

• In addition to snow functions, there are several
functions for common tasks in parallel comput-
ing. For example functions for loading pack-
ages and sources in the cluster and exchanging
variables between cluster nodes are present, as
well as helpers for saving intermediate results
during calculation.

• Cluster settings can be controlled with com-
mand line arguments. Users do not have to
change their R scripts to switch between se-
quential or parallel execution, or to change the
number of cores or type of clusters used.

• Connector to sfCluster: Used with sfCluster,
configuration does not have to be done on ini-
tialisation as all values are taken from the user-
given sfCluster settings.

• All functions work in sequential execution, too,
i.e. without a cluster. This is useful for develop-
ment and distribution of packages using snow-
fall. Switching between sequential and parallel
execution does not require code changes inside
the parallel program (and can be changed on
initialisation).

Like snow, snowfall basically uses list functions
for parallelisation. Calculations are distributed on
slaves for different list elements. This is directly ap-
plicable to any data parallel problem, for example
bootstrapping or cross-validation can be represented
with this approach (other types of parallelisation can
also be used, but probably with more effort).

Generally, a cluster constitutes single machines,
called nodes , which are chosen out of a set of all ma-
chines usable as nodes, called the universe . The cal-
culation is started on a master node, which spawns
worker R processes (sometimes also called slaves).
A CPU is a single calculation unit of which modern
computers may have more than one.

The R Journal Vol. 1/1, May 2009 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 55

library(snowfall)
1. Initialisation of snowfall.
(if used with sfCluster, just call sfInit())
sfInit(parallel=TRUE, cpus=4, type="SOCK")

2. Loading data.
require(mvna)
data(sir.adm)

3. Wrapper, which can be parallelised.
wrapper <- function(idx) {
Output progress in worker logfile
cat("Current index: ", idx, "\n")
index <- sample(1:nrow(sir.adm), replace=TRUE)
temp <- sir.adm[index,]
fit <- crr(temp$time, temp$status, temp$pneu)
return(fit$coef)

}

4. Exporting needed data and loading required
packages on workers.
sfExport("sir.adm")
sfLibrary(cmprsk)

5. Start network random number generator
(as "sample" is using random numbers).
sfClusterSetupRNG()

6. Distribute calculation
result <- sfLapply(1:1000, wrapper)

Result is always in list form.
mean(unlist(result))

7. Stop snowfall
sfStop()

Figure 1: Example bootstrap using snowfall.

For most basic programs, the parallelisation fol-
lows the workflow of the example in Figure 1.

1. Initialisation. Call sfInit with parameters if
not using sfCluster or without parameters if
used with sfCluster. Parameters are used to
switch between parallel or sequential execution
(argument parallel, default FALSE) and the
number of CPUs wanted (argument cpus with
numerical value, in sequential mode always ‘1’,
in parallel mode the default is ‘2’). Used with
sfCluster, these parameters are taken from the
sfCluster settings.

2. Load the data and prepare the data needed in
the parallel calculations (for example generat-
ing data for a simulation study).

3. Wrap parallel code into a wrapper function

(function wrapper in the example), callable by
an R list function.

4. Export objects needed in the parallel calcu-
lation (e.g., sir.adm) to cluster nodes. It is
also necessary to load required packages on all
workers. Exporting objects can reduce the total
amount of data transmitted. If there are only a
few objects needed in the parallel function, you
can export them implicitly using additional ar-
guments in the wrapper function and specify-
ing them in the parallel call (e.g. sfLapply).

5. Optional step: start a network random num-
ber generator. Such random number genera-
tors ensure that nodes produce independent se-
quences of random numbers. The sequences,
and hence results relying on random numbers,
are reproducible provided that the same num-
ber of workers process the same sequence of
tasks.

6. Distribute the calculation to the cluster by us-
ing a parallel list function (sfLapply in the
example). This function distributes calls of
wrapper to workers (which usually means in-
dex 1 to index n is called on CPU 1 to CPU n
respectively. These calls are then executed in
parallel. If the list is longer than the amount
of CPUs, index n + 1 is scheduled on CPU 1
again 1). That also means all used data inside
the wrapper function must be exported first, to
have them existing on any node (see point 2).

7. Stop cluster via sfStop() (If used with
sfCluster this is not stopping the cluster itself,
but allows reinitialisation with sfInit).

Probably the most irritating thing in the example
is the export of the data frame. On the provided type
of cluster computing, the source program runs only
on the master first of all. Local variables and objects
remain on the master, so workers do not automati-
cally have access to them. All data, functions and
packages needed for the parallel calculation have to
be transfered to the workers’ processes first. Export
means objects are instantiated on the slaves. Unlike
snow’s export function, local variables can be ex-
ported, too. As a further addition, all variables can
be exported or removed from the worker processes.2

Basic networking parameters (like execution
mode and the number of CPUs on each machine)
can be set on the command line, as seen in Fig-
ure 2. Arguments provided in sfInit() will over-
ride the command line arguments. For example,
a script that always uses MPI clusters might in-
clude sfInit(type="MPI"). This mechanism can be

1If calls to the wrapper function take different times, as with search problems, or you have computers with different speeds, most likely
you will want to use a load balanced version, like sfClusterApplyLB, which dynamically re-schedules calls of wrapper to CPUs which
have finished their previous job.

2There are more elaborate ways to integrate data transfer, e.g. NetWorkSpaces, but from our experience, snowfall’s exporting functions
are enough for most common needs.

The R Journal Vol. 1/1, May 2009 ISSN 2073-4859

56 CONTRIBUTED RESEARCH ARTICLES

Start a socket cluster on local machine using 3 processors
R CMD BATCH myParPrg.R --args --parallel --cpus=3

Start a socket cluster with 5 cores (3 on localhost, 2 on machine "other")
R --args --parallel --hosts=localhost:3,other:2 < myParPrg.R

Start using MPI with 5 cores on R interactive shell.
R --args --parallel --type=MPI --cpus=5

Figure 2: Examples for snowfall configuration using the command line.

used in R scripts using snowfall, as a connector to
sfCluster, or as a binding to other workload and man-
agement tools.

In all current parallel computing solutions inter-
mediate results are lost if the cluster dies, perhaps
due to a shutdown or crash of one of the used ma-
chines. snowfall offers a function which saves all
available parts of results to disc and reloads them on
a restored run. Indeed it does not save each finished
part, but any number of CPUs parts (for example:
Working on a list with 100 segments on a 5 CPU clus-
ter, 20 result steps are saved). This function cannot
prevent a loss of results, but can greatly save time on
long running clusters. As a side effect this can also
be used to realise a kind of “dynamic” resource allo-
cation: just stop and restart with restoring results on
a differently sized cluster.

Note that the state of the RNG is not saved in
the current version of snowfall. Users wishing to
use random numbers need to implement customized
save and restore functions, or use pre-calculated ran-
dom numbers.

sfCluster

sfCluster is a Unix commandline tool which is built
to handle cluster setup, monitoring and shutdown
automatically and therefore hides these tasks from
the user. This is done as safely as possible enabling
cluster computing even for inexperienced users. Us-
ing snowfall as the R frontend, users can change re-
source settings without changing their R program.
sfCluster is written in Perl, using only Open Source
tools.

On the backend, sfCluster is currently built upon
MPI, using the LAM implementation (Burns et al.,
1994), which is available on most common Unix dis-
tributions.

Basically, a cluster is defined by two resources:
CPU and memory. The monitoring of memory usage
is very important, as a machine is practically unus-
able for high performance purposes if it is running
out of physical memory and starts to swap memory
on the hard disk. sfCluster is able to probe memory
usage of a program automatically (by running it in
sequential mode for a certain time) or to set the up-
per bound to a user-given value.

The resource allocation can be widely configured:
Even partial usage of a specific machine is possible
(for example on a machine with 4 CPUs, which is
used for other purposes as well, it is possible to allow
only e.g. 2 cores for usage in clusters and sfCluster
ensures that no more than 2 CPUs are used by par-
allel computing on this machine). The restriction of
usage can leave calculation resources for other tasks,
e.g. if a computer is used for other calculations or
perhaps a computing pool for students is used for
cluster programs, leaving enough CPU power for the
users of those machines.

sfCluster checks the cluster universe to find ma-
chines with free resources to start the program (with
the desired amount of resources — or less, if the
requested resources are not available). These ma-
chines, or better, parts of these machines, are built
into a new cluster, which belongs to the new pro-
gram. This is done via LAM sessions, so each pro-
gram has its own independent LAM cluster.

Optionally sfCluster can keep track of resource
usage during runtime and can stop cluster programs
if they exceed their given memory usage, machines
start to swap, or similar events. On any run, all
spawned R worker processes are detected and on
shut down it is ensured that all of them are killed,
even if LAM itself is not closed/shut down correctly.

The complete workflow of sfCluster is shown in
Figure 3.

An additional mechanism for resource adminis-
tration is offered through user groups, which divide
the cluster universe into “subuniverses”. This can
be used to preserve specific machines for specific
users. For example, users can be divided in two
groups, one able to use the whole universe, the other
only specific machines or a subset of the universe.
This feature was introduced, because we intercon-
nect the machine pools from two institutes to one
universe, where some scientists can use all machines,
and some only the machines from their institute.

sfCluster features three main parallel execution
modes. All of these setup and start a cluster for the
program as described, run R and once the program
has finished, shutdown the cluster. The batch- and
monitoring mode shuts down the cluster on inter-
ruption from the user (using keys Ctrl-C on most
Unix systems).

The R Journal Vol. 1/1, May 2009 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 57

Figure 3: Workflow of sfCluster.

1. Parallel batchmode: Parallel counterpart to R
CMD BATCH. Called using sfCluster -b or by
the optionally installed R CMD par.

2. Interactive R shell (sfCluster -i or R CMD
parint).

3. Monitoring mode (sfCluster -m or R CMD
parmon): Behaves similarly to batchmode, but
features a process monitor for workers, ac-
cess to worker logfiles, system output and de-
bugging and runtime messages. The visuali-
sation in the terminal is done using Ncurses.
For an example output see Figure 4: A clus-
ter with 9 worker processes (marked SL) and
one master process (marked MA) are running
on five machines. Each machine has a tab
with logfiles marked by the name of the node,
e.g. knecht4. For each process, it’s process
identification number (PID), the node it is run-
ning on, its memory usage and state (like run-
ning, sleeping, dead etc.) is shown at the top.
The System tab contains system messages from
sfCluster; the R output on the master is shown
in tab R-Master.

Besides the parallel execution modes, the sequen-
tial mode can be chosen, which works in all cases,
even without an installed or running cluster environ-
ment, i.e. also on Windows systems or as part of a
package build on snowfall. On execution in sequen-
tial mode, snowfall is forced to run in non-parallel
mode.

Besides choosing the amount of required CPUs,
users can specify several options on starting
sfCluster. These contain for example the R version,
the nice level of the slaves, activating the sending of
emails after finish or failure and many more.

Administration

sfCluster includes features to get information about
current running clusters and free resources on the
cluster universe (see Figure 5 for an example). This
can help users to get an overview of what is cur-
rently happening on the cluster machines and of the
resources available for starting their own programs.
Also detailed information about clusters, with all
process PIDs, memory use and runtime of single pro-
cesses can be printed, which is useful for administra-
tors to determine which R process belongs to which
cluster.

All these administration options are directly us-
able by (administrative) root account, as well, so ad-
ministrators can safely kill clusters without wiping
out all the slave processes manually.

The configuration of sfCluster itself is done via
common Unix-style configuration files. Configura-
tion includes system variables (like definition of trig-
gers for stopping events on observation), the user
groups, R versions and of course the cluster universe
with resource limits.

The installation is available through tar.gz or as a
Debian package; both are instantly usable for a sin-
gle (probably multicore) machine and only need to
be configured for “real” clusters. In normal cases the
default installation should work out of the box. It
needs some minor tweaking if R is not installed in the
default way, e.g. if multiple R installations are avail-
able on the machines. All needed CRAN and CPAN
packages are also installable through the installer.

Future additions will be a port to OpenMPI, inte-
gration to common batch and resource management
systems (e.g. the Sun Grid Engine or slurp) and basic
reports about cluster behaviour.

The R Journal Vol. 1/1, May 2009 ISSN 2073-4859

58 CONTRIBUTED RESEARCH ARTICLES

Figure 4: Monitoring mode (9 slaves on five machines and master).

Summary

Although many well-working solutions for parallel
computing in R are available, they have their down-
sides on forcing the user to manage the underly-
ing clusters manually. sfCluster/snowfall solves this
problem in a very flexible and comfortable way, en-
abling even inexperienced computer users to ben-
efit from parallel programming (without having to
learn cluster management, usage and falling into pit-
falls affecting other people’s processes). snowfall
makes sure the resulting R programs are runable ev-
erywhere, even without a cluster.

The combination snowfall/sfCluster has been
used daily in our institute for several months and
has evolved with user’s demands and wishes. There
are packages that have been built integrating snow-
fall with optionally usable parallelisation techniques
(e.g. the package peperr).

The software and further information are avail-
able at http://www.imbi.uni-freiburg.de/parallel.

Acknowledgments
This research was supported by the Deutsche Forschungs-
gemeinschaft (German Research Foundation) with

FOR 534.
Thanks to Arthur Allignol for his little bootstrapping

example.

Bibliography

A. Grama, G. Karypis, V. Kumar, A. Gupta. Introduction
to Parallel Computing. Pearson Eduction, second edition,
2003.

G. Burns, R. Daoud, and J. Vaigl. LAM: An
Open Cluster Environment for MPI. Technical re-
port, 1994. http://www.lam-mpi.org/download/files/
lam-papers.tar.gz.

A. Rossini, L. Tierney, and N. Li. Simple parallel statistical
computing in R. Journal of Computational and Graphical
Statistics, 16(2):399–420, 2007.

Jochen Knaus, Christine Porzelius, Harald Binder and Guido
Schwarzer
Department of Medical Biometry and Statistics
University of Freiburg
Germany
jo@imbi.uni-freiburg.de

The R Journal Vol. 1/1, May 2009 ISSN 2073-4859

http://www.imbi.uni-freiburg.de/parallel
http://www.lam-mpi.org/download/files/lam-papers.tar.gz
http://www.lam-mpi.org/download/files/lam-papers.tar.gz
mailto:jo@imbi.uni-freiburg.de

CONTRIBUTED RESEARCH ARTICLES 59

jo@biom9:~$ sfCluster -o
SESSION | STATE | M | MASTER #N RUNTIME R-FILE / R-OUT
-----------------+-------+----+---
LrtpdV7T_R-2.8.1 | run | MO | biom9.imbi 9 2:46:51 coxBst081223.R / coxBst081223.Rout
baYwQ0GB_R-2.5.1 | run | IN | biom9.imbi 2 0:00:18 -undef- / -undef-

jo@biom9:~$ sfCluster -o --all
SESSION | STATE | USR | M | MASTER #N RUNTIME R-FILE / R-OUT
-----------------+-------+-----+----+---
LrtpdV7T_R-2.8.1 | run | jo | MO | biom9.imbi 9 3:16:09 coxBst081223.R / coxBst081223.Rout
jlXUhxtP_R-2.5.1 | run | jo | IN | biom9.imbi 2 0:00:22 -undef- / -undef-
bSpNLNhd_R-2.7.2 | run | cp | BA | biom9.imbi 8 0:32:57 getPoints11.R / getPoints11.Rout
NPS5QHkK_R-2.7.2 | run | cp | MO | biom9.imbi 10 3:50:42 box2.R / box2.Rout

jo@biom9:~$ sfCluster --universe --mem=1G
Assumed memuse: 1024M (use '--mem' to change).

Node | Max-Load | CPUs | RAM | Free-Load | Free-RAM | FREE-TOTAL
-------------------------------+----------+------+--------+-----------+----------+------------
biom8.imbi.uni-freiburg.de | 8 | 8 | 15.9G | 0 | 9.3G | 0
biom9.imbi.uni-freiburg.de | 8 | 8 | 15.9G | 0 | 12.6G | 0
biom10.imbi.uni-freiburg.de | 8 | 8 | 15.9G | 0 | 14.0G | 0
biom12.imbi.uni-freiburg.de | 2 | 4 | 7.9G | 0 | 5.8G | 0
knecht5.fdm.uni-freiburg.de | 8 | 8 | 15.7G | 1 | 1.2G | 1
knecht4.fdm.uni-freiburg.de | 8 | 8 | 15.7G | 1 | 4.3G | 1
knecht3.fdm.uni-freiburg.de | 5 | 8 | 15.7G | 3 | 11.1G | 3
biom6.imbi.uni-freiburg.de | no-sched | 4 | 7.9G | - | - | -
biom7.imbi.uni-freiburg.de | 2 | 4 | 7.9G | 1 | 2.1G | 1

Potential usable CPUs: 6

Figure 5: Overview of running clusters from the user (first call) and from all users (second call). The session
column states a unique identifier as well as the used R version. “state” describes whether the cluster is cur-
rently running or dead. “USR” contains the user who started the cluster. Column “M” includes the sfCluster
running mode: MO/BA/IN for monitoring, batch and interative. Column “#N” contains the amount of CPUs
used in this cluster. The third call gives an overview of the current usage of the whole universe, with free
calculation time (“Free-Load”) and useable memory (“Free-RAM”).

The R Journal Vol. 1/1, May 2009 ISSN 2073-4859

